Available online at www.sciencedirect.com

Chemical Engineering Research and Design

Intensified photocatalytic degradation of methylene blue over Fe supported on dendritic fibrous SBA-15: Optimisation, kinetic, isotherm, and reusability

IChemE

R.S.R. Mohd Zaki^{a,b}, A.A. Jalil^{c,d}, H.D. Setiabudi^{a,b,*}

^a Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang, Pahang, Malaysia

^b Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang, Pahang, Malaysia

^c School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

^d Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia

ARTICLE INFO

Article history: Received 29 March 2023 Received in revised form 5 September 2023 Accepted 6 September 2023 Available online 9 September 2023

Keywords: Photocatalytic degradation Methylene Blue DFSBA-15 Reaction optimisation Reusability

ABSTRACT

A novel photocatalyst, Fe supported on dendritic fibrous SBA-15 (Fe/DFSBA-15), is synthesised and employed for methylene blue (MB) photocatalytic degradation. The DFSBA-15 was synthesised by applying a microemulsion technique and SBA-15 crystal-seed crystallisation approach. The TEM and FESEM of Fe/DFSBA-15 revealed the revolution of rod-typed SBA-15 into dendritic fibrous-structured (DFSBA-15). The characterisation analyses using FTIR, XRD, BET, PL and UV-Vis DRS, confirmed favourable properties of Fe/ DFSBA-15 compared to Fe/SBA-15. Fe/DFSBA-15 exhibits superior properties, attributed to its unique dendritic fibrous morphology that increases the surface area, pore accessibility, and mass transfer. These exceptional features establish it as a highly promising and efficient photocatalyst for diverse applications. Optimisation of MB degradation (Y, %) by using Fe/DFSBA-15 was conducted by employing response surface methodology (RSM) of independent parameters such as catalyst loading (X_1 , 0.5 – 2.0 g/l), pH (X_2 , 6 – 10) and initial MB concentration (X_3 , 10 – 50 mg/l). The model was significant, and MB degradation was optimised at 99.54% ($X_1 = 1.66$ g/l, $X_2 = 9$, and $X_3 = 27.5$ mg/l) along with validation experiments (3.62% error). The research outcome was in agreement with the Langmuir second-order ($R^2 \ge 0.99$), indicating a predictable trend of the MB degradation process. Interestingly, the excellent degradation and reusability performance of Fe/DFSBA-15 offered a prospective approach for industrial wastewater treatment.

© 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.

E-mail address: herma@ump.edu.my (H.D. Setiabudi).

^{*} Corresponding author at: Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang, Pahang, Malaysia.

https://doi.org/10.1016/j.cherd.2023.09.009

^{0263-8762/© 2023} Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.