HIGH SPEED DATA ACQUISITION SYSTEM USING
RASPBERRY PI AND ADC UNIT

NAZRUL AZLI BIN RAZALI

BACHELOR OF ENGINEERING TECHNOLOGY
(ELECTRICAL)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG
DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : NAZRUL AZLI BIN RAZALI
Date of Birth

Title : HIGH SPEED DATA ACQUISITION SYSTEM USING
RASPBERRY PI AND ADC UNIT
Academic Session : 2020/2021

| declare that this thesis is classified as:

] CONFIDENTIAL (Contains confidential information under the Official Secret
Act 1997)*

O RESTRICTED (Contains restricted information as specified by the
organization where research was done)*

O OPEN ACCESS I agree that my thesis to be published as online open access
(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang
The Library of Universiti Malaysia Pahang has the right to make copies of the
thesis for the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

(Student’s Signature) (Supervisor’s Signature)

PM. DR. Mohd Mawardi Saari
Date: 8/2/2021 Date:

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis
declaration letter.

THESIS DECLARATION LETTER (OPTIONAL)
Librarian,
Perpustakaan Universiti Malaysia Pahang,
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300, Gambang, Kuantan.

Dear Sir,
CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three
(3) years from the date of this letter. The reasons for this classification are as listed below.
Author’s Name NAZRUL AZLI BIN RAZALI
Thesis Title HIGH SPEED DATA ACQUISITION SYSTEM USING
RASPBERRY PI AND ADC UNIT

Reasons (1)
(i)
(iii)
Thank you.

Yours faithfully,

(Supervisor’s Signature)
Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan
Universiti Malaysia Pahang with its copy attached to the thesis.

Universiti
Malaysia
PAHANG

Engineering * Technology * Creativity

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in our opinion, this thesis is adequate
in terms of scope and quality for the award of degree of Bachelor of Engineering

Technology in Electrical.

(Supervisor’s Signature)
Full Name : PM.DR. MOHD MAWARDI SAARI
Position : LECTURER, FACULTY OF ENGINEERING TECHNOLOGY
ELECTRIC AND ELECTRONIC, UNIVERSITI MALAYSIA PAHANG
Date

Universiti
Malaysia
PAHANG

Engineering * Technology * Creativity

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for
quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

(Student’s Signature)

Name: NAZRUL AZLI BIN RAZALI
ID Number: TB17007
Date: 31/1/2021

HIGH SPEED DATA ACQUISITION SYSTEM USING RASPBERRY
PI WITH ADC UNIT

NAZRUL AZLI BIN RAZALI

Thesis submitted in fulfillment of the requirements
for the award of the degree of
Bachelor of Engineering Technology in Electrical

Faculty of Engineering Technology Electric and Electronic

UNIVERSITI MALAYSIA PAHANG

JANUARY 2021

ACKNOWLEDGEMENTS

I am truly grateful to ALLAH “S.W.T” for giving me wisdom, strength, patience
and, assistance to complete our analysis project despite being tested in a pandemic
environment. Had it not been due to His will and favor, the completion of this research

would not have been achievable.

Without the instructions and the directions, this thesis would not have been
necessary. The assistance of many persons in the planning and implementation of this
analysis who contributed and extended their useful assistance. First of all, I would like
to show my gratitude to my supervisor, PM. DR. MOHD MAWARDI SAARI for his
guidance, suggestions and supports. I also like to give my gratitude to my project
partner, AHMAD AIMAN SAFWAN BIN ZAKARIA who was working together to
finish this project.

ABSTRAK

Sistem pemerolehan data (DAQ) adalah sejenis sistem yang mengukur informasi masa
sebenar seperti suhu, tekanan, jarak dan lebih lagi setiap masa. Proses yang terlibat
adalah membaca nilai analog daripada sensor, pembetulan dan pembaikan isyarat jika
perlu, menukar isyarat analog kepada isyarat digital dan menganalisis data digital
untuk proses selanjutnya. Nilai yang diambil daripada sistem DAQ dipanggil “sample”
dan kelajuan untuk sistem ini melaksanakan seluruh operasi untuk satu “sample” boleh
didefinasikan sebagai kadar kelajuan “sample” dan ini mempengaruhi resolusi bentuk
gelombang yang dihasilkan. Kadang kala, data ini terlalu sukar untuk diproses
menggunakan kaedah tradisional yang mungkin disebabkan oleh data terlalu besar,
terlalu cepat atau terlalu kompleks untuk diproses. Kelajuan sistem DAQ sangat
penting untuk aplikasi seperti kawalan kualiti bagi menentukan getaran yang
dihasilkan, aplikasi sistem audio yang melibatkan pembatalan bunyi, radar dan aplikasi
navigasi, dan banyak lagi. Kebelakangan ini, penggunaan produk Raspberry Pi untuk
projek elektronik semakin meningkat. Ini disebabkan Raspberry Pi itu sendiri adalah
komputer atau lebih tepat lagi komputer ARM yang dapat disambungkan ke rangkaian
Internet. Raspberry Pi beroperasi dalam Sistem Operasi Linux yang boleh dikemas kini
hampir setiap masa yang dikehendaki. Tetapi Raspberry Pi tidak boleh menerima
isyarat analog sebagai isyarat data, sebab itulah ia memerlukan unit penukaran analog
kepada digital (ADC) untuk proses penukaran. Dalam projek ini, kami akan mencipta
osiloskop berasaskan Raspberry Pi dengan menggunakan Arduino Nano sebagai unit
ADC dan hasil analisis projek ini ditentukan oleh frekuensi maksimum yang boleh

dicapai oleh osiloskop ini.

II

ABSTRACT

A data acquisition system (DAQ) is a system that takes real-world measurements such as
temperature, pressure, distance, and more in a function of time. The processes involved are
reading the analog value from a sensor, signal conditioning if necessary, converting the analog
signal into a digital signal, and analyzing the digitized signal for further processing. A value
that is registered by the DAQ system is considered a sample, and the speed at which the DAQ
system executes the entire operation for one sample can be defined by the sampling rate, and
this sampling rate can influence the smoothness of the waveform created. Sometimes, these
data are too difficult to be processed using traditional methods which are due to the data is too
big, too fast, or too complex. The applications that highlight the speed of the DAQ system are
critical are quality control, audio system applications involving noise cancellation, radar,
navigation applications, and more. Lately, the usage of Raspberry Pi products for electronic
projects is increasing. This is because Raspberry Pi itself is a computer or accurately an ARM
computer that can be connected to the internet network. However Raspberry Pi cannot receive
an analog signal as a data signal, that is why it needs an ADC unit for the conversion. In this
project, we will be developing a Raspberry Pi-based oscilloscope using Arduino Nano as an
ADC unit and the result of the analysis will be determined by how far the frequency which it

can measure.

III

TABLE OF CONTENTS

DECLARATION TITLE
ACKNOWLEDGEMENTS
ABSTRAK

ABSTRACT

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS
LIST OF SYMBOLS

LIST OF APPENDICES

CHAPTER 1 INTRODUCTION
1.1 PROJECT BACKGROUND
1.2 PROBLEM STATEMENT
1.3 OBJECTIVES
1.4 PROJECT SCOPE

CHAPTER 2 LITERATURE REVIEW
2.1 INTRODUCTION
2.2 RASPBERRY PI
2.2.1 RASPBERRY PI 3B
2.3 OSCILLOSCOPE
2.4 ARDUINO
2.4.1 ARDUINO NANO
2.5 PYGAME FRAMEWORK

2.6 TIME-STRETCHED ANALOGUE-TO-DIGITAL CONVERSION

2.7 CHOPPER SAMPLING

CHAPTER 3 METHODOLOGY

3.1 FLOWCHART
3.2 THEORY

v

PAGE

1T
11

VI
Vil
VIII
IX

[SSIE \O R)

O 0 9 N &N B~ B~ s

10
11

12

12
13

3.3 PROJECT DESIGN
3.3.1 ARDUINO NANO ADC
3.3.2 RASPBERRY PI 3B DESIGN

CHAPTER 4 RESULTS & DISCUSSION
4.1 RESULTS & ANALYSIS
4.2 DAQ SYSTEM’S TECHNICAL SPECIFICATION
4.3 COST OF MATERIALS

CHAPTER 5 CONCLUSION & RECOMMENDATION
5.1 CONCLUSION
5.2 RECOMMENDATION

REFERENCES

APPENDICES

15
15
15

21
21
25
26

27

27

27

29

31

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

LIST OF TABLES

: Prescale Register

: Result of Peak Voltage Measurement
: Result of Peak Voltage Error Test

: Result of Frequencies Error

: Waveform at Given Frequencies

: DAQ System’s Technical Specification
: Cost Of Materials

VI

22
23
24
25
25
26

LIST OF FIGURES

Figure I : Overview of Raspberry Pi Hardware
Figure 2 : Raspberry Pi LCD Display Unit

5
5
Figure 3 : Raspberry Pi 3B 6
Figure 4 : InfiniiVision 1000 X-Series 7

8

Figure 5 : Arduino Nano
Figure 6 : Block diagram for ADC system (Bhushan et al., 1998) 10
Figure 7 : Block diagram of the parallel ADC with offset compensation. 3 of

16 cells are drawn. The critical parts are implemented in the test chip and

the rest is implemented in Matlab.(Eklund & Gustafsson, 2000) 11
Figure 8 : Methodology Flowchart 12
Figure 9 : System Flowchart 14
Figure 10 : ADC Arduino Nano Circuit 15
Figure 11 : Product Design (Front) 15
Figure 12 : Product Design (Back) 16
Figure 13 : Arduino Nano Top View 16
Figure 14 : Raspberry Pi Pinout 18
Figure 15 : Internal Product Design 18
Figure 16 : Graphical User Interface (GUI) 19
Figure 17 : Graphical User Interface (GUI) More Visible Trigger Line 20
Figure 18 : Connection Via BNC to Crocodile Cable with Oscilloscope

Probes 21
Figure 19 : Connection Via BNC Coaxial Male to Male Cable 22

VII

LIST OF SYMBOLS

SYMBOLS MEANING
\Y Voltage
Vmax Maximum Voltage
Vp Peak Voltage
Vpp Peak To Peak Voltage
kSa/s Kilo-sample per second
KB Kilo-Byte
kHz Kilo-Hertz
mA Milli-ampere
dB Decibel
% Percent
mm Milli-meter
g Gram
Q Ohm
uF Micro-Farad

Degree

VIII

LIST OF ABBREVIATIONS

ABBREVIATIONS MEANING
DAQ Data Acquisition
ADC Analog To Digital Converter
[oT Internet of Things
JPG Joint Photographic Group
GUI Graphical user interface
ARM Advanced RISC Machines
CPU Computer Processor Unit
LCD Liquid Crystal Display
AC Alternate Current
DC Direct Current
USB Universal Serial Bus
IDE Integrated Development Environment
Max Maximum
HDMI High-Definition Multimedia Interface
BNC Bayonet Neill-Concelman
TFT Thin Film Transistor
RM Ringgit Malaysia

IX

LIST OF APPENDICES

Appendix A : ARDUINO NANO ARCHITECTURE & PROGRAMMING................. 31
Appendix B : RASPBERRY PI 3B ARCHITECTURE & PROGRAMMING.............. 41
Appendix C : GANTT CHART SDP 1....oiiiiiiiiieee et 47

Appendix D : GANTT CHART SDP 2.....ooiiiiiiee e 48

CHAPTER 1

INTRODUCTION

1.1 PROJECT BACKGROUND

The data acquisition (DAQ) system contains these key processes which acquire the
analog signal, signal conditioning, transform the analog signal into digital so that it can be
computerized. A research device typically used to display and interpret the waveform of
electronic signals is called an oscilloscope whose purpose to draws a graph of the
instantaneous voltage signal as a function of time. Unfortunately, this device can be very
costly. In order DAQ system to work properly as an oscilloscope, it needs a fast sampling
speed to display the high resolution output as the oscilloscope does. The waveform will
become rough without it and the hidden glitches will never be detected.

During this period, the Internet of Things (IoT) became the main focus of the industry
when reaching Industrial Revolution 4.0. So, the term of Big Data is also included since it is
related to this project. Sometimes the data is too big or too slow or too complex to process.
Hence, we use Raspberry Pi because this device is a computer in a small package at a small
price. It even can be connected to an internet network to upload and download data.

Raspberry Pi nowadays at a lower price becomes more capable of processing
information and much quicker than before. But unlike Arduino, Raspberry Pi cannot read
analog signals except the most recent release Raspberry Pi Pico. That is why it needs an
Analog to Digital Converter (ADC) to be able to accomplish analog reading and convert it
into a digital signal in which Raspberry Pi can read and process the data. Raspberry Pi has an
OS that can be installed in it, and it can install many useful programs that process the input
data and display it in a continuous graph per time. Additional Python programming is required

to add a few additional functions of an oscilloscope.

1.2 PROBLEM STATEMENT

Commercial oscilloscopes are rather costly and most commercial oscilloscope features,
such as high sampling rate or the number of channels that differ by their costs, are not needed
by certain beginner electronic hobbyists. Some of them just want an oscilloscope for minimal
usage like to look for how the condition of the output signal look for repairing and analyzing
noise and other problem of an audio system.

To turn a data acquisition system (DAQ) into an oscilloscope, the DAQ system's
process itself needs to be fast enough to sample data at high speed. The whole process of
taking the input sample, converting the analog signal into a digital signal, and processing the
information at high speed to get high resolution output. Some of the available DAQ systems
are too slow and have visible noise to be used as an oscilloscope. The idea is to ensure that the
entire DAQ system is running at a high speed to achieve high-resolution output. You can
determine the speed of the DAQ system by the number of samples read per second or the
sampling rate.

Another concern is that some of the commercial oscilloscopes require big working
space and room for storage. Plus, they also required multiple usages of power plugs for
operating an electronics experiment. So the idea for using Raspberry Pi and ADC unit as a
DAQ system comes to mind since Raspberry Pi nowadays is used in many projects due to
their capabilities are almost rival modern days computer. Even if a cheaper oscilloscope is
available, some electronic enthusiasts might already have Raspberry Pi for their previous
project and they can salvage those to make an oscilloscope. This shows that the availability of

Raspberry Pi is very high among people.

1.3 OBJECTIVES

This project has objectives as below:
1. To design a DAQ system circuit with high speed and high resolution output.
2. To program Raspberry Pi to be able sample data at high speed.

3. To evaluate the performance of Raspberry Pi as a high speed DAQ system with ADC unit.

1.4 PROJECT SCOPE

This project is all about how fast the Raspberry Pi DAQ system is and how well it can be
implemented as an oscilloscope. The Raspberry Pi or in this case Raspberry Pi 3 cannot sample
an analog signal. That is why we use Arduino Nano as an ADC unit. Therefore, the scope of
this project will involve designing a DAQ circuit using Raspberry Pi and ADC unit,
programming Raspberry Pi to process the data, and analyzing the performance of the DAQ

system.

1. Designing A DAQ Circuit Using Raspberry Pi and ADC Unit

The circuit of DAQ system will consist of analog input which is a probe that is
connected to BNC adapter, an ADC unit which is Arduino Nano and Raspberry Pi 3 to
process the digitized signal to be displayed in signal waveform. The Arduino Nano is

connected to Raspberry Pi 3 USB port.

2. Programming Raspberry Pi to Process the Data

Python is the programming language used to program codes in Raspberry Pi which
run on Linux. This ARM computer will be mainly tasked to read the digital signal,
determine the parameters value such as Vmax, Vpp, frequency etc., plotting a waveform

from the samples collected and save them in a JPG file.

3. Analyzing the performance of DAQ system

The parameter for performance analyzing is the sampling rate which is how much
samples can the DAQ system process in a period of time. The main goal for the

sampling rate is to surpass 50kSa/s and 25kHz maximum frequency for the oscilloscope.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter will explain the fundamental concept and theory of the Raspberry Pi and ADC
unit to achieve high speed data acquisition. The overall parameters will be discussed as well
as each of its contributions to an oscilloscope performance adding with the technique used in

the preparation and designation of the oscilloscope.

2.2 RASPBERRY PI

The Raspberry Pi is the creation of the Raspberry Pi Foundation, a charity conceived at
Cambridge University Computer Laboratory to create an inexpensive, practical, self-
contained machine that school students can use to learn programming in an interesting
environment, separated from school IT systems where such activities are not enabled. Based
on a Broadcom-made ARM microcontroller, it was originally designed to be used with a very
powerful GPU in set-top boxes, while incorporating a very weak CPU. Besides the cost,
means that it accidentally popular among hobbyists who use it in similar ways has become
wildly common.

With this project, the Raspberry Pi's price is especially attractive. The Raspberry Pi,
like the Arduino, provides low-level access to the device interfaces. Combined with standard
PC interfaces, it offers a valid platform for the development of a custom interface that can be
conveniently, cheaply, and efficiently incorporated into the GPIO header of the Raspberry Pi.

Figure 1 displays the Raspberry Pi with the various interfaces marked in diagram form.

RCAVIDEO AUDIO LEDS USB

CPU & GPU

S5

POWER

HDMI

SD CARD

Figure 1. Overview of Raspberry Pi Hardware

Raspberry Pi, which is very suitable for a computer because it has both analog video out and
HDMI display ports. This is possible even without the need for external computer units such
as Arduino to display its function in real-time. (Kakade & Lokhane, 2016) Raspberry Pi
oscilloscope project uses the desktop to display their results while (Prof.V.P.Patil Sir, Shivani
Pagare, Kajol Pagare & Utkarsha Patil, 2017) use Android device for display connected via
Bluetooth. Having more than one device as an oscilloscope system is a very inconvenience in
our opinion. Plus, it uses two different power sources for each device. A small LCD unit like

Figure 2 below would be appropriate since it receives power from Raspberry Pi itself.

Figure 2: Raspberry Pi LCD Display Unit
Source: https://my-live-01.slatic.net/p/3499be76cabe4191d7bas5de0da90c554.1pg

2.2.1 RASPBERRY PI 3B

The principal component of the system is quite similar to the microcontroller. The
Raspberry Pi USB port will be the input of the digital data after conversion of the analog input
signal into digital. The architecture is for USB connectivity built-in Python. There is a
graphical user interface (GUI) and the data will appear on the LCD screen which will be
powered by Raspberry Pi GPIO pins and the signal is sent through an HDMI connection.

Figure 3: Raspberry Pi 3B

2.3 OSCILLOSCOPE

An oscilloscope is a device that reads a variety of voltage signals such as AC
voltage, DC voltage, pulse, and more and it will display them in a two-dimensional
plot as a function of time. The oscilloscope can read a signal or two in microseconds
even in nanoseconds and display them in different frequencies. (Asadi et al., 2016)
The whole oscilloscope device is a high speed data acquisition system that involves
ADC. A virtual oscilloscope system which was designed by Shulin Shi (1974) is made
up of signal gathering, signal processing and demonstrated finally three major parts,
the signal gathering part is realized by the hardware, the signal processing and
demonstrated finally two parts both are realized by the software. These parts fulfill the

DAQ system requirements.

The speed of an oscilloscope can be determined by its max sample rates and
bandwidth which varies according to the prices which can be very expensive. So, in
order to make an oscilloscope, a DAQ system sample rate must be high enough to plot

signal as a function of time at an acceptable resolution. A commercial oscilloscope
6

nowadays has a sample rate range from 1GSa/s to 128GSa/s and beyond. A study
done by Seema Kakade & Dr. Mrs. S S Lokhane(2016) shows that the system they
created gives ac and dc voltage and frequency measurement with good resolution and
the range of voltage is £20V AC and range of frequency is up to 1MHz using Bit
scope micro, Raspberry Pi 2 processor, desktop and the programming of the algorithm

and GUI is done in python.

The sampling rate is twice the maximum frequency which means the sampling
rate of their system is 2MHz. However, to create a smooth waveform, it requires at
least 10 samples which makes the maximum frequency is 200kHz. A commercial
1GSa/s oscilloscope like InfiniiVision 1000 X-Series costs RM 2,363 (price may vary
according to the third-party supplier). The oscilloscope we will try to make cannot
look into the price point of view alone. Other factors tie with the cost such as the

functions provided, number of channels, and more.

Figure 4. InfiniiVision 1000 X-Series

2.4 ARDUINO

Focused on easy-to-use hardware and software, Arduino is an open-source electronics
platform. It's meant for someone who creates creative projects. By sending a series of
instructions to the microcontroller on the board, you can tell the board what to do. To do so
you will need to use the Arduino programming language (based on Wiring), and the Arduino
Software (IDE), based on Processing. Arduino has been used in thousands of different
projects and applications, thanks to its simplicity and open user interface. For beginners, the
Arduino app is simple-to-use but versatile enough for experienced users. The other factors are,

it is an inexpensive, cross-platform, simple, clear programming environment, open-source and
7

extensible software and hardware.

2.4.1 ARDUINO NANO

A lightweight, full, and breadboard-friendly board based on the ATmega3288 is the
Arduino Nano (Arduino Nano 3.x). With its specs of ATmega328 microcontroller, 16MHz
clock speed, 2KB SRAM, flash memory of 32 KB of which 2 KB used by bootloader and
power consumption of 19 mA. According to an article done by (Willem Maes, May 1, 2018),
the Arduino board only as fast as its clock (disregarding multi-core processors), which the
Arduino Uno defaults to using a 16MHz crystal. Arduino Nano also has a clock speed of
16MHz but a different microcontroller which is ATmega328 series while Arduino Uno uses
ATmega328p. However, there is no major difference between those two microcontrollers

except power consumption.

Figure 5: Arduino Nano

Also from research done by (Willem Maes, May 1, 2018), the Arduino ADC or
analogRead() function, the default sampling rate is 9600Hz in theory but when he runs

a simple code, the sampling rate is 8928Hz. To make it go faster, his idea is to change

the ADC Prescaler factor.

Table 1: Prescale Register

Prescale ADPS2 | ADPS1 | ADPSO | Clock Frequency Sampling Rate
factor (MHz) (kHz)
2 0 0 1 8 615
4 0 1 0 4 307
8 0 1 1 2 153
16 1 0 0 1 76.8
32 1 0 1 0.5 38.4
64 1 1 0 0.25 19.2
128 1 1 1 0.125 9.6

2.5 PYGAME FRAMEWORK

Pygame is a series of Python modules designed for video game writing. On top of the
excellent SDL library, other features can also be added. This enables you to create completely
featured python-language multimedia programs besides games. Pygame can be considered as
a game engine and a game engine is a framework that handles graphic rendering for display,
audio output, motion, and animation, generate a graphical user interface (GUI), and more.

Since, an oscilloscope requires animation to create a live continuous waveform, (Mike
Baker, 2018) had implemented Pygame for his Raspberry Pi oscilloscope project to generate
GUI and animation. The GUI buttons for each function he created are simple and because of

them, the hardware uses fewer mechanical parts and costs can be reduced like mechanical

buttons.

2.6 TIME-STRETCHED ANALOGUE-TO-DIGITAL
CONVERSION

A new concept for analog-to-digital (ADC) conversion is proposed and
demonstrated. The analog signal is stretched in time before sampling and quantization.
(Bhushan, Coppinger, & Jalali, 1998). Time stretching improves the ADC's input
bandwidth and sampling rate and is best used with optoelectronic techniques. Digital
signal processing (DSP) constantly proliferates in High-performance systems stresses
the importance of Advances in the application of analog-to-digital converters (ADC).
The digital receiver is one example of systems whose needs far outweigh the
efficiency of current Help converters (ADCs). The AID conversion is carried out at IF
or RF frequencies in such systems, placing stringent requirements on the AID
sampling frequency and input bandwidth. Although the performance of electronic
A/D continues to increase, the pace of progress is too slow to satisfy the demands of

advanced systems shortly.

time stretch (— slow ADC

interleave
I—ltimestretch — slow ADC
analogue AT

waveform| g e
. ‘—iﬁmestrﬂm I— slow ADC

L time stretch slow ADC

a

2

analogue : _
WSO time stretch M slow ADC

b “akTH
Figure 6. Block diagram for ADC system (Bhushan et al., 1998)

Figure 6 shows a block diagram of the proposed system. The analog signal is
segmented into parallel channels and interleaved into M. Before entering a slow ADC

each segment is time-stretch with an M magnification factor.

10

2.7 CHOPPER SAMPLING

An ADC that uses many parallel cells suffers from offset variations between the cells,
which creating non-harmonic distortion. A method is proposed to eliminate the Digital
Domain Offset. The method is based on a PRBS-controlled at the ADC input chopper
which converts any input signal into noise. The randomization controls the batch size
needed by a mean value calculation function to eliminate the offset. The measured results
are SFDR = 72dB and SNDR = 59.0dB @ 22MS/s, an improvement of 19dB and 10dB
respectively (Eklund & Gustafsson, 2000).

SR e e o S R s o) B rere p e l s S m S ER 3|
{On chip [Time interleaving control]; Matiab model |
| Gl s 1 e et i s B e R el e

2 ——i{rop TR 54266 {5 Hovion vt Hregmer{ 7>
T M -
H{ Chop T/H | sA-ADC Division (shift right) [Register |-

Al | il niniind it apeieibai e
, cell 16

1

i t

] Chop TH | SA-ADC Division (shift right) H RegisterH ~“2"2"°" Il Chop i+
e e W e e e b =

t : 1

Figure 7: Block diagram of the parallel ADC with offset compensation. 3 of 16 cells
are drawn. The critical parts are implemented in the test chip and the rest is
implemented in Matlab. (Eklund & Gustafsson, 2000)

The implementation of the proposed method is shown in figure 7. The ADC output values are
corrected by the offset value in the register. The offsets, calculated from one lot of values, are
used to adjust the next stack. When the offset is eliminated, the output signal is chopped with
the same series as the input and the value of the signal is restored. That batch measures a new

calculation and hence the offset values are changed during service.

11

CHAPTER 3

METHODOLOGY

3.1 FLOWCHART

START

IDENTIFYING PROBLEM

LITERATURE REVIEW

h 4

CHOOSING AND GETTING
THE COMPOMNENTS

INSTALLING OPERATION SYSTEM

HARDWARE ASSEMBLY

ANALYZING PERFORMANCE &

h 4

SOFTWARE AND ADDITIOMAL
PROGRAMMING

PRODUCTION COST

IMPROVING DESIGN AND NO

UPDATING THE CODE

YES

end

Figure 8: Methodology Flowchart

3.2 THEORY

Firstly, we need to decide how Raspberry Pi and ADC unit which is Arduino Nano
communicate. Since most of the Raspberry Pi's GPIO pins have been used to power up and to
receive inputs from the touch screen of the LCD, the other option is to use Universal Serial
Bus (USB) to exchange information between them.

Next, the serial communication speed or baud rate of Arduino Nano must be
determined to make sure that the speed for sending and receiving data is suitable for our
project. We set it to 115200 through coding in Arduino IDE which is the limit to how fast data
can be transferred for the most microcontroller. The ADC clock speed or ADC prescale factor
of the Arduino Nano also must be decided to the ones that Raspberry Pi can handle for our
project.

After that, the Raspberry Pi will execute the oscilloscope program which was written
in Python 3, and let the Python framework handle all the graphical operations for display.
Soon, it will need to use the information received from the Arduino Nano in digital form and
process them to provide output. We call this DAQ system ArPi Scope which stands for

Arduino Raspberry Pi oscilloscope. The flowchart below is how the whole system works.

13

Read signal

from probe /

b 4

Read voltage
from
potentiometers

h 4

Cc
5

onvert the analog
ignals into digital
signal in bytes

h 4

Transfer the data e
to Raspberry Pi Fy
Display the Create a waveform
waveform input voltage per time
MNo
¥
i Adjust the
Enable time and 2 .
voltage pfntentmmetters Get_lnteirupt
measurement OnpATEIct inpu
measurements
Freeze Single
Save
¥ - B Result
< Single Capture / Save
Stop Loop 1 g e
|
MNo

L J

Exit / Close

Figure 9: System Flowchart

14

3.3 PROJECT DESIGN

The circuit below contains capacitors ensures that no DC components from the input
get through and provide a little bit of protection for overvoltage. As for the resistors, they
will limit the current flow. To control the oscilloscope and its AC coupled biased voltage

inputs, potentiometers were used. The input from the BNC probe is connected to pin A0

while pin A3, A4, and A5 were connected to the potentiometers.

L C2 R4
47uF 100k

R1
100k

=

SB

T 4nr 100k

R2
100k

A3

A5

I mn_u

R3

ARDUINO NANO

TIME

10k

VOLTAGE

10k

A5

TRIGGER

10k

Figure 10: ADC Arduino Nano Circuit

Figure 11: Product Design (Front)

15

The blue, yellow, and red potentiometers control time, voltage, and trigger respectively. GPIO
pins from 1 until 26 were used for powering up the LCD screen and its touchscreen input. The
video signal from Raspberry Pi 3 to the LCD screen is transferred via HDMI cable. The mini
USB cable is used for communication between Raspberry Pi 3 with Arduino Nano. Because
of these, we only need to power up Raspberry Pi 3 with a 5V, 2.5A power supply to power up

the whole system.

Figure 12: Product Design (Back)

3.3.1 ARDUINO NANO

a8 & 6 &8 &6 & dom a9
D4 D3 DI GND RST EXO TN

o »!/ ICSP

A,

r,la]

.

A4 AS A6 AT SV RST GND. VIN
-J'_. E 1 , Sl I H‘- i e - .lﬂu .

Figure 13: Arduino Nano Top View

The programming for the Arduino is done in Arduino IDE in C++ language. To set up the
Arduino Nano to be able to sample at a rate 307kHz, first, we need to set the ADC Prescaler
factor to 4 just like in Table 5. The clock speed of the clock crystal inside Arduino Nano
which is 16MHz will be divided by a prescale factor, (p.f) to get ADC clock speed like the

16

equation below.

16MHz
ADC clock=
p-f
160Hz
ADC clock= = 4MH=

Then, this ADC clock will be divided by 13 since a conversion takes 13 ADC clocks. So

the default maximum sampling rate is as shown in the equation below.

ADC clock

Maximum sampling rate =

- - — T T
Maximum sampling rate = . = 307kHz

However, a smooth waveform requires at least 10 points so the Max sample rate will

be divided by 10 for maximum frequency to get a smooth waveform.

Mazimum sampling rate

Maximum frequency =

ALF

o 307kH= e
Maximum frequency= ———— =30.7kH=

1M
u

To program it, we have to define these two functions first.
f§define cbi(sfr, bit) (_SFR BYTE(sfr) &= ~ BV(bit]]
#define sbi(sfr, bit) (_SFR BYTE(sfr) |= _BV(bit)])

To be simplified, they will allow us to use commands below to register bit to 0 or 1. "cbi"
command will clear bit or register it as 0 while the "sbi" command will register bit to 1. Next,
we can register the desired bits to get our desired Prescaler which is 4.

cbi (ADCSRA, ADPS2); // ADPF52 = 0

sbi (ADCSRA, ADPS1):; // ADP51 =1

cbi (ADCSRA, ADPSO0); // ADPFS0 = 0

17

It is not recommended to set Prescaler below 16 however, we have to because we want to
achieve the maximum sampling rate possible for our project. The method to collect sample,

conversion, and oscilloscope's control input is like the flowchart in the appendix.

3.3.2 RASPBERRY PI 3

3V3 power o o 5V power
GPIO 2 (SDA) o o 5V power
GPIO 3 (SCL) o o Ground
GPIO 4 (GPCLKO) o o GPIO 14 (TXD)
Ground o GPIO 15 (RXD)
GPIO 17 o GPIO 18 (PCM_CLK)
GPIO 27 o Ground
GPIO 22 o © GPIO 23
3V3 power o o GPIO 24
GPIO 10 (MOSI) o o Ground
GPIO 9 (MISO) o o GPIO 25
GPIO 11 (SCLK) o o GPIO 8 (CEO)
Ground o GPIO 7 (CE1)
GPIO 0 (ID_SD) o GPIO 1 (ID_SC)
GPIO5 o o Ground
GPIO6 o o GPIO 12 (PWMO)
GPIO 13 (PWM1) o o Ground
GPIO 19 (PCM_FS) o o GPIO 16
GPIO 26 o o GPIO 20 (PCM_DIN)
Ground o o GPIO 21 (PCM_DOUT)

Figure 14 : Raspberry Pi Pinout

Since most of the GPIO pins had being used for powering up LCD and its touchscreen
inputs, we have to improvise the buttons for the oscilloscope’s function. The physical

buttons were swapped into virtual buttons in the GUL

Figure 15 : Internal Product Design

18

The programming is done in Python 3 and the framework and animations will be

handled by Pygame Framework. It also helps to generate GUI with the buttons.

i i Myt i b S
I
|
1
1
|
1

Time 544uS per division
Time Magnify
¥1 x2 x4 x8 x16 x32

Voltage 625mV per division
Voltags Magnify
X1 x2 x4

Maasure
Time Velits

Figure 16 : Graphical User Interface (GUI)

ATIF h&

Run Single Freezs Trigger
| |
Voltage 1.01V

Saved Voltage -1.00V

AVoltage 210V
Time 3468. uS
Saved Time 2482, uS
ATime 986.0 uS
1/ATime 1014. Hz
Save Result
Save
Time Volts

Let’s start with the Time Magnify buttons. Each of these buttons will zoom in

horizontally depending the scale factor. If we push the button, the magnify variable

which in binary will shift 1 to the left in which scale factor you press.

for n in range(@,6) :
if LedRect[n].collidepoint(pos):

expandT

The same case with the Voltage Magnify buttons but it will zoom in vertically. Moving on
to Measure and Save buttons which both have Time and Volts buttons. If the Measure's
Time button is press, the solid vertical blue line will show up like in Figure and it can be
controlled via a blue potentiometer. If the Save's Time button is press, it will mark the
current position of a solid vertical blue line with the dotted vertical blue line. The same
case with Volt buttons but it is a horizontal red line and can be controlled via a yellow

potentiometer. The orange dotted line is the trigger and it can be controlled via a red

potentiometer.

1<<n

19

/ \ /N (/ V:Iago
_/ ----- ——\{ —/ """"" / |7 Saved Voltage

= w RN
Time
Saved Time
ATime
1/ATime
Time 65.14uS per division Voltage 625mV per division Save Result
Time Magnify Voltage Magnify Measure Save
ﬂ X2 x4 xB x16 x32 ﬂ x2 xd Time Volte Time Volite

Figure 17 : Graphical User Interface (GUI) More Visible Trigger Line
By pressing those Measure buttons, the parameters will show up on the right. The Run,
Single, Freeze buttons, it work similarly like other commercial oscilloscopes. The

final button is the Save Result button which function as a screenshot button.

| 382 if LedRect[17].collidepoint(pos):
if.".?- pygame.image.save(screen, “"image.png")

20

CHAPTER 4

RESULTS & DISCUSSION

4.1 RESULTS & ANALYSIS

There are a few experiments done for analyzing this system's performance. To begin
with, the Raspberry Pi 3 of Python 3 program can't handle the Arduino Nano's prescale of 2
with 8MHz ADC clock speed. The first experiment is to measure the peak voltage at different
frequencies. Note that, the experiment is done with a probe that switched to an X1 attenuator
which allows us to measure up to +/- 2.5V. Depending on the probe, this DAQ system
capable to measure up to +/-25V with an X10 probe's attenuator.

In these experiments we had done, we connect the signal generator with ArPi Scope
and a PC oscilloscope, PicoScope through BNC to crocodile cable, and oscilloscope probes
with X1 attenuator. Sometimes, we connect the ArPi Scope with PicoScope directly through

BNC coaxial cable since PicoScope can be a signal generator too. The trigger is set to 0°.

Signal Generator ArPi Scope PicoScope

. ; ___if
Ground

Figure 18 : Connection Via BNC to Crocodile Cable with Oscilloscope Probes

21

ArPi Scope PicoScope

l BMNC coaxial cable J

Figure 19 : Connection Via BNC Coaxial Male to Male Cable

1. A sine wave signal from the function generator with various voltages in different

frequencies being measured for input references.

Table 2 : Result of Peak Voltage Measurement

No. | Voltage Input | Peak Voltage Peak Voltage Peak Voltage
(V) (Vp) at 100Hz (Vp) at 1kHz (Vp) at 10kHz

1 0.01 0 0 0

2 0.03 0 0.05 0.03

3 0.05 0.07 0.07 0.07

4 0.07 0.11 0.1 0.09

5 0.10 0.13 0.14 0.11

6 0.30 0.33 0.32 0.33

7 0.50 0.54 0.53 0.50

8 0.70 0.76 0.73 0.70

9 1.00 1.07 1.04 1.04

According to the result above, the errors are less than +£0.10 V and its maximum error is =0.07
V. There are a few factors that might cause an error during measurements which is the human
error and the display error which is the number of pixels that the display unit supported and

the number of pixels used for generating GUI.

22

2. This part of experiment is for capturing the voltage peak with the different

frequency input.

Amplitude =1V

Table 3 : Result of Peak Voltage Error Test

No. | Frequency Input | Peak Voltage Error (%)
(Vp) PV oo

1 1 Hz 0 0

2 3 Hz 0 0

3 5Hz 0 0

4 7 Hz 0 0

5 10 Hz 0.97 -3

6 30 Hz 1.07 7

7 50 Hz 1.07 7

8 70 Hz 1.05 5

9 100 Hz 1.05 5

10 | 300 Hz 1.05 5

11 | 500 Hz 1.03 3

12 | 700 Hz 1.03 3

13 | 1000 Hz 1.02 2

14 | 10000 Hz 1.02 2

15 | 30000 Hz 1.03 3

16 | 50000 Hz 1.05 5

17 | 100000 Hz 1.05 5

According to the results above, we couldn’t measure the Vp from 1Hz to 7Hz because
the oscilloscope can’t generate full cycle or at least 1/4 cycle so that we can get the
peak of a waveform. The waveform is too wide to be measured. As for 10Hz, we
started to be able to see the peak only, so we can measure the peak voltage however,

we couldn’t measure the frequency for next experiment. The average error is +3.77%.

23

3. This part of experiment is for measuring the difference between the input

frequency with the measured frequency at same amplitude.

Amplitude =1V

Table 4 : Result of Frequencies Error

No. | Frequency Input | Frequency Output Error (%)

Output — Input X 100]
Input

1 80 Hz 79.45 Hz -0.69

2 100 Hz 99.9 Hz -0.1

3 300 Hz 302.1 Hz 0.7

4 500 Hz 504.9 Hz 0.98

5 700 Hz 691.5 Hz -1.21

6 1000 Hz 1016 Hz 1.6

7 3000 Hz 3010 Hz 0.33

8 5000 Hz 4992 Hz -0.16

9 7000 Hz 7058 Hz 0.83

10 | 10000 Hz 9904 Hz -0.96

11 | 30000 Hz 29954 Hz -0.15

12 | 50000 Hz 52260 Hz 4.52

13 | 100000 Hz 52260 Hz -47.74

Since the oscilloscope can't generate a full cycle from 1Hz, we must start measuring at 80Hz
since the waveform is narrow enough to generate more than 1/4 cycle. To generate at least
one full cycle of the waveform, the frequency must be close to 300Hz. According to the result
above, the error surpasses 2% starting at frequency 50kHz which is above the maximum
frequency which is 30kHz theoretically. So the average error we calculate until 30kHz is
+0.11%. In addition to the accuracy, the waveform also started to get rough once it reaches

30kHz.

24

Table 5 : Waveform at Given Frequencies

Oscilloscope’s Waveform Frequency
1 kHz
= i la a
/ /!
1 A 7 o N 4 TV
N ¥
26 kHz
I B
30 kHz
L /A
N
70 kHz
WA ‘
R ARVAR ARV ‘
\

So, according to the table above, the actual optimal maximum frequency is

somewhere around 26kHz to 28kHz and the sampling rate that Raspberry Pi process

1s around 260kHz.

4.2 DAQ SYSTEM’S TECHNICAL SPECIFICATION

Table 6 : DAQ System’s Technical Specification

Sampling rate 260kHz @ 260kSa/s

Maximum frequency 26kHz

Maximum voltage X1 Probe’s Attenuator | X10 Probe’s Attenuator
2.5V 25V

Average Voltage error +3.77%

Average Frequency error +0.11%

25

4.3 COST OF MATERIALS

Table 7 : Cost Of Materials

Material Price (RM)

Raspberry Pi 3 Model B 155.00
5V 2.5A AC/DC Adapter Micro B USB cable (UK plug) 20.00
32 GB Micro SD Card 40.00
Arduino Nano (CH340) 15.00
Resistor 100kQ (4 pieces) 0.44
Resistor 1kQ 0.10
Capacitor 47uF (2 pieces) 1.10
Capacitor 1uF 0.45
16 Pin Female Header 1.54
Carbon Type Potentiometer (3 pieces) 1.95
Potentiometer Plastic Knob (3 pieces) 0.90
Donut Board Single Side 5*7cm 0.98
BNC Female Coax to Screw Adapter 4.25
40 Ways Male to Female Jumper Wire (20cm) 2.50
10 mm PCB Stand Screw and Nut (12 pieces) 6.00
25 mm PCB Stand Screw and Nut (4 pieces) 4.80
HDMI 5 inch TFT LCD Touch Screen 186.80
Male to Female 0.3m HDMI cable 9.90
8*6*2 inch Clear Plastic Box 8.00

TOTAL 459.71

26

CHAPTER 5

CONCLUSION &

RECOMMENDATION

5.1 CONCLUSION

The major point we want to see from this project is how fast Raspberry Pi DAQ system
process the whole tasks. The ADC unit sampling rate is different from Raspberry Pi because
the method of transferring the data through serial USB limits the speed. Also, the speed of
sampling will decrease for each line of code available in the program. So far, the wired
transferring medium is still faster than the wireless one so the wired IoT Big Data is still
superior to wireless in terms of speed.

The oscilloscope maximum frequency sacrifices the minimum frequency it can
measure if it uses a lower prescale factor. The lower prescale factor also slows down the
Raspberry Pi performance for this particular program and the recommended prescale factor is
16 and above. The reason behind why we could not measure lower frequency is because the
minimum magnifies factor is 1 in binary. To magnify, the bit of the binary will be shifted to
the left to 2, 4, 8, 16, 32, and so on. However, it cannot be shifted to the right beyond less than
1.

For improvements, we need more time, healthier environment conditions, hard work,
and more knowledge about Python language to explore it even deeper than what is capable of.
Nevertheless, the main objectives were achieved. It becomes clearer once we swap the ADC
unit from ADS1256 chip into Arduino Nano, we were able to implement our knowledge we
learned in the Engineering Technology Electrical program. It becomes clearer for us because
Arduino uses an ATmega microcontroller which we have basic knowledge of in C++

language and the tough part for this project is understanding the Python language.

27

5.2 RECOMMENDATION

Our recommendation for future improvement is to use the latest version of Raspberry
Pi 3B like Raspberry Pi Model B+ which has faster CPU clock speed, uses the latest
processor, and better heat reduction since it already has a built-in heatsink on the processor.
We also noticed that when running this oscilloscope program, the Raspberry Pi generates a lot
of heat, so any approach to reduce the heat also helps to improve its performance. As for GUI,
we recommend using the bigger button for ease of usage since we were using a touch pen

which more accurate than a finger.

We also recommend using superior Raspberry Pi than Raspberry Pi 3 like Raspberry
Pi 4. Raspberry Pi 4 is built like an actual personal computer complete with high RAM and
more. As for the ADC unit, we recommend the brand new Raspberry Pi Pico microcontroller
which has 3 ADC capable pins and released on 21st January 2021. Please note that this is the
first Raspberry Pi microcontroller unit which is similar to Arduino Nano but better in terms of
architecture. Maybe in the future, this Raspberry Pi product will be sold in form of a kit that
contains both Raspberry Pi computers with Raspberry Pi microcontroller which may reduce

the cost of materials.

28

REFERENCES

Asadi, A. A., Bagheri, S., Imam, A., Jalayeri, E., Kinsner, W., & Sepehri, N. (2016,
13-15 Oct. 2016). A data acquisition system based on Raspberry Pi: Design,
construction and evaluation. Paper presented at the 2016 IEEE 7th Annual

Information Technology, Electronics and Mobile Communication Conference
(IEMCON).

Bhushan, A. S., Coppinger, F., & Jalali, B. (1998). Time-stretched analogue-to-digital
conversion. Electronics Letters, 34(9), 839-841. doi:10.1049/e1:19980629

Candes, E. J., & Wakin, M. B. (2008). An Introduction To Compressive Sampling.
IEEE Signal Processing Magazine, 25(2), 21-30.
doi:10.1109/MSP.2007.914731

Eklund, J., & Gustafsson, F. (2000, 28-31 May 2000). Digital offset compensation of
time-interleaved ADC using random chopper sampling. Paper presented at the
2000 IEEE International Symposium on Circuits and Systems (ISCAS).

Kakade, S., & Lokhane, D. M. S. S. (2016). Oscilloscope Using Raspberry Pi
Processor.

Laska, J., Kirolos, S., Massoud, Y., Baraniuk, R., Gilbert, A., Iwen, M., & Strauss, M.
(2006, 29-30 Oct. 2006). Random Sampling for Analog-to-Information
Conversion of Wideband Signals. Paper presented at the 2006 IEEE
Dallas/CAS Workshop on Design, Applications, Integration and Software.

Patil, P., & Bhole, K. (2018, 15-17 Feb. 2018). Real time ECG on internet using
Raspberry Pi. Paper presented at the 2018 International Conference on
Communication, Computing and Internet of Things (IC3IoT).

Breidenbach, M., Frank, E., Hall, J., & Nelson, D. (1978). Semi-Autonomous
Controller for Data Acquisition the Brilliant ADC. [EEE Transactions on
Nuclear Science, 25(1), 706-710. doi:10.1109/TNS.1978.4329397

Shi, S. L., & Pi, G. R. (2011). Design of Virtual Oscilloscope Based on S3C2410.
Advanced Materials Research, 189-193, 227-230.
doi:10.4028/www.scientific.net/ AMR.189-193.227

Carley, L. (1987). An oversampling analog-to-digital converter topology for high-
resolution signal acquisition systems. [EEE Transactions on Circuits and
Systems, 34(1), 83-90. doi:10.1109/TCS.1987.1086039

Schoukens, J. (1995). A critical note on histogram testing of data acquisition channels.
IEEE Transactions on Instrumentation and Measurement, 44(4), 860-863.
doi:10.1109/19.392871

Soon, Y. L., Gan, K. B., & Abdullah, M. (2015, 10-12 Aug. 2015). Development of
very low frequency (VLF) data acquisition system using Raspberry Pi. Paper

29

http://www.scientific.net/AMR.189-193.227

presented at the 2015 International Conference on Space Science and
Communication (IconSpace).

Odunlade, E. (2018). Raspberry Pi Based Oscilloscope. Retrieved from
https://circuitdigest.com/microcontroller-projects/raspberry-pi-based-oscillosc

ope

Sharma, D., Samuel, K., Ramoutar, K., Lowe, T., & David, 1. (2017). Raspberry Pi
Based Real Time Data Acquisition Node for Environmental Data Collection.
Journal of Basic and Applied Engineering Research, 4,307-312.

Mike Baker (July 2018). BUILD AN OSCILLOSCOPE. The MagPi, Issue 71, Page

44-51. https://magpi.raspberrypi.org/issues/71

Willem Maes (May 1, 2018). How to Make an Arduino Fast Enough to...

30

APPENDIX A

ARDUINO NANO ARCHITECTURE & PROGRAMMING

Microcontroller ATmega328

Architecture AVR

Operating Voltage 5V

Flash Memory 32 KB of which 2 KB used by bootloader
SRAM 2 KB

Clock Speed 16 MHz

Analog IN Pins 8

EEPROM 1 KB

DC Current per I/O Pins 40 mA (I/O Pins)

Input Voltage 7-12V

Digital I/0 Pins 22 (6 of which are PWM)
PWM Output 6

Power Consumption 19 mA

PCB Size 18 x 45 mm

Weight 7¢

Product Code A000005

31

Start

Declare \Variables
int buffer [512];
int sample, lastSample;
int pot1, triggervVoltage;
int friggerTimeout = 1000;
unsigned long tfriggerStart

char triggerType = "2";

void setup()

h 4

Set Baud Rate (115200)

v

Set Pin 12 as OUTPUT

h 4

Sef up pre-scale to 4:

ADCSRA
| ADPS2 | ADPS1 | ADPSO |
I o 1 1 0 |

32

void loop()

If
triggerType 1= "2

Wirite

)

Pin {13) = HIGH

Fead input
Pin {0}

h

Write
Pin (13) = LOW

buffer[i] = Pin {0}

L

j’r Read input
7 Fin (3) /

For =
i=0, =512, i++ > pot1 = Pin (3)
¥
Read input
Pin (4)
Write
Bit shift
(bufferf i]==8)
y
Write
Bit shift
{potl1 == 8)
Write
Bit shift
(buffer[i] &8) ¥
Write
Bit compare AMD
{ pot1 & OxFF)

—_ Fead input
pot1 = Pin (4) ‘ﬁ/ il [4? /

33

void loop()

triggervoltage = Pin (5)

Read input
Pin {5)

r

Write
Bit shift
{ poit1 == 8)

v

Write
EBit compare AND
{ pot1 & OxFF)

w

Read input } I N
/ Fin (5) /;) triggerVoltage = Pin (5]

pot1 = Pin (0)]

w

Wiite
Eit shift
{ triggervoltage == 8)

b

Write

r
,-"‘r Read input
f Pin (0

To wait Tor
next request

While

Bit compare AND
(triggervoltage & O=FF)

Yes
Serial read() -

Serial. available() == 0

Yes

friggerType = Serial.read()

While

To remove
any other
bytes

Serial available() 1= 0

34

I lastSample = triggeﬂfnﬂag;&&& sample = triggerVoltage)

{ Time - triggerStart = triggerTimeout)

35

@ Arduino_ADC | Arduine 1.8.13

File Edit Sketch Tools Help

Arduino_ADC §
#define cbi{sfr, bit) { SFR BYTE(sfr) & ~ BV({bit))

macro to clear bit in special function register
The cbi() is a macro to set the bit{the sec argument f the address{the
From the comma line above it sets the bit-th bit of the content of sfr
#d;fine sbi{sfr, bit) { SFR BYIE(sfr) |= BV({bit})
* macro to set bit special function register
The sbi() is a macro to set the bit(the second arqument) of the address|
From the comma line above it sets the bit-th bit of the content of sfr

int buffer [512]; // 1K input buffer

int sample, lastSample;

int Analog In, triggerVoltage;

int triggerTimecut = 1000; // time until auto trigger
unsigned long triggerStart;

char triggerType = "2°;

void loop(){
if{ triggerType != '2') trigger(); // get a trigger
digitalWrite {13,HIGH);// timing marker
for{int i=0; i<312 ; it++){
buffer[i] = amalogRead(0);
}
digitalWrite{13,LOW); // timing marker
analog In = analogRead({3); // switch channel to cursor pot
for{int i=0; i<512 ; it++){
Serial .write(buffer[i]>>8);
Serial .write{buffer[i] & O=xff);
}
// send back pot values for cursors
Analog In = analogRead(3);
analogRead{4); // next cursor pot
Serial.write (Analog In>>8);
Serial.write (Analog In & Oxff);
Analog_In = analogRead(4);
triggerVoltage = analogBead{3);
Serial.write{Analog In>>8);
Serial.write{Analog In & Oxiff);
triggerVoltage = analogRead(3);
analog In = analogRead(0); // prepair for next sample run

36

Serial.w e(triggerVoltage::8);

Serial.write(triggerVoltage & Oxff);

while (Serial.available{) == 0) { } // wait for next request
triggerType = Serial.read(); // see what trigger to use
while (Serial.available(} != 0) { // remove any other bytes in buffer

Serial.read();

void trigger(){

// trigger at rising zero crossing

triggerStart = millis{();

sample = analogRead(0);
do {
lastSample = sample;

sample = analogRead(0);

while (! (lastSample < triggerVoltage &4 sample > triggerVoltage) && (millis({) - triggerStart < triggerTimeout));

37

|
AtmEL ATmega328P

8-bit AVR. Microcontroller with 32K Bytes In-System
Programmable Flash

DATASHEET

Features

s High performancs, low power AVR® B-0it microcontrolier
s Afvanced RISC anchitechue
s 131 powert InsrucSons — most single Ciock cycie evecufion
32 = B general pUDass warking registers
Fully stafc operason
Un o 1EMIPS througinpet at 15MHz
Cn-chip 2-cycie multipiler
= High endurancs nonvoialle memony segments
s 32¥ bytes of rSystem see-programmabie fiash program memory
s Ebytes EEFROM
s IHbytes int=rmal SRAM
s 'Wrisleraze cycies: 10,000 flash/100,000 EEFROM
s Opbional boot code section Wi Independent iock bils
In-system programming by on-chip oot program
= Trus reag-whis-writ= operation
s Frogramming lock for sotware seourty
« Peripheral features
& Two B-bit TimenCounisrs with saparabe prescaler and compans mods
s One 150k TimerCounter Wi separals prescaier, compars mods, and capiure
mode
Rzal Bme counber wi separats oscllator
Jix FA channeis
s E-channel 10-bit ADG In TQFF and QFMALF package
@ Temperabne measurement
s Frogrammaiie seral USART
Liastsriziave 571 serial nterface
s Eyte-orient=d 2-wine serial interface [Phillps 1°C compatinis)
s Frogrammabie waichdog Smer Wi separée on-chip oscllior
& On-chip analog comparabor
s ImiEmupt and wake-up on pin change
. micrcomimiler features
s Fowsr-on nesst and programmable brown-out detection
s Iniemal callbmted osclistor
« Extemal and Intemal Int=mupt soorces
s 3ix sieep modes: ie, ADC nolss reducSon, power-save, power-jown, sandby,
and exi=nded standby

TENOD-ATHME

38

Tabla 23-4. Input Channal Ealsakions

oooo ADCO
ooo ADCA
oo ADC2
oot ADC3
1y x] ADCH
0 ADCE
oo ADCE
i ADCT
1000 ADCE™
100 [reserved)
1010 [resarved)
1011 [reserved)
1100 [resarved)
1101 [reserved)
1110 1AV W)
1M O (MDY
Maobe: 1. For emperatune sensor.

2352 ADCSHRA - ADC Confrol and Stafus Reglster &

B 7 g 5 4 3 2 1 o

HETA] WDEN | ALIEC | ADETE | ADE | ADE | ADFEE | SDFE1 | ADPED | ADCESA
ReadiWiite
Inicial Viaksa o 0 i i o o o o

« Bt T - ADEM: ADC Enabls

\Wiriting his bE o one enabies @ ADC. By wriing E io zemo, e ADC s tumed off. Tuming the ADC off while & comversion |s
In progress, will lerminate s conversion.

= BRE- ADEC: ADC Btart Conwverclon

In =ingle corversion mode, write this bif o ome to start each corversion. In fres rurning mode, write tis Bt io one o sk e
first comversian. The first conversion afer ADSC has been wrien afer the ADC has been enabied, or @ ADEC |5 writen af
the same time &5 the ADC I enabied, will take 25 ADC clock cycies instead of the normal 13 This first conversion performs
InEakzation of the ADC.

ADSC will read 35 one 35 long 25 3 conmversion |5 In progress. Winen B conversion is complabe, It retums fo zero. Writing
2o o this b s no effect.

« Bit&- ADATE: ADC Auto Trigger Enabs

When this bit |s writen o one, auto riggering of B ADC |5 enabled. The ADC will start & conversion on a positive sdge of
the sEieched rigper signal. The Figper source 5 seleched by satiing e ADC irigger select bits, ADT3 in ADCERE.

« Blt 4 - ADIF: ADC Indsmupd Flag

This b |5 sef when an ADC conversion compieies and the dala regisisrs are gpdated. The ADC comverskon comiplete
Iritesmupd ks executed f the ADIE bit and the Hol In SREG are st ADIF Is deared by hardware when egecufing the
comespondng imsrupt handing vedior. AR=matively, ADIF |s ceared by wriing a logical one o the fiag. Bewars that B
doing a read-modE-write on ADCERA, 3 pending imtsrupt can be disasbled. This also applies & e 381 and CBI Insinactons
are used.

218 ATmegai2sP [DATASHEET] Atmel

THIO-SR-018

39

=« Bif 3 - ADIE: ADC Intsrrupt Enabile
When this Bit |s writien 10.one and the |-b% In SREG s set, the ADC conversion compiete int=mapt Is acivaled.

» Blis 2:0 - ADFE2-0: ADC Precoalsr §eleot Bite
These bits determine the division facior befween the sysiem clock frequency and the Input cock b B ADC.

Table 23-5. ADC Pracoalsr Salsatlons

ADPE2 ADPE1 ADPED Diviclon Fagtor

0 o e} 2

0 o 1

0 1 e} 4

0 1 1 a2

1 o e} 18

1 o 1 EF)

1 1 o e

1 1 1 128

2353 ADCL and ADCH - Tha ADC Data Reglster
23531 ADLAR=10

EA 15 14 13 12 # 10 g g
e : - - o = = | ADCU | ADCE | ADCH
w7sy | ADCT | ADCE | ADCE | ADCE | ADCE | ADCZ | ADCT | ADCO | ADCL

7 B E] 3 7 1]

ReadWhe R R R R R R R R

R R R R R R R R

nlalelie 0 0 o 0 0 0 o o

0 o 0 0 0 0 0 o

23532 ADLAR=1

=]

T T O { AT] aocH
Ty L I4TE] = - = = = = ADCL
¥ [-]] E] 3] 1 [£]

ReadWrie R R R R R R R R
R R R R R R R R
nlial Valie 0 5] o] 0 a [¢]
i o] il 0] <]

When an ADT conversion ks complete, e result IS found In Shese bwo reglsiers.

When ADCL Is read, the ADC daby regisier | mof updated unl ADCH |5 read. Consequentiy, e resull |s left adjusted and
ng more than 8-bit precizion Is required, | ks sufficlem o resd ADCH. Otherwise, ADCL must be nesd first, Sen ADCH.

The ADLAS bt in ADRILE, amd e MUXR bits in ADMUX affect S way the result|s read from e reglsters. § ADLAR s =8,
the resalt ks l=ft adjusted. ¥ ADLAR ks cleared (defeat), the resulk |s right adjusted.

o ADGECD: ADC Conwemslon Result

Thisse bits represant e resut from the conversion, as detalied In S=cton 23.7 "ADC Comersion Resul® on page 215

Atmel ATmegallep [DATASHEET) 218

[l e BT]

40

APPENDIX B

RASPBERRY PI 3B ARCHITECTURE & PROGRAMMING

Processor Broadcom BCM2837 64bit ARM Cortex-A53 Quad Core
Processor SoC running
CPU Clock Speed 1.2GHz
RAM 1 GB DDR2
USB Ports 4 x USB2.0 Ports with up to 1.2A output
Storage MicroSD
Power Source 5V, 2A
Ethernet 10/100 Ethernet
Wireless Connectivity BCM43143 (802.11 b/g/n Wireless LAN and Bluetooth
4.1)
Operating Temperature -40°C to +85°C
Operating System LINUX

41

1 import serial, pygame, os, time

5 pygame.init()

4 os.environ['SDL_VIDEQ_WINDOW_POS'] = 'center’

5 pygame.display.set_caption("Raspberry Pi Oscilloscope™)

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN, pygame.MOUSEBUTTONDOWN, pygame.QUIT, pygame.MOUSEBUTTONUP])

textHeight=28 ; font = pygame.font.Font(MNone, textHeight)

18 screemWidth = 728 ; screenHight = 368

11 screen = pygame.display.set_mode([screenWidth,screenHight],®,32)
12 display = pygame.Surface((512,256))

13 backCol = (188,255,255) ; black = (8,8,8)

14 pramCol = (200,260,1580) :

15 logo = pygame.image.load("images/SDPimage.png").convert_alpha()

17 sampleInput = serial.Serial("/dev/ttyUsSBe",11528@, timeout = 5)

28 displayWidth = 512 ; displayHight = 256
21 LedRect = [pygame.Rect((@,8),(9,8))]*18
22 inBuf = [@]*512]

chOff = displayHight//2

run = [True,False,False,True,False]
expandT = 1 ; expandV = 1

sampleTime = 6.514

smples_cm = 18 * sampleTime

volts_sample = 5/1824

measureTime = False ; measureVolts = False;savedTime = 8;savedVoltage = @
cursorT = 8; cursorV = @; vMag = 1; svled = False; stled = False

triggerC = 512 ; savedVoltsC = -1 ; savedTimeC = -1 ; button = @

def main():
pygame.draw.rect{screen,backCol, (8,8, screenWidth, screenHight+2),a)
defineControls()
drawControls()

3 time.sleep(®.1)

4.8 sampleInput.flushInput()

1 sampleInput.write(b'2")

while(l):

43 time.sleep(®.881)

4.4 readArduino()

plotWave()

if measureTime or measureVolts
updateControls(True)

drawscope()

checkForEvent()

5@ while run[47]:

51 checkForEvent ()

52 if run[3]:
53 sampleInput.write(b'1"')

54 else:

sampleInput.write(b'2')
def screenShot():

loop = 1
while loop:

for event in pygame.event.get():
if event.type == pygame.QUIT:
loop = @
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_s:
A7 pygame.image.save(screen, "image.png")

42

pygame.quit()

e e, Bl Ml |
[y TR N T R)

def drawGrid():
pygame.draw.rect(display, (248,248, 248} (2,8,displayWidth,displayHight), Q)

8 for h in range(32,256,32):
79 pygame.draw. llne{dlsplay,(lzﬂ 128 129] {B h), {512,h),1)
88 for v in range(32,512,32):
81 pygame.draw. 11nE{d15play,(125 128 129) (v,8),(v,256),1)
82 pygame.draw.line{display,(®,8,8),(256,8),(256,256),1)

pygame.draw.line(display,(®,8,8),(8,128),(512,128),1)

def drawControls():
drawkords("Time Magnify",18,388,black,backCol)
drawWords("Voltage Magnify",228,388,black,backCol)
drawWords("Measure",448,388,black,backCol)
drawkords("Time",448,328,black,backCol)
drawWords("Volts",486,328,black,backCol)
drawWords("Save",548,380,black,backCol)
drawkWords("Time",548,328,black,backCol)
drawWords("Volts",586,328,black,backCol)
drawkords("1/"+chr(8x394)+"Time",548,257,black,backCol)
drawWords(chr{@x394)+"Time",548,237,black,backCol)
drawkWords({"Saved Time",548,217,black,backCol)
drawWords("Time",548,197,black,backCol)
drawWords(chr{ex394)+"voltage",548,167,black,backCol)
drawkords{ "Saved Voltage",548,147,black,backCol)
drawWords("Voltage",548,127,black,backCol)
drawWords("Run Single Freeze Trigger",548,88,black,backCol)
drawkords (" Save Result",EZB,ZSB,black,backCDlﬂ

[
& @ ® DD WD
G D GO =

]
P =

screen.blit{logo, (54@,8))
updateControls({True)

def updateControlsiblank):
global wDisp
if blank:
pygame.draw.rect (screen,backCol,resultsRect,d)
if expandT*smples_cm >= 1888:
drawlords("Time "+str((expandT*smples_cm)//1888)+"mS per division ",18,288,black,backCol)
else;
drawWords("Time "+str(expandT*smples_cm)+"us per division ",18,288,black,backCol)
volts_cm = int(volts_sample*l28*1088/expandV)
drawlords ("Voltage "+str(vults cm]+"mv per division",228,288,black,backCol)
for n in range(@,&): -ime
drawkWords ("x"+str({1l<<n), 18+n*:8 :28 black,backCol)
drawLED{n,expandT == 1<<n)
for n in range(6,3):
drawﬁords("x"+str(1<<(n 6)) 228+(n 6)*38 328,black,backCol)
drawLED{n,expandV == 1<<{n-6))
drawlLED(3,measureTime)
drawLED{18,measureVolts)
drawLED(11,stlLed)
drawlLED(12,svled)
drawLED{17,button)
for n in range(13,17):
drawlLED({n,run[n-13]1)
if measureTime
t = (cursorT>>1)*sampleTime / expandT
drawkords (" "+trunk(t,5)+" "+chr{@x3bc)+"5",648,197 ,black,pramCol) . :
drawklords(" "+trunk(savedTime,5)+" "+chr{@x3bc)+"5",64@,217,black,pramCol)
drawkords (" "+trunk(t-savedTime,5)+" "+chr({8x3bc)+"5",548,237,black,pramCol)
if t-savedTime != @ :
drawkords ((trunk(1980088 / abs(t-savedTime),5))+" Hz",548,257,black,pramCol)
| if measureVolts

43

vDisp = (((1824-cursorV)>>2)-128)*volts_sample * wvMag

delta = vDisp - savedVoltage

drawWords(" "+trunk(delta,4)+" V",648,167,black,pramCol)
drawWords (" "+trunk(savedVoltage,4)+" V",648,147,black,pramCol)

141 drawkWords(" "+trunk(vDisp,4)+" V",648,127 ,black,pramCol)
iy

L L

143 def trunk(value, place):

144 v=str(value)+"000008"

if value»8:
v = v[@:place]

else:
v = v[@:place+l]
return v

5

2
54
i)

def drawLED(n,state):
if state
pygame.draw.rect({screen, (164,16,5),LedRect[n],d)
else
pygame.draw.rect({screen, (255,255,255),LedRect[n],8)

L

[l el o)
L

(5]

def defineControls():
global LedRect, resultsRect

for n in range(8,6):

LedRect[n] = pygame.Rect(({1@8+n*38,336),(15,15))
for n in range(@,3):

LedRect[n] = pygame. Rect({228+(n f6)*38,336), (15 15))
LedRect[9] = pygame.Rect((448,336),(15,15)) time
LedRect[18] = pygame.Rect((486,336),(15,15))
LedRect[11] = pygame.Rect((548,336),(15,15))
LedRect[12] = pygame.Rect((586,336),(15,15)) #
LedRect[13] = pvgame.Rect((545,188),(15,15)) #
LedRect[14] = pvegame.Rect((586,188),(15,15)) # single
LedRect[15] = pyvgame.Rect((628,188),(15,15)) # free 1

171 LedRect[16] = pygame.Rect{((676,188),(15,15))
172 LedRect[17] = pygame.Rect({(656,388),(26,28))
173 resultsRect = pygame.Rect(({639,125),(98,153))

def plotWave():
global vMag
lastX=8 ; last¥=8

I
WOOMD 00 D0 OGO D000 00O 00 CD

drawarid()
s = B # sample pointer
for n in range(?, displayWidth, expandT):

179 vMag = 2 # ac
186 if expandy ==
181 vMag = 4

183 if expandV == 4:
1684 vMag =1

184 = (512-inBuf[s])//vMag + chOff

196 if n I= @:

191 pygame.draw.line{display, (8,286,8), (1astX ,lastY), (n ,v },2)

192 lastX = n

193 lastyY = ¥y

194 5 += 1

196 if measureTime
a7 pygame.draw.line{display,(®,8,255),(cursorT>>1,8), (cursorT»»1,256),1)
15 if savedTimeC != -1:

194 for n in rangef(@®,256,12):

200 pygame.draw.line{display,(@,8,255), (savedTimel,n), (savedTimeC,n+&),1)

281

262 if measureVolts

283 pygame.draw.line{display, (255,8,8), (#,cursor¥>>2), (512,cursorV>>2),1)

204 if savedVoltsC != -1:

44

for n in range(@,512,12):
pygame.draw.line{display, (255,8,8), (n,savedVoltsC), (n+6,savedoltsC),1)

if run[:] -

(triggerC- 512)!Iuﬂag + chOff

for n in range(®,512,12):
pygame.draw.line{display,(255,128,8),(n,y),(n+6,y),1)

def drawscopei):
SCreen. bllt(dlsplay,(lﬂ 18))
pygame.display.updatel)

def drawlWords{words,x,y,col,backCol)
textSurface = font.render{words, True, col, backCol)
textRect = textSurface.get_rect()
textRect.left = x
textRect.top = ¥
screen.blit{textSurface, textRect)

def readArduinoi): 7
global cursorT, cursurV trlgger[, run
global t@®, t1, t, voltmax, voltmin
voltmax = @
voltmin = @
if run[g]
for i in range(@, 1524}
junk = samplelnput.read()

else:
for i in rangE(E 512)
inBuf[i] = ((ord(sampleInput.read())) << 8) | ord(sampleInput.read())

cursorT = ({ord(sampleInput.read())) << 8) | ord{sampleInput.read(})
cursorV = 1824 - ({{ord(sampleInput.read(})) << &) | Drd(sampleInput.read()ﬂ)

triggerC = 1824 - (({ord(sampleInput.read())) << 8) | ord({sampleInput.read()))

if run[1]:
run[l] = False
runf2] = True
updateControls(True)

def handleMouse(pos):
global expandT,expandV,measureTime,measureVolts,svlied,stled
global savedVoltsC, savedTimeC, run, zoomT
for n in range(@,6)
if LedRect[n].collidepoint(pos):
expandT = 1<<n

for n in range(6,9)
if LedRect[n].collidepoint(pos):
expandV = 1<<(n-&)

if LedRect[9].collidepoint{pos):
measureTime = not(measureTime)
if not measureTime
savedTimeC = -1

if LedRect[18].collidepoint{pos):
measureVolts = not(measureVolts)
if not measureVolts
savedWVoltsC = -1

if LedRect[1l1].collidepoint{pos) and measureTime:
stled = True
savedTimel = cursorT>>1

45

272 if LedRect[l2].collidepoint(pos) and measureVolts:
svled = True
savedWoltsC = cursorV::2

277 if LedRect[13].collidepoint{pos) and not run[1]:
: run[@] = mot(run[8])
if mot run[e]:
runf2] = True
else:
run[2] = False

if LedRect[14].collidepoint{pos):
run[l] = True
run[@] = False
run[2] = False
run[4] = True
updateControls(False)
drawScope()

if LedRect[1l5].collidepoint{pos) and nmot run[l]:
run[2] = mot({run[2])
if mot runf[2]:
run[@] = True
else:
run[8] = False

if LedRect[l6].collidepoint{pos):
run[3] = mot{run[3])

382 if LedRect[17].collidepoint(pos):
383 pygame.image.save(screen, “"image.png")
385 | updateControls{False)

def handleMouseUp(pos): & | 5t ISE

global savedVoltage,savedTime, svled, stled, run

if LedRect[12].collidepoint(pos) and measureVolts:
savedVoltage = wDisp
svled = False
updateControls(False)

if LedRect[1ll].collidepoint(pos) and measureTime:
savedTime = (cursorT>>1)*sampleTime / expandT
stled = False
updateControls(False)

if LedRect[l4].collidepoint(pos):
run[4] = False
updateControls(False)

def terminate():

pygame.quit()
os._exit(l)

def checkForEvent(): ze
event = pygame.event.poll()
if event.type == pygame.QUIT
terminate()
if event.type == pygame.KEYDOWN :
if event.key == pygame.K_ESCAPE
terminate()
if event.key == pygame.K_s
os.system("scrot -u”
if event.type == pygame.MOUSEBUT TONDOWN
handleMouse (pygame.mouse.get_pos())
if event.type == pygame.MOUSEBUTTONUP
handleMouselp(pygame.mouse.get_pos())

if _ name_ == "_ _main___
main()

46

APPENDIX C
GANTT CHART SDP 1

ACTIVITIES JUNE JULY AUG

TOPIC UNDERSTANDING

PROJECT DISCUSSION

BASIC DESIGN

MATERIAL SELECTION

DRAFT PROPOSAL

PRESENTATION

REDESIGN PROJECT FOR
IMPROVEMENT

47

APPENDIX D
GANTT CHART SDP 2

ACTIVITIES

BUYING THE
REQUIRED
MATERIALS

ASSEMBLE THE
IMPORTANT
HARDWARES

PROGRAMMING
FOR ADC
CONVERSION

PROGRAMMING
FOR OSCILLOSCOPE
APPLICATION

RESEARCH FOR
OTHER
ALTERNATIVE ADC
UNIT

REDESIGN THE
PROJECT

TESTING

PRESENTATION

FULL HARDWARE
ASSEMBLY

48

	STUDENT’S DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRAK
	ABSTRACT
	TABLE OF CONTENTS

	LIST OF TABLES
	LIST OF SYMBOLS

	CHAPTER 1 INTRODUCTION
	1.1PROJECT BACKGROUND
	1.2PROBLEM STATEMENT
	1.3OBJECTIVES
	1.4PROJECT SCOPE

	CHAPTER 2 LITERATURE REVIEW
	2.1INTRODUCTION
	2.2RASPBERRY PI
	2.2.1RASPBERRY PI 3B
	2.3OSCILLOSCOPE
	2.4ARDUINO
	2.4.1ARDUINO NANO
	2.5PYGAME FRAMEWORK
	2.6TIME-STRETCHED ANALOGUE-TO-DIGITAL CONVERSION
	2.7CHOPPER SAMPLING

	CHAPTER 3 METHODOLOGY
	3.1FLOWCHART
	3.2THEORY
	3.3PROJECT DESIGN
	3.3.1ARDUINO NANO
	3.3.2RASPBERRY PI 3

	CHAPTER 4 RESULTS & DISCUSSION
	4.1RESULTS & ANALYSIS
	4.2DAQ SYSTEM’S TECHNICAL SPECIFICATION
	4.3COST OF MATERIALS

	CHAPTER 5
	CONCLUSION & RECOMMENDATION
	5.1CONCLUSION
	5.2RECOMMENDATION

	REFERENCES
	APPENDIX A
	ARDUINO NANO ARCHITECTURE & PROGRAMMING

	APPENDIX B
	RASPBERRY PI 3B ARCHITECTURE & PROGRAMMING

