
REAL-TIME MONITORING WATER 
QUALITY MONITORING SYSTEM ON 

BOARD USV 

CHE KU MUHAMMAD DANIEL AIMAN 
BIN CHE KU MAZLAN 

Bachelor of Engineering Technology Electrical 

UNIVERSITI MALAYSIA PAHANG 



UNIVERSITI MALAYSIA PAHANG 

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter. 

DECLARATION OF THESIS AND COPYRIGHT 

Author’s Full Name :  CHE KU MUHAMMAD DANIEL AIMAN BIN CHE KU MAZLAN 

Date of Birth  

Title  : REAL-TIME MONITORING WATER QUALITY MONITORING 
SYSTEM ON BOARD USV 

Academic Session :  20/21 

I declare that this thesis is classified as: 

☐ CONFIDENTIAL (Contains confidential information under the Official Secret 
Act 1997)* 

☐ RESTRICTED (Contains restricted information as specified by the 
organization where research was done)* 

☐ OPEN ACCESS I agree that my thesis to be published as online open 
access (Full Text) 

I acknowledge that Universiti Malaysia Pahang reserves the following rights: 

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies of the

thesis for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by: 

_____________________ 
(Student’s Signature) 

New IC/Passport Number 
Date:25 JANUARY 2021 

_______________________ 
(Supervisor’s Signature)   

Dr. Zainah Md Zain 
Name of Supervisor 
Date:  



SUPERVISOR’S DECLARATION 

I hereby declare that I have checked this thesis and, in my opinion, this thesis is adequate in 

terms of scope and quality for the award of the degree of Bachelor of Engineering Technology 

in Electrical. 

_______________________________ 

(Supervisor’s Signature) 

Full Name : Dr. Zainah Md. Zain 

Position  : Senior Lecturer 

Date   :  



STUDENT’S DECLARATION 

I hereby declare that the work in this thesis is based on my original work except for quotations 

and citations which have been duly acknowledged. I also declare that it has not been previously 

or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other 

institutions.  

_______________________________ 

(Student’s Signature) 

Full Name : CHE KU MUHAMMAD DANIEL AIMAN BIN CHE KU MAZLAN 

ID Number : TB17019 

Date : 25 JANUARI 2021 



REAL-TIME MONITORING WATER QUALITY MONITORING SYSTEM ON 
BOARD USV 

CHE KU MUHAMMAD DANIEL AIMAN BIN CHE KU MAZLAN 

Thesis submitted in fulfillment of the requirements 

for the award of the degree of 

Bachelor of Engineering Technology in Electrical 

Faculty of Electrical & Electronics Engineering Technology 

UNIVERSITI MALAYSIA PAHANG 

JANUARY 2021 



ii 

ACKNOWLEDGEMENTS 

First and foremost, praises and thanks to Allah, the Almighty, for His showers of blessings 

throughout my Senior Design Project I and II to complete the project successfully.  

I would like to express my deep and sincere gratitude to my final year project supervisor, Dr 

Zainah Binti Md Zain for giving me the opportunity to do this project and providing invaluable 

guidance throughout this research. Her vision, sincerity and motivation have deeply inspired 

me. She has taught me the methodology to carry out the project and to present the project works 

as clearly as possible. It was a great privilege and honour to work and study under her guidance. 

I am extremely grateful for what he has offered me.  

I am extremely grateful to my parent for their love. prayers, caring and sacrifices for educating 

and preparing me for my future. I am very thankful to my group members, Tanesh A/L Maran 

and Abdul Qaiyum Bin Haji Ramli for the cooperation and teamwork in completing the project. 

Finally, the appreciation goes to whoever has help in the process of the project direct or 

indirectly to make this project a success. 



iii 

 

ABSTRAK 

Unmanned Surface Vehicle (USV) seperti namanya adalah alat untuk mengangkut barang atau 

objek ke lokasi yang dimaksudkan. Ia tidak memerlukan campur tangan manusia untuk 

operasinya. Kenderaan permukaan tanpa pemandu (USV) adalah kapal pembawa air yang 

mampu beroperasi di permukaan air tanpa ada pengendali manusia di dalamnya. Pada mulanya, 

ia dibuat dengan memasang semula kawalan radio berawak sebelumnya, pelbagai kenderaan 

permukaan tanpa pemandu yang dibina kini tersedia. Agar USV dapat beroperasi tanpa 

manusia, ia mesti dikawal secara tanpa wayar. Projek ini meneroka penggunaan IoT, seperti 

komunikasi tanpa wayar, pangkalan data awan dan aplikasi mudah alih. Wi-Fi digunakan 

sebagai media komunikasi untuk mengawal USV melalui aplikasi mudah alih. Projek ini juga 

merangkumi pengembangan aplikasi mudah alih mudah menggunakan MIT App Inventor. 

Tujuan aplikasi mudah alih adalah untuk membuat platform mudah alih untuk mengawal USV 

dan untuk menunjukkan hasil sensor pada aplikasi tersebut. Wi-Fi juga telah digunakan untuk 

memuat naik dan memuat turun data dari dan ke pangkalan data awan. Mikrokontroler yang 

digunakan dalam projek ini adalah WEMOS MEGA + WIFI, gabungan Arduino Mega dan cip 

Wi-Fi terbina dalam (ESP8266) untuk menyambung ke Wi-Fi. USV didorong oleh motor tanpa 

sikat sebagai pengawal baling-baling oleh Pengawal Kelajuan Elektronik dan servo mikro 

sebagai kemudi untuk menavigasi di dalam air. Sensor yang digunakan untuk memantau kualiti 

air adalah sensor pH, sensor suhu kalis air DS18B20 dan sensor kekeruhan. Kemudian semua 

data dari sensor dibaca oleh Arduino Mega dan kemudian data dihantar ke pangkalan data 

pelayan awan oleh ESP8266. Pangkalan data yang digunakan dalam projek ini adalah 

ThingSpeak, pangkalan data siap pakai yang dapat dihubungkan dengan mudah ke sistem, dan 

data yang dikumpulkan akan digunakan untuk muncul di platform lain, seperti aplikasi mudah 

alih. Hasil dari projek tersebut adalah pengembangan sistem USV yang terdiri daripada 

perkakasan, perisian dan aplikasi mudah alih yang dapat digunakan untuk memantau, 

mengendalikan dan memantau USV dan sensornya. 

 

  



iv 

 

ABSTRACT 

Unmanned Surface Vehicle (USV) as the name suggest is a means of transporting goods or 

objects to the intended location. It does not require human intervention for its operation. 

Unmanned surface vehicles (USVs) are water-borne vessels capable of operating on the surface 

of the water without any human operator on board. Originally created by retrofitting previously 

manned radio controls, a wide range of purpose-built unmanned surface vehicles are now 

available. In order for the USV to operate without a human being, it must be controlled 

wirelessly. This project explored the use of IoT, such as wireless communication, cloud 

database and mobile applications. Wi-Fi is used as a communication medium to control the 

USV over a mobile application. The project also includes the development of simple mobile 

applications using the MIT App Inventor. The aim of the mobile app is to create a mobile 

platform to control the USV and to show the results of the sensors on the application. Wi-Fi 

has also been used to upload and download data from and to the cloud database. The 

microcontroller used in this project is WEMOS MEGA+WIFI, a combination of Arduino Mega 

and a built-in Wi-Fi chip (ESP8266) to connect to Wi-Fi. The USV is driven by a brushless 

motor as the propeller controller by the Electronic Speed Controller and micro servo as the 

rudder to navigate in the water. The sensors used for monitoring water quality are the pH 

sensor, the DS18B20 waterproof temperature sensor and the turbidity sensor. Then all the data 

from the sensors is read by the Arduino Mega and then the data is sent to the cloud server 

database by the ESP8266. The database used in this project is ThingSpeak, a ready-made 

database that can be easily connected to the system, and the data collected will be used to 

appear on the other platform, such as a mobile application. The result of the project is the 

development of a USV system consisting of hardware, software and a mobile application that 

can be used to monitor, control and monitor the USV and its sensors. 

 

  



v 

 

TABLE OF CONTENT 

DECLARATION 

TITLE PAGE  

ACKNOWLEDGEMENTS ii 

ABSTRAK iii 

ABSTRACT iv 

TABLE OF CONTENT v 

LIST OF TABLES viii 

LIST OF FIGURES ix 

LIST OF ABBREVIATIONS xi 

CHAPTER 1 INTRODUCTION 1 

1.1 Project Background 1 

1.2 Problem Statement  3  

1.3 Objectives 3 

1.2.2 Scope 4 

CHAPTER 2 LITERATURE REVIEW 5 

2.1 Aluminium hull USV for coastal water and seafloor monitoring 5 

2.2 Development of an Unmanned Surface Vehicle Platform for Autonomous 

Navigation in Paddy Field 6 

2.3 Radar Based Collision detection developments on USV ROAZ II 7 

2.4 Development of Navigation System for Unmanned Surface Vehicle by 

Improving Path Tracking Performance 8 

2.5 Water Quality Monitoring System Based on IOT 9 

2.6 Water Monitoring and Analytic Based Thingspeak 10 



vi 

 

CHAPTER 3 METHODOLOGY 11 

3.1 Introduction 11 

3.2 USV Hardware Design 11 

 3.2.1 USV Design 12 

 3.2.2 Mechanical System 13 

             3.2.2.1 Thruster 13 

             3.2.2.1 Rudder 14 

3.3  Flowchart 15 

3.4 Block Diagram 18 

3.5 Software Configuration and Development 19 

 3.5.1 WEMOS MEGA+WIFI 19 

 3.5.2 Mega 2560 Coding 22 

3.6 ESP32 Cam 26 

3.7 Mobile Application 27 

3.8 Circuit Diagram 36 

 3.7.1 Circuit diagram for mechanical parts and ESP32-Cam 36 

 3.7.2 Circuit diagram for water quality monitoring system 37 

3.9  ThingSpeak configurations 36 

CHAPTER 4 RESULTS AND DISCUSSION 40 

4.1 Introduction 40 

4.2 Experimental Testing 40 

 4.2.1 USV Mechanical System 40 

 4.2.2 pH Sensor Result 41 

 4.2.3 Turbidity Sensor Result 43 



vii 

 

 4.2.4 Temperature Sensor Result 44 

4.3 Problem Encounter 45 

CHAPTER 5 CONCLUSION 47 

5.1 Introduction 47 

5.2 Future Recommendation 47 

REFERENCES 49 

APPENDICES A MEGA 2560 CODE 51 

APPENDICES B ESP 8266 CODE 57 

APPENDICES C ESP32 CODE 63 

APPENDICES D GANTT CHART 65 

APPENDICES E PROJECT COST 66 

 

 

 
 
 

 

 

 

 

 



viii 

 

LIST OF TABLES 

Table 3.1 Microcontroller Specifications 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

Figure 1.1 Sampling Process of Kim Kim River 1 

Figure 2.1 ALANIS USV 5 

Figure 2.2 ALANIS USV performing basic guidance and control tests. 5 

Figure 2.3 Unmanned surface vehicle platform 6 

Figure 2.4 The 6-D of motion of the USV platform in geodetic coordinate system 6 

Figure 2.5 Target detected and leaving closest approach zone 7 

Figure 2.6 ROAZ II Autonomous Surface Vehicle 7 

Figure 2.7 Shows the location on the google map 8 

Figure 2.8 USV platform searching the target platform location 8 

Figure 2.9 System design model of water quality monitoring system using IOT 9 

Figure 2.10 Water Monitoring and Analytic Based Thingspeak 10 

Figure 2.11 Thingspeak cannel of proposed system 10 

Figure 3.1 USV design 12 

Figure 3.2 Thruster and ESC 13 

Figure 3.3 Rudder 14 

Figure 3.4 Flowchart of the overall system 15 

Figure 3.5 Flowchart of the Water Quality Monitoring System 16 

Figure 3.6 Flowchart of USV Control System 17 

Figure 3.7 Block diagram of the overall USV system 18 

Figure 3.8 WEMOS MEGA+WIFI 19 

Figure 3.9 DIP switch configuration for mode selection 20 

Figure 3.10 Switch for serial selection 22 

Figure 3.11 Example coding of sending data to ESP 8266 22 

Figure 3.12 Credentials parameter of the Wi-Fi 23 

Figure 3.13 Webserver setup 23 

Figure 3.14 Command to be send to Arduino Mega 23 

Figure 3.15 Channel number and write API key for ThingSpeak 24 

Figure 3.16 Example of codes for turbidity sensor 25 

Figure 3.17 ESP32 Cam diagram 26 

Figure 3.18 The block codes example for welcome page 27 

Figure 3.19 The GUI of welcome page 28 

Figure 3.20 Camera function of the ESP32 Cam 29 



x 

 

Figure 3.21 Blocks for Camera function 29 

Figure 3.22 The control page of the mobile application 30 

Figure 3.23 Blocks for GO button 30 

Figure 3.24 Example blocks to send data to ThingSpeak 31 

Figure 3.25 Example blocks for result page 32 

Figure 3.26 Example blocks for single result function 33 

Figure 3.27 Example blocks for combine results function 34 

Figure 3.28 Sensor data in table form 35 

Figure 3.29 Sensor data in graphical form 35 

Figure 3.30 Circuit diagram for mechanical system and ESP32-Cam 36 

Figure 3.31 Circuit diagram for water quality system 37 

Figure 3.32 ThingSpeak channel created 38 

Figure 3.33 Channel details of pH sensor 38 

Figure 3.34 ThingSpeak link to access the channel detail 39 

Figure 4.1 Experimental testing in a pool 40 

Figure 4.2 The application view when testing 41 

Figure 4.3 pH sensor result on ThingSpeak. 42 

Figure 4.4 pH sensor acquire 42 

Figure 4.5 Turbidity sensor result on ThingSpeak 43 

Figure 4.6 Turbidity sensor acquire 43 

Figure 4.7 Temperature sensor result on ThingSpeak 44 

Figure 4.8 Temperature sensor acquire 44 

Figure 4.9 Video feed on application 45 

Figure 4.10 Flush function on application 46 

Figure 4.11 ESP32 Cam block on MIT App Inventor 48 

 

 

 

  



xi 

 

LIST OF ABBREVIATIONS 

USV Unmanned Surface Vehicle 

IoT Internet of Things 

BOD Biochemical Oxygen Demands 

COD Chemical Oxygen Demands 

WQI Water quality index 

DO Dissolved oxygen 

SS Suspended solids 

AN Ammonia 

Wi-Fi Wireless Fidelity 

ROAZ Regionaal Overleg Acute Zorgketen 

PVC Polyvinyl chloride 

USB Universal Serial Bus 

EEPROM Electrically Erasable Programmable Read-Only Memory 

IP Internet Protocol 

LCD Liquid Crystal Display 

GUI Graphical User Interface 

ESC Electronic Speed Controller 

UART Universal Asynchronous Receiver/Transmitter 

 

 

 

  



1 

 

CHAPTER 1  

INTRODUCTION  

1.1 Project Background 

 

 Water is one of our main sources of living and currently, we are facing worldwide water 

pollution crisis. Water quality is a large environmental problem and one of humanity’s 

grand challenges. In 2019, Johor state government faced a lot of losses and had hard time 

to treat all those polluted Kim Kim River due to chemical substances. This has become one 

of the major problems, as the cost of the treatment is expensive. The government had to 

allocated an emergency fund of RM 6.5 millions to speed up the cleaning work of Kim Kim 

River as it has affected a lot of citizen. Figure 1.1 shows the sampling process of the Kim 

Kim River.(The Straits Times,2019) 

 

 

Figure 1.1: Sampling Process of Kim Kim River 

 



2 

 

 The results of this water test were measured using eight parameters including the 

Biochemical Oxygen Demands (BOD) and Chemical Oxygen Demands (COD) and Total 

Suspended Solids water levels. The highest BOD levels of dead rivers between 88-98 and 

reading 98 were categorized as highly polluted rivers. But the Kim Kim River readings 

(Circular 11 sample location) are 821. (Star Online,2019) 

A total of 5,848 children and adults were treated since March 8 2019 due to toxic waste 

contamination in the Kim River, Pasir Gudang, Johor. Luckily none were reported dead due to 

this contamination. (The Sun Daily,2019) 

Water quality index (WQI) determines the water quality of the aquatic ecosystem. Some 

of the water quality parameters are as dissolved oxygen (DO), biochemical oxygen demand 

(BOD), chemical oxygen demand (COD), suspended solids (SS), ammonia (AN) and pH. 

These parameters are constantly monitored to ensure the water quality.  

Water sampling by using Unmanned Surface Vehicle (USV) is one of the effective ways 

to get the real-time water quality index. This USV will be equipped with sensors that are related 

to water quality monitor. These sensors can communicate with each other to collect and 

transmit data from the surrounding environment. It’s been used widely for monitoring habitat, 

natural disaster and many more. Those collected data will be transmitted to base stations. These 

USVs are equipped with multiple sensors and they are capable of transmitting data at the same 

time. And more importantly, they can be configured to be low or high power to save power and 

they are small in size compared to other type of wireless device. (WSD,2019) 

This project uses the WEMOS MEGA+WIFI integrated with water quality sensors and 

USV’s controller to monitor the water quality on real time basis. The data monitored all be 

transmitted to a remote base station (mobile application) to allow data analysis take place. 

Based on the analyzed data, the quality of the polluted waste can be identified and a solution 

to improve the quality can be proposed.  

  



3 

 

1.2 Problem Statement 

 Manual sampling is a traditional method of water sampling that used widely in water 

sampling process to measure the water quality. Lately, the development of USV give the 

researchers an idea to equip the USV with water sampling system to measure the water for 

water quality analysis purpose. However, the existing platforms are too expensive and no 

wholly open-source USV platforms that allows modification for diverse purposes.  

1.3 Objective 

The objectives of this project are to achieve the following; 

1. To design and develop an USV that low in cost and attached with onboard water quality 

monitoring system. 

2. To develop a water quality monitoring system that can send data real time from the sensors 

on the USV to the platform. 

3. To develop remote control system via mobile application to control the USV and display the 

data from the sensor in real time. 

 

 

 

 

 



4 

 

1.4 Scope 

The main target of this project is to design a framework or a platform that is able to monitor 

the water quality in term of its pH level, temperature, turbidity and remotely or automated 

system for the USV based on the Android application through a notification to inform the user. 

Apart from that, the system must be efficiently easy to set up and portable based on the 

requirement needed by the user, portable and user friendly. To counter the issues mentioned 

above, several measures have been implemented for this project:  

1. The coverage of this system is limited to the range of connection between the 

transmitter and the receiver. 

2. The USV needs to be resistant, fast and high maneuverability to avoid the malfunction 

when it is running. 

 

 

 

 

 

 

 

 

 

 

 



5 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Aluminium hull USV for coastal water and seafloor monitoring 

This journal tells about Construction and Development of the Aluminium Autonomous 

Navigator for Intelligent Sampling (ALANIS), an unmanned surface vehicle (USV) 

developed by the Autonomous robotic systems and control group of CNR-ISSIA Ge-nova 

basically for coastal monitoring. The onboard automation system of the rubber boat shaped 

aluminium vessel manages the steering and throttle of a conventional outboard motor on 

the base of user desires and measurements supplied by the navigation package. An 

automatically controlled winch is devoted to deployment and recovery of scientific 

instrumentation through a suitable hole in the vehicle prow. (M. Caccia,2009) 

Figure 2.1 ALANIS USV 

Figure 2.2 ALANIS USV performing basic guidance and control tests. 



6 

 

2.2  Development of an Unmanned Surface Vehicle Platform for Autonomous 

Navigation in Paddy Field 

 This project carried out to develop an unmanned surface vehicle (USV) platform for 

autonomous navigation in the paddy field. The surface vehicle used in this research was a 

radio controlled air propeller vessel that had been modified into an unmanned surface 

vehicle platform. A GPS compass system was attached to the top of the USV platform as 

the navigation system to provide the position and heading angle. The USV platform can 

autonomously navigate to the predefined navigation map. From the GPS trajectory data of 

the map-based navigation experiment, the in-system root mean square (RMS) lateral error 

from the target path was observed to be less than 0.45 m, and the in-system RMS heading 

error was 4.4 degree or less. The purpose of the research is to realize the autonomous 

weeding, intelligent fertilization or paddy growth management based on this USV 

platform.(Y Liu,2016) 

Figure 2.3 Unmanned surface vehicle platform 

Figure 2.4 The 6-D of motion of the USV platform in geodetic coordinate system 



7 

 

2.3 Radar Based Collision detection developments on USV ROAZ II 

 This work presents the integration of obstacle detection and analysis capabilities in a 

coherent and advanced C&C framework allowing mixed-mode control in unmanned 

surface systems. The collision avoidance work has been successfully integrated in an 

operational autonomous surface vehicle and demonstrated in real operational conditions. 

We present the collision avoidance system, the ROAZ autonomous surface vehicle and the 

results obtained at sea tests.(C. Almeida, 2009) 

Figure 2.5 Target detected and leaving closest approach zone 

Figure 2.6 ROAZ II Autonomous Surface Vehicle. 

  



8 

 

2.4 Development of Navigation System for Unmanned Surface Vehicle by Improving 

Path Tracking Performance 

A fundamental of a fully unmanned vehicle entails the use of Global Positioning 

System (GPS) and sensors module that emits USV a series of a waypoint for moving 

towards the target. In other words, GPS provides an accurate data location longitude and 

latitude for monitoring purposes. However, this real-time tracking path needs to extend 

their application for moving in curvature motion. Based on this fact, the real-time 

autonomous navigation system of USV will improve in this research by implementing the 

mathematical equation that will communicate with the GPS sensor. (Puteri Nur Farhanah, 

2020) 

Figure 2.7 Shows the location on the google map 

Figure 2.8 USV platform searching the target platform location 

  



9 

 

2.5 Water Quality Monitoring System Based on IOT 

 

 The researchers present a design and development of a low-cost system for real 

time monitoring of the water quality in Internet of Things (IoT). The system consist of 

several sensors is used to measuring physical and chemical parameters of the water. 

The parameters such as temperature, pH, turbidity and flow sensor of the water can be 

measured. The measured values from the sensors can be processed by the core 

controller which is Atmega328. Finally, the sensor data can be viewed on internet using 

WIFI system. (I. Y. Amran,, 2017) 

 

 

Figure 2.9 System design model of water quality monitoring system using IoT 

  



10 

 

2.6 Water Monitoring and Analytic Based Thingspeak 

 

 This paper presents a water quality monitoring using IoT based Thingspeak 

platform that provides analytic tools and visualization using MATLAB programming. 

The proposed model is used to test water samples using sensor fusion technique such 

as TDS and Turbidity. The data will then be uploaded online to Thingspeak platform to 

monitor and analyse. The system notifies authorities when there are water quality 

parameters out of a predefined set of normal values. A warning will be notified to user 

by IFTTT protocol. (Abbas Hussain, 2020) 

 

 

Figure 2.10 Implementation of the proposed system 

 

Figure 2.11 Thingspeak cannel of proposed system  



11 

 

CHAPTER 3 

 

METHODOLOGY 

 

3.1 Introduction 

 

 In this chapter, the methodology of the project will be explained in details on its 

platform design selection, flowchart, block diagram and the software configuration 

 

 First, the hardware design as it is an important aspect of the overall project. The 

hardware selection is done based on the literature review done in Chapter 2. Next, the flowchart 

of the system and the block diagram of the system is explained to show the overall system and 

its functions. Then the software configuration will be explained how the USV software is 

developed using 2 platform that are MIT App Inventor and Arduino IDE. Finally, the use of 

ThingSpeak will also be explained. 

 

3.2 USV Hardware Design 

 

 The USV design are based on the hull design, the mechanical system and the controller 

type chosen. 

  



12 

 

3.2.1 USV Design 

  

 The USV we designed based on the Solidwork drawing. The sizes and dimensions were 

determined before we apply to the hands-on works. The USV were designed using plywood. 

We cut the plywood in segments of parts and attached all of them with screws and wood glue. 

Then, the USV were coated with the fibreglass and the resin. The purpose of the fiberglass and 

resin were to ensure the USV is waterproof and able to float in the water. The fibreglass process 

took a lot of effort since we had to coat the USV with 3 layers of fiberglass. The layer was 

sanded every time each layer is completely dried. 

 

  

Figure 3.1 USV that has been developed 

 

 The sensors were mounted using the PVC pipe to hold the sensors and wires. This 

ensures that the wires will not be touching any water. This is one of our safety precautions to 

avoid electrocution when operating the USV. The microcontroller which is WEMOS 

MEGA+WIFI and electrical connections were put inside the plastic case. 

  



13 

 

3.2.2. Mechanical System 

 

 The mechanical system of our USV consists of two parts which is the thruster and the 

rudder. The concept of the system will be explained below. 

 

3.2.2.1 Thruster 

  

 The thruster of our USV used a brushless motor and an Electronic Speed Controller 

(ESC). The motor is powered by a Li-Po 11.1 V, 2200mAh battery. The motor rating is 2200kV 

6T. The motor is attached to a 25cm motor shaft and a propeller. 

 

 

Figure 3.2 Thruster and ESC 

  



14 

 

3.2.2.2 Rudder 

  

 The rudder was built using the aluminium sheets and door hinges. The door hinges were 

attached to the back of the USV. The sheets size is around 100mm x 40mm. The rudder is 

moved by a SG90 micro servo. The angle of rotation of the servo were set to be 120°. 

 

 

Figure 3.3 Rudder  

3.2.3 Controller 

 The USV is controlled by using an android application that was built using MIT App 

Inventor. This was done by using a wireless local area network. A modem with internet 

connection is needed in order to create the access point (AP) so that the USV hardware can 

connect to the internet. When the USV is powered on, the microcontroller will initialize a 

connection to the internet. This will create a webserver that will be used as the controller 

medium. 

 

 

 

 

  



15 

 

3.3 Flowchart  

 

 This flowchart shows the working principle of the overall system including the android 

application and the Arduino coding. 

 

 

 

Figure 3.4 Flowchart of the overall system 

 

 In Figure 3.4, the flowchart shows the overall system and its subfunctions such as USV 

Controller and Water Quality system.  



16 

 

 

Figure 3.5 Flowchart of the Water Quality Monitoring System 

 

 Figure 3.5 shows the subfunction for the Water Quality Monitoring System which takes 

the data from pH sensor, turbidity sensor and temperature sensor.  



17 

 

 

 

Figure 3.6 Flowchart of USV Control System 

  

 In Figure 3.6 shows the flowchart of USV Control System which controls the brushless 

motor as the thruster and the micro servo as the rudder. 

 

 

 

 

 

  



18 

 

3.4. Block Diagram 

 

 

Figure 3.7 Block diagram of the overall USV system 

 

 Figure 3.7 shows the block diagram of the overall USV system based on the WEMOS 

MEGA+WIFI which is built in with MEGA 2560 and ESP 8266. The sensors, LCD and USV 

controller were programmed in the MEGA 2560. The ESP 8266 will communicate with the 

Web Server, Thingspeak and the android application. 

 

  



19 

 

3.5 Software Configuration and Development 

3.5.1 WEMOS MEGA+WIFI 

This project uses the WEMOS MEGA+WIFI as the microcontroller. It allows flexible configurations 

for connections for the connection between Atmega2560, ESP8266 and USB serial. The configurations 

are sent using the DIP switches This is because it is built in with MEGA 2560 and ESP 8266. By using 

this microcontroller, we can reduce the complication in connecting the MEGA 2560 and ESP 8266. 

Figure 3.8 WEMOS MEGA+WIFI 

  



20 

 

 

 

Figure 3.9 DIP switch configuration for mode selection 

  



21 

 

The coding is uploaded differently which are to MEGA 2560 and ESP 8266. This 

MEGA 2560 will take care of the sensors and motors that controls the USV function. ESP 8266 

will handle the Wi-Fi connectivity and host the webserver that are used to communicate with 

the mobile application and ThingSpeak. 

Microcontroller  MEGA 2560 WEMOS MEGA+WIFI 

Processor Atmega2560 Atmega2560, ESP 8266 

Operating Voltage 5/7-12V 5/7-12V,3v3 

CPU Speed 16MHz 16MHz, 80MHz 

Analog in/Out 16/0 16/0, 1/0 

Digital IO/PWM 54/15 54/15 

EEPROM [kB] 4kb 4kb 

SRAM 8kb 8kb,64kb 

Flash [kB] 356kb 32Mb, 8Mb 

USB Regular CH340G 

UART 4 4, 1/Wi-Fi 

Table 3.1 Microcontroller Specifications 

  



22 

 

 This WEMOS MEGA+WIFI also have serial connection which are Serial 0 – Serial 3. 

In this project, we use the Serial 3 of Arduino Mega is used to connect with Serial 1 of the ESP 

8266 by switching the switch to the TXD3/RXD3.  

 

 

Figure 3.10 Switch for serial selection 

 

3.5.2 Mega 2560 Coding 

 

 As mention before, the DIP switch is turned on based on the Figure 3.9 to upload the 

coding to the Mega 2560. The MEGA 2560 is set to receive command from the ESP 8266 via 

the Serial 3 read function. The data received are in a form of string or char. Then, Mega 2560 

will identify the command received to do a specific code for the particular command. In Figure 

3.11 shows that if the Mega 2560 received the command [GO], it will process the codes that 

turn on the brushless motor. 

 

 

Figure 3.11 Example coding of sending data to ESP 8266  

 

  



23 

 

3.5.3 ESP 8266 Coding 

 

 The DIP switches are configured based on the Table 3.1 to upload the coding to ESP 

8266. Figure 3.12 shows the Wi-Fi credentials needed to be filled for it to connect to the local 

Wi-Fi. Then, a webserver and its components need to be created. The webserver acts as the 

middle man between the android application and the ESP 8266. The webserver created the 

URL using the IP address. The webserver and its codes are shown in Figure 3.13. The button 

is set so after being press a specific URL path will be access by the webserver. The specific 

URL path will trigger the specific command to be print by the ESP 8266 serial print as in Figure 

3.14. 

 

 

Figure 3.12 Credentials parameter of the Wi-Fi 

 

 

Figure 3.13 Webserver setup 

 

 

Figure 3.14 Command to be send to Arduino Mega 

  



24 

 

 Next, to upload the acquired sensor data, the data will need to be received by the 

ESP8266. The data sent by Mega 2560 are received in form of string or char then it will be 

converted to float before can be upload to the ThingSpeak. Figure 3.15 show the channel 

number and write API key for the specific field needed to be set for the specific sensor.  

 

 

 

Figure 3. 15 Channel number and write API key for ThingSpeak. 

 

 

Figure 3. 16 Example of codes for turbidity sensor  



25 

 

3.6 ESP32 Cam 

  

 In this project, ESP32 Cam is used as the IP camera which will show the video feeds 

on the android application of the view from the front of the USV. The ESP32 board is equipped 

with camera module, OV2640. This board supports the image Wi-Fi upload and built in with 

smallest 802.11b/g/n Wi-Fi BT SoC module. 

 

 

 

Figure 3.17 ESP32 Cam diagram 

  



26 

 

3.7. Mobile Application 

 

 The application is developed using MIT App Inventor, an online platform to create 

applications by dragging and dropping the components into a design view and using a visual 

blocks language to program the application behaviour. The Graphical User Interface (GUI) of 

the mobile application consist of 3 pages which are welcome page, control page, and result 

page. 

 

 

Figure 3.18 The block codes example for welcome page 

  



27 

 

 

Figure 3.19 The GUI of welcome page 

 

 The user will need to enter the IP address printed on the LCD mounted on the USV in 

order to control it but if the user only want to view the previous acquired data, the user can 

press the data button. The control button will connect the application to the IP address entered 

and access the IP address as URL hostname. The button will then bring the user to the next 

page which is the control page. 

 

 

  

  



28 

 

 

Figure 3.20 Camera function of the ESP32 Cam 

 

 

Figure 3.21 Blocks for Camera function 

 

 In Figure 3.21 shows the blocks for the ESP32 Cam that will show the feeds of the USV 

front view. The ESP32 Cam is connected to the local Wi-Fi and established an IP address. The 

IP address is used to connect the camera function of the application to the ESP32 Cam. 

  



29 

 

  

 

Figure 3.22 The control page of the mobile application. 

 

 The Figure 3.22 show sthe control page of the USV where we can control the USV 

movement. The specific buttons will accesed the specific URL. For example, if the user pressed 

the forward button, the application will access the URL as 192.168.0.104/GO. This action will 

give command to ESP 8266 to print the specific command to MEGA 2560. Then the MEGA 

2560 will execute specific process for moving the USV. 

 

 

Figure 3.23 Blocks for GO button  



30 

 

 

Figure 3.24 Example blocks to send data to ThingSpeak 

 

 Figure 3.24 shows the blocks that works to send the sensor data to the ThingSpeak. This 

link https://api.thingspeak.com/channels/1264048/fields/1.json?results=1 contain the unique 

channel id on the ThingSpeak. For example, the channel id for this example is 126048. The 

application will access the ThingSpeak channel through its channel id. 

 

 

 

 

 

  



31 

 

 

Figure 3.25 Example blocks for result page  

 

 Figure 3.25 shows the blocks of the result page. This block will show the user the status 

of the acquired sensor data. For example, for the pH sensor data, the application will show the 

user the value of the pH and whether it is acidic, alkaline or neutral. 

 

  

  



32 

 

 

Figure 3.26 Example blocks for single result function 

  



33 

 

 In Figure 3.26 shows the blocks for single result function which will retrieve the 

acquired sensor data from the ThingSpeak. The data will be retrieved based on each of 

ThingSpeak channel for each sensor.  

 

 

Figure 3.27 Example blocks for combine results function  



34 

 

 The result page enabled user to view 5 previous results. The user needs to choose which 

sensor to show the result or show the combine result. The Figure3.28 shows the 5 recent results 

and Figure 3.29 shows the acquired sensor data from the ThingSpeak on the application. 

 

 

Figure 3.28 Sensor data in table form 

 

 

Figure 3.29 Sensor data in graphical form 

  



35 

 

3.8 Circuit Diagram 

 

 This part shows the circuit connection that completes the USV system. The circuit 

consists of two parts which are for mechanical parts and ESP32 Cam and, the water quality 

monitoring system. 

 

3.8.1 Circuit diagram for mechanical parts and ESP32-Cam 

 

 We have use WEMOS MEGA+WIFI as the microcontroller to connect the mechanical 

parts and ESP32-Cam. Based on the diagram, the microcontroller power will be supplied a 

power bank. The Electronic Speed Controller (ESC) and SG90 Micro Servo are connected to 

the WEMOS MEGA+WIFI. Then, the ESP32-Cam is connected to the USB TTL serial. The 

USB TTL serial will then be connected to the power bank too. 

 

 

Figure 3.30 Circuit diagram for mechanical system and ESP32-Cam 

  



36 

 

 

3.8.2 Circuit diagram for water quality monitoring system 

 

 We have used three sensors related to water quality, which is analog pH sensor, analog 

turbidity sensor and temperature sensor. These sensors are connected to WEMOS 

MEGA+WIFI. The LCD I2C is functioning to display the IP address when the WEMOS 

MEGA+WIFI is power up. The 4.7K Ohm resistor is used as a pull up resistor. This resistor 

will ensure the voltage between Ground and Vcc is actively controlled when the WEMOS 

MEGA is on. 

 

 

Figure 3.31 Circuit diagram for water quality system 

  



37 

 

 

3.9 ThingSpeak Configurations 

 

 

Figure 3.32 ThingSpeak channel created 

 

 

Figure 3.33 Channel details of pH sensor 

 

 Figure 3.32 and Figure 3.33 shows the created channel for each sensor. Each channel 

has its unique channel id and API key. This channel id and API keys is used to determine the 

place to store the acquired data. Write API key is used to write the acquired data to the channel 

while the read API keys is used to retrieved or read the acquired data from the ThingSpeak 

from the application. 

  



38 

 

 

Figure 3.34 ThingSpeak link to access the channel detail. 

 

 Figure 3.34 shows the link that is used to access the ThingSpeak channel. This link is 

entered in the blocks of the application on MIT App inventor. The only difference for each 

sensor is the channel id and API keys. The id and API keys can be changed based on the created 

channels. 

 

 

 

 

  



39 

 

CHAPTER 4 

 

RESULT AND DISCUSSION 

 

4.1 Introduction 

 

 This chapter will explain about the results of the testing and the analysis of the testing. 

 

4.2 Experimental Testing 

 

4.2.1 USV Mechanical System 

 

 The experimental test was conducted to make sure that the USV and the developed 

application were working correctly. Based on the testing, the USV and the application works 

as desired. The USV is able to communicate with the application. The USV is able to get the 

command sent by the mobile application. For example, when we pressed the forward button 

on the application, the USV is able to processed it and move forward. As for the sensors, the 

sensors are able to work perfectly fine when the acquire sensor button is pressed. The USV can 

take the sensor readings of the water and send it to the application. 

 

 

Figure 4.1 Experimental testing in a pool  



40 

 

 

Figure 4.2 The application view when testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



41 

 

4.2.2 pH Sensor Result 

 

 

Figure 4.3 pH sensor result on ThingSpeak. 

 

 

Figure 4.4 pH sensor acquire  

 

 Figure 4.3 shows the result when the acquire pH sensor button is pressed. The acquire 

sensor button will take the sensor reading and send it to the ThingSpeak channel. The acquired 

sensor data can also be viewed on the application.  



42 

 

4.2.3 Turbidity Sensor Result 

 

 

Figure 4.5 Turbidity sensor result on ThingSpeak 

 

 

Figure 4.6 Turbidity sensor acquire 

 

 Figure 4.5 shows the result when the acquire turbidity sensor button is pressed. The 

acquire sensor button will take the sensor reading and send it to the ThingSpeak channel. The 

acquired sensor data can also be viewed on the application.  



43 

 

4.2.4 Temperature Sensor Result 

 

 

Figure 4.7 Temperature sensor result on ThingSpeak 

 

 

Figure 4.8 Temperature sensor acquire 

 

 Figure 4.7 shows the result when the acquire temperature sensor button is pressed. The 

acquire sensor button will take the sensor reading and send it to the ThingSpeak channel. The 

acquired sensor data can also be viewed on the application.  



44 

 

4.3 Problem Encounter 

 

 In the testing phase, there are a few problems that have been faced. The problem are 

caused by the software and coding. 

 

 First, the ESP32-Cam function that give video feeds makes the application a bit lag. 

This happened because we used the feeds in a form of snapshot in .mjpeg format. The 

application was stuttered because the feeds is refreshed in every 1 second. This might also be 

happening because of different IP addresses are used. This is because the ESP32 Cam will print 

a different IP address while the WEMOS MEGA+WIFI uses a different IP address. 

 

 

Figure 4.9 Video feed on application 

 



45 

 

 Second, the problem encountered was when the UPLOAD button was pressed, it 

somehow uploaded the sensor data into the wrong channel and sometimes the data did not 

upload at all. This error is caused by various reasons. One of them might be the delay or the 

connection strength of the Wi-Fi. So, the data that should be uploaded earlier might be uploaded 

with the new data at the same time. In order to counter the problem, new channels of 

ThingSpeak are created using a second account. This channels only serve its purpose to 

received data after the UPLOAD button is pressed. The flush function is created to flush the 

delayed data in between acquiring the sensor data 

 

 

Figure 4.10 Flush function on application 

 

 The flush function is created to flush the delayed data in between acquiring the sensor 

data. This will clear the delayed data from sending them to ThingSpeak. 

  



46 

 

CHAPTER 5 

 

CONCLUSION 

 

5.1 Introduction 

 

 The result of the project is the development of a USV system consisting of hardware, 

software and a mobile application. The USV hardware is being built in time and managed to 

obtain some real-world data from the nearby lake. System software works fine with minimal 

error or delay. The mobile application of the system also works perfectly without any 

noticeable glitch. 

 

5.2 Future Recommendation 

 

 For future use, the USV can be improved in some aspects. One of them is the range of 

the connectivity. The connectivity of the current system is limited to the connectivity range of 

the Wi-Fi modem which is around 10 meters. To improve this, the antenna can be added to the 

system to extend the connectivity to at least 100 meters. This can ensure that the USV will not 

be losing internet connection while in field test. 

  



47 

 

 

Figure 5.1 ESP32 Cam block on MIT App Inventor 

 

 On the other hands, the function of the ESP32 Cam on the application can be improved. 

Since, the current system makes the application stuttering, the blocks of the application on the 

MIT App Inventor can be improvised. Based on the he current system of the ESP32 Cam on 

the application, the IP address is determined beforehand in the blocks as shown in the Figure 

5.1. For example, the improvement can be made with asking the user to enter two IP addresses 

which are for ESP8266 and ESP32 Cam in the welcome page.  

 

 The other improvement is the USV can be mounted with the GPS module. The USV 

location can be traced by using the GPS. This can also avoid the loss of USV while losing 

connection with the Wi-Fi. This can also help the user to pinpoint the location of the acquired 

sensor data. 

 

 Finally, the problem we encountered is the IP addresses for the ESP32 Cam and 

ESP8266 sometimes printed as the same address. So, when this happened, the application can 

only show the video feed and cannot control the USV system. To counter this, the ESP32 Cam 

can be designated a fixed IP address beforehand. 

  



48 

 

REFERENCES 

Cleaning up toxic river Sungai Kim Kim in Pasir Gudang to cost S$2.16 million. (2019, 

March 14). The Straits Times. https://www.straitstimes.com/asia/se-asia/cleaning-up-

toxic-river-sungai-kim-kim-in-pasir-gudang-to-cost-s216-million 

The Sun Daily. (2019, March 20). Victims of chemical pollution treated since March 8. 

Retrieved from https://www.thesundaily.my/local/5-848-victims-of-chemical-pollution-

treated-since-march-8-CN708613 

Water Supplies Department. (2019, April 1). Trial use of unmanned surface vessel (USV) 

system for water quality monitoring and sampling at Impou. 

(n.d.). https://www.wsd.gov.hk/en/core-businesses/water-quality/my-drinking-water-

quality/unmanned-surface-vessel-system/index.html 

M. Caccia, M. Bibuli, R. Bono, Ga. Bruzzone Gi. Bruzzone and E. Spirandelli Consiglio 

Nazionale delle Ricerche Istituto di Studi sui Sistemi Intelligenti per l’Automazione Via 

De Marini, 6 16149 Genova, Italy. (n.d.). Aluminum hull USV for coastal water and 

seafloor monitoring - IEEE conference publication. IEEE  

Wonse Jo, Yuta Hoashi, Lizbeth Leonor Paredes Aguilar, Mauricio Postigo-Malaga, José 

M.Garcia-Bravo, Byung-Cheol Min. A low-cost and small USV platform for water 

quality monitoring. 2019 The Authors. Published by Elsevier Ltd. 

Yufei Liu. Noboru Noguchi. Takeshi Yusa. (n.d.). Development of an unmanned surface 

vehicle for autonomous navigation in a Paddy Field 

Carlos Almeida*, Tiago Franco**, Hugo Ferreira*, Alfredo Martins*, Ricardo Santos**, José 

Miguel Almeida*, João Carvalho*, Eduardo Silva*. (n.d.). (PDF) Radar based collision 

detection developments on usv roaz II. 

PUTRI NUR FARHANAH MOHD SHAMSUDDIN1, MUHAMAD ARIFPIN MANSOR1, 

*, ROSHAHLIZA M. RAMLI1, RAJA MARIATUL QIBTIAH RAJA JAAPAR2. (2020, 

April 1). (PDF) Development of navigation system for unmanned surface vehicle by 

improving path tracking performance. 

I. Y. Amran, K. Isa, H. A. Kadir, R. Ambar, N. Syila, A. Aziz, A. Kadir, M. Haniff and A. 

Mangshor, "Development of Autonomous Underwater Vehicle for Water Quality 

Measurement Application," pp. 1-16. 



49 

 

J. Liu, J. Sun, J. Wang, G. Huang, J. Jing, X. Xiang, X. Chen and Y. Zhang, "Comparison of 

effects on volatile and semi-volatile organic compounds in water by different sampling 

methods," 2009 International Conference on Energy and Environment Technology, 

ICEET 2009, vol. 2, no. November 2008, pp. 480-483, 2009. 

Fernando K Tecnologia, Arduino Mega com WiFi Embutido ESP8266, 2017. 

Sathish Pasika, Sai Teja Gandla. (2020, July). Smart water quality monitoring system  with 

cost-effective using IoT. ScienceDirect.com | Science, health and medical journals, full 

text articles and books. 

https://www.sciencedirect.com/science/article/pii/S2405844020309403 

Abbas Miry, Gregor Alexander Aramice. (2020, August). (PDF) Water monitoring and 

analytic based ThingSpeak. ResearchGate. 

Miry, A. and Aramice, G., 2021. Water monitoring and analytic based thingspeak. [online] 

Academia.edu. Available at: 

<https://www.academia.edu/43785373/Water_monitoring_and_analytic_based_ThingSpe

ak> [Accessed 28 January 2021]. 

V., V., & Gaikwad, D. (2017). Water Quality Monitoring System Based on IOT. Research 

India Publications. 

International Journal of Electrical and Computer Engineering (IJECE). (2019). Water 

monitoring and analytic based thingspeak. 

Fernando K Tecnologia, Arduino Mega com WiFi Embutido ESP8266, 2017. 

I. Y. Amran, K. Isa, H. A. Kadir, R. Ambar, N. Syila, A. Aziz, A. Kadir, M. Haniff and A. 

Mangshor, "Development of Autonomous Underwater Vehicle for Water Quality 

Measurement Application," pp. 1-16. 

Niel Andre cloete, Reza Malekian and Lakshmi Nair, Design of Smart Sensors for Real-Time 

Water Quality monitoring, ©2016 IEEE conference. 

 
 
 
  
 
 

  



50 

 

APPENDIX A 

ARDUINO CODE 

ARDUINO MEGA 2560 CODE 
#include <MemoryFree.h> 
#include <EEPROM.h> 
#include <LiquidCrystal_I2C.h> 
LiquidCrystal_I2C lcd(0x27, 16, 2); 
String inString; 
/*******PHSENSOR************/ 
#define SensorPin A1 
float Offset=0 ; 
#define samplingInterval 20 
#define ArrayLenth 40 
int pHArray[ArrayLenth];  
int pHArrayIndex = 0; 
static unsigned long samplingTime = millis(); 
static float pHValue, voltage; 
/*******TEMPERATURESENSOR************/ 
#include <Wire.h> 
#include <OneWire.h> 
#include <DallasTemperature.h> 
#define ONE_WIRE_BUS 3 
DeviceAddress thermometerAddress; 
OneWire oneWire(ONE_WIRE_BUS); 
DallasTemperature tempSensor(&oneWire); 
/*******TURBIDITYSENSOR************/ 
int sensorPin = A0; 
float volt; 
float ntu; 
float tboffset=0; 
/*******SERVO LEFT AND RIGHT*******/ 
#include <Servo.h> 
Servo servo; 
/*********DC MOTOR*************/ 
int val; 
Servo esc; 
 
void setup() { 
   
  Serial.begin(115200); 
  Serial3.begin(115200); 
  lcd.init(); 
  lcd.init(); 
  // turn on LCD backlight 



51 

 

lcd.backlight(); 
/*******TURBIDITYSENSOR************/ 
pinMode(sensorPin,INPUT); 
/*******TEMPERATURESENSOR************/ 
Serial.println("DS18B20 Temperature IC Test"); 
Serial.println("Locating devices..."); 
tempSensor.begin(); // initialize the temp sensor 
if (!tempSensor.getAddress(thermometerAddress, 0)) 
Serial.println("Unable to find Device."); 
else { 
Serial.print("Device 0 Address: "); 
printAddress(thermometerAddress); 
Serial.println(); 
} 
tempSensor.setResolution(thermometerAddress, 9);// set the temperature resolution (9-12) 
 
/*****SERVO LEFT AND RIGHT********/ 
  servo.attach(2); 
  servo.write(0); 
  delay(2000); 
/*************************DC 
MOTOR******************************************/ 
  esc.attach(8); //Specify the esc signal pin,Here as D8 
  //esc.writeMicroseconds(1000); //initialize the signal to 1000 
} 
void loop() { 
  volt = 0; 
for(int i=0; i<500; i++) 
{ 
volt += ((float)analogRead(sensorPin)/1024)*5; 
} 
volt = (volt/500)+ tboffset; 
if(volt < 2.5){ 
ntu = 3000; 
}else if(volt >=4.2){ 
ntu=0; 
}else{ 
ntu = (-1120.4*(volt*volt))+(5742.3*volt)-4352.9; 
} 
if (millis() - samplingTime > samplingInterval) 
{ 
pHArray[pHArrayIndex++] = analogRead(SensorPin); 
if (pHArrayIndex == ArrayLenth)pHArrayIndex = 0; 
voltage = avergearray(pHArray, ArrayLenth) * 5.0 / 1024 + 0.05; 
pHValue = 3.5 * voltage + Offset; 
samplingTime = millis(); 
}} 
void serialEvent3() { 



52 

 

while (Serial3.available()) { 
char inChar = Serial3.read(); 
Serial.write(inChar); 
inString += inChar; 
lcd.setCursor(0,0); 
lcd.print(inString); 
/***************CONTROL***************/ 
 
if (inChar == ']') { 
if (inString.indexOf("[GO]")>0) { 
  val =45; 
  val= map(val, 0, 1023,1000,2000); //mapping val to minimum and maximum(Change if 
needed) 
  esc.writeMicroseconds(val); //using val as the signal to esc 
delay(200); 
} 
else if (inString.indexOf("[LEFT]")>0) { 
servo.write(0); 
delay(200); 
} 
else if (inString.indexOf("[RIGHT]")>0) { 
servo.write(120); 
delay(200); 
} 
else if (inString.indexOf("[STOP]")>0) { 
 servo.write(0); 
 val =LOW; 
  val= map(val, 0, 1023,1000,2000); //mapping val to minimum and maximum(Change if 
needed) 
  esc.writeMicroseconds(val); //using val as the signal to esc; 
  servo.write(90); 
delay(200); 
} 
/************************PH SENSOR**********************/ 
if (inString.indexOf("[PH]")>0) { 
Serial.print("Input string: "); 
Serial.print(inString); 
Serial.print("\tAfter conversion to float:"); 
Serial.println(inString.toFloat()); 
Offset=inString.toFloat(); 
inString = ""; 
delay(500); 
} 
if (inString.indexOf("[TB]")>0) { 
Serial.print("Input string: "); 
Serial.print(inString); 
Serial.print("\tAfter conversion to float:"); 
Serial.println(inString.toFloat()); 



53 

 

tboffset=inString.toFloat(); 
inString = ""; 
delay(500); 
} 
/*******TURBIDITYSENSOR************/ 
else if (inString.indexOf("[SENSOR1]")>0) { 
Serial.println("Voltage="+String(volt)+" V Turbidity="+String(ntu)+" NTU"); 
Serial3.println(ntu);//print to esp8266 
delay(500); 
} 
/*******TEMPERATURESENSOR************/ 
else if (inString.indexOf("[SENSOR2]")>0) { 
tempSensor.requestTemperatures(); // request temperature sample from sensor on the one 
wire bus 
displayTemp(tempSensor.getTempC(thermometerAddress)); // show temperature on display 
delay(500); 
} 
/*******PHSENSOR************/ 
else if (inString.indexOf("[SENSOR3]")>0) { 
Serial.print("pH: "); 
Serial.println(pHValue, 2); 
Serial3.println(pHValue,2);//print to esp8266 
} 
else if (inString.indexOf("[FLUSH]")>0) { 
Serial3.println("0000");//print to esp8266 
} 
else{ 
Serial.println("Wrong command"); 
} 
inString = ""; 
}}} 
 
/*******TEMPERATURESENSOR************/ 
void displayTemp(float temperatureReading) { // temperature comes in as a float with 2 
decimal places 
// show temperature °C 
Serial.println(temperatureReading); // serial debug output 
Serial3.println(temperatureReading,2); //print to esp8266 
Serial.print("°"); 
Serial.print("C "); 
} 
 
// print device address from the address array 
void printAddress(DeviceAddress deviceAddress){ 
for (uint8_t i = 0; i < 8; i++){ 
if (deviceAddress[i] < 16) Serial.print("0"); 
Serial.print(deviceAddress[i], HEX); 
}} 



54 

 

/*******TURBIDITYSENSOR************/ 
float round_to_dp( float in_value, int decimal_place ) 
{ 
float multiplier = powf( 10.0f, decimal_place ); 
in_value = roundf( in_value * multiplier ) / multiplier; 
return in_value; 
} 
/*******PH SENSOR************/ 
double avergearray(int* arr, int number) 
{ 
int i; 
int max, min; 
double avg; 
long amount = 0; 
if (number <= 0) 
{ 
Serial.println("Error number for the array to avraging!/n"); 
return 0; 
} 
if (number < 5) //less than 5, calculated directly statistics 
{ 
for (i = 0; i < number; i++) 
{ 
amount += arr[i]; 
} 
avg = amount / number; 
return avg; 
} 
else 
{ 
if (arr[0] < arr[1]) 
{ 
min = arr[0]; max = arr[1]; 
} 
else 
{ 
min = arr[1]; max = arr[0]; 
} 
for (i = 2; i < number; i++) 
{ 
if (arr[i] < min) 
{ 
amount += min; //arr<min 
min = arr[i]; 
} 
else 
{ 
if (arr[i] > max) 



55 

 

{ 
amount += max; //arr>max 
max = arr[i]; 
} 
else 
{ 
amount += arr[i]; //min<=arr<=max 
}}} 
avg = (double)amount / (number - 2); 
} 
return avg; 
} 
  



56 

 

APPENDIX B  

ARDUINO CODE 

ESP 8266 CODE 
#include <ESP8266WiFi.h> 
#include "ThingSpeak.h" 
#include <WiFiClient.h> 
#include <ESP8266WebServer.h> 
#include <ESP8266mDNS.h> 
MDNSResponder mdns; 
/*******SERVO LEFT AND RIGHT*******/ 
#include <Servo.h> 
Servo servo; 
/*********DC MOTOR*************/ 
int val; 
Servo esc; 
float phcab, tbcab; 
char data; 
const char* ssid = "tuturu"; 
const char* password = "danielaiman98"; 
WiFiClient client; 
//PH// 
unsigned long myChannelNumber2 = 1264048; 
const char * myWriteAPIKey1 = "AJ30SE8JQZ5BGT4D"; 
//TEMPERATURE// 
unsigned long myChannelNumber3 = 1269605; 
const char * myWriteAPIKey2 = "23UX6CU7GDY0ZER9"; 
//TURB// 
unsigned long myChannelNumber1 = 1269609; 
const char * myWriteAPIKey3 = "EXFJB7D9RWO1SDA3"; 
//calibration// 
char* readAPIKeycab = "1ZNUY26TJCNJULBY"; 
float phval, turbval, tempval; 
ESP8266WebServer server(80); 
String webPage = ""; 
String inString; 
void setup(void){ 
  ////Controller 
webPage += "<h1>ESP8266 Web Server</h1>"; 
webPage += "<p>GO <a href=\"GO\"><button>GO</button>"; 
webPage += "<p>STOP <a href=\"STOP\"><button>STOP</button>"; 
webPage += "<p>RIGHT <a href=\"RIGHT\"><button>RIGHT</button>"; 
webPage += "<p>LEFT <a href=\"LEFT\"><button>LEFT</button>"; 
  ////Sensors 
webPage += "<p>SENSOR1 <a href=\"SENSOR1\"><button>SENSOR1</button>"; 
webPage += "<p>SENSOR2 <a href=\"SENSOR2\"><button>SENSOR2</button>"; 
webPage += "<p>SENSOR3 <a href=\"SENSOR3\"><button>SENSOR3</button>"; 



57 

 

webPage += "<p>SENDSENSOR1 <a 
href=\"SENDSENSOR1\"><button>SENDSENSOR1</button>"; 
webPage += "<p>SENDSENSOR2 <a 
href=\"SENDSENSOR2\"><button>SENDSENSOR2</button>"; 
webPage += "<p>SENDSENSOR3 <a 
href=\"SENDSENSOR3\"><button>SENDSENSOR3</button>"; 
webPage += "<p>FLUSH <a href=\"FLUSH\"><button>FLUSH</button>"; 
webPage += "<p>PH <a href=\"PH\"><button>PH</button>"; 
webPage += "<p>TB <a href=\"TB\"><button>TB</button>"; 
delay(1000); 
Serial.begin(115200); 
WiFi.begin(ssid, password); 
ThingSpeak.begin(client); // Initialize ThingSpeak 
while (WiFi.status() != WL_CONNECTED) { 
delay(500); 
Serial.print("IP address: "); 
Serial.print(" "); 
Serial.print(WiFi.localIP()); 
if (mdns.begin("esp8266", WiFi.localIP())) { 
} 
server.on("/", [](){ 
server.send(200, "text/html", webPage); 
}); 
server.on("/GO", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[GO]"); 
delay(300); 
}); 
server.on("/REVERSE", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[REVERSE]"); 
delay(300); 
}); 
server.on("/RIGHT", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[RIGHT]"); 
delay(300); 
}); 
server.on("/LEFT", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[LEFT]"); 
delay(300); 
}); 
server.on("/STOP", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[STOP]"); 
delay(300); 
}); 



58 

 

server.on("/SENSOR1", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[SENSOR1]"); 
}); 
server.on("/SENSOR2", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[SENSOR2]"); 
}); 
server.on("/SENSOR3", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[SENSOR3]"); 
}); 
server.on("/FLUSH", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[FLUSH]"); 
while (Serial.available()>0) 
{ 
int inChar = Serial.read(); 
if (inChar != '\n') { 
inString += (char)inChar; 
} 
else { 
Serial.print("Input string: "); 
Serial.print(inString); 
Serial.print("\tAfter conversion to float:"); 
Serial.println(inString.toFloat()); 
inString = ""; 
delay(500); 
}} 
}); 
server.on("/PH", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[PH]"); 
phcab = ThingSpeak.readFloatField( 1269611, 1, readAPIKeycab ); 
Serial.println(phcab, 2); 
}); 
server.on("/TB", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[TB]"); 
tbcab = ThingSpeak.readFloatField( 1269611, 2, readAPIKeycab ); 
Serial.println(tbcab, 2); 
}); 
 
///Turbidity 
 
server.on("/SENDSENSOR1", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[SENDSENSOR1]"); 



59 

 

while (Serial.available()>0) 
{ 
int inChar = Serial.read(); 
if (inChar != '\n') { 
inString += (char)inChar; 
} 
 
else { 
Serial.print("Input string: "); 
Serial.print(inString); 
Serial.print("\tAfter conversion to float:"); 
Serial.println(inString.toFloat()); 
turbval=inString.toFloat(); 
ThingSpeak.writeField(myChannelNumber2, 1, turbval, myWriteAPIKey2); 
inString = ""; 
delay(500); 
}} }); 
 
//// Temperature 
 
server.on("/SENDSENSOR2", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[SENDSENSOR2]"); 
while (Serial.available()>0) 
{ 
int inChar = Serial.read(); 
if (inChar != '\n') { 
inString += (char)inChar; 
} 
else { 
Serial.print("Input string: "); 
Serial.print(inString); 
Serial.print("\tAfter conversion to float:"); 
Serial.println(inString.toFloat()); 
tempval=inString.toFloat(); 
ThingSpeak.writeField(myChannelNumber3, 1, tempval, myWriteAPIKey3); 
inString = ""; 
delay(500); 
}}}); 
////pH 
server.on("/SENDSENSOR3", [](){ 
server.send(200, "text/html", webPage); 
Serial.println("[SENDSENSOR3]"); 
while (Serial.available()>0) 
{ 
int inChar = Serial.read(); 
if (inChar != '\n') { 
inString += (char)inChar; 



60 

 

} 
else { 
Serial.print("Input string: "); 
Serial.print(inString); 
Serial.print("\tAfter conversion to float:"); 
Serial.println(inString.toFloat()); 
phval=inString.toFloat(); 
ThingSpeak.writeField(myChannelNumber1, 1, phval, myWriteAPIKey1); 
inString = ""; 
delay(500); 
}}}); 
server.begin(); 
}} 
void loop(void){ 
server.handleClient(); 
} 
  



61 

 

APPENDIX C 

ARDUINO CODE 

ESP32 CAM CODE 

 
#include <esp_camera.h> 
#include <WiFi.h> 
 
// 
// WARNING!!! Make sure that you have either selected ESP32 Wrover Module, 
//            or another board which has PSRAM enabled 
// 
 
// Select camera model 
//#define CAMERA_MODEL_WROVER_KIT 
//#define CAMERA_MODEL_ESP_EYE 
//#define CAMERA_MODEL_M5STACK_PSRAM 
//#define CAMERA_MODEL_M5STACK_WIDE 
#define CAMERA_MODEL_AI_THINKER 
#include "soc/soc.h" //disable brownout problems 
#include "soc/rtc_cntl_reg.h"  //disable brownout problems 
#include "camera_pins.h" 
 
const char* ssid = "tuturu"; 
const char* password = "danielaiman98"; 
 
void startCameraServer(); 
 
void setup() { 
  Serial.begin(115200); 
  Serial.setDebugOutput(true); 
  Serial.println(); 
 
  camera_config_t config; 
  config.ledc_channel = LEDC_CHANNEL_0; 
  config.ledc_timer = LEDC_TIMER_0; 
  config.pin_d0 = Y2_GPIO_NUM; 
  config.pin_d1 = Y3_GPIO_NUM; 
  config.pin_d2 = Y4_GPIO_NUM; 
  config.pin_d3 = Y5_GPIO_NUM; 
  config.pin_d4 = Y6_GPIO_NUM; 
  config.pin_d5 = Y7_GPIO_NUM; 
  config.pin_d6 = Y8_GPIO_NUM; 
  config.pin_d7 = Y9_GPIO_NUM; 
  config.pin_xclk = XCLK_GPIO_NUM; 
  config.pin_pclk = PCLK_GPIO_NUM; 
  config.pin_vsync = VSYNC_GPIO_NUM; 



62 

 

  config.pin_href = HREF_GPIO_NUM; 
  config.pin_sscb_sda = SIOD_GPIO_NUM; 
  config.pin_sscb_scl = SIOC_GPIO_NUM; 
  config.pin_pwdn = PWDN_GPIO_NUM; 
  config.pin_reset = RESET_GPIO_NUM; 
  config.xclk_freq_hz = 20000000; 
  config.pixel_format = PIXFORMAT_JPEG; 
  //init with high specs to pre-allocate larger buffers 
  if(psramFound()){ 
    config.frame_size = FRAMESIZE_UXGA; 
    config.jpeg_quality = 10; 
    config.fb_count = 2; 
  } else { 
    config.frame_size = FRAMESIZE_SVGA; 
    config.jpeg_quality = 12; 
    config.fb_count = 1; 
  } 
 
#if defined(CAMERA_MODEL_ESP_EYE) 
  pinMode(13, INPUT_PULLUP); 
  pinMode(14, INPUT_PULLUP); 
#endif 
 
  // camera init 
  esp_err_t err = esp_camera_init(&config); 
  if (err != ESP_OK) { 
    Serial.printf("Camera init failed with error 0x%x", err); 
    return; 
  } 
 
  sensor_t * s = esp_camera_sensor_get(); 
  //initial sensors are flipped vertically and colors are a bit saturated 
  if (s->id.PID == OV3660_PID) { 
    s->set_vflip(s, 1);//flip it back 
    s->set_brightness(s, 1);//up the blightness just a bit 
    s->set_saturation(s, -2);//lower the saturation 
  } 
  //drop down frame size for higher initial frame rate 
  s->set_framesize(s, FRAMESIZE_QVGA); 
 
#if defined(CAMERA_MODEL_M5STACK_WIDE) 
  s->set_vflip(s, 1); 
  s->set_hmirror(s, 1); 
#endif 
 
  WiFi.begin(ssid, password); 
 
  while (WiFi.status() != WL_CONNECTED) { 



63 

 

    delay(500); 
    Serial.print("."); 
  } 
  Serial.println(""); 
  Serial.println("WiFi connected"); 
 
  startCameraServer(); 
 
  Serial.print("Camera Ready! Use 'http://"); 
  Serial.print(WiFi.localIP()); 
  Serial.println("' to connect"); 
} 
 
void loop() { 
  // put your main code here, to run repeatedly: 
  delay(10); 
} 



64 

 

APPENDIX D 

GANTT CHART 

SDP1 &SDP2 

 

 

 

  



65 

 

APPENDIX D 

PROJECT COST 

 

 


