ADVANCES IN BIONANOCOMPOSITES

Materiels, Applications, and Life Cycle

Eated by Bhasha Shanma Sabu Thomas Pramendra Kumar Bapai Kajal Ghosai Shashank Shekhar

Many & Same Technologies Deven

Micro and Nano Technologies Series

ADVANCES IN BIONANOCOMPOSITES

Materials, Applications, and Life Cycle

Edited by

BHASHA SHARMA

Department of Chemistry, Shivaji College, University of Delhi, New Delhi, India

SABU THOMAS

Vice Chancellor, Mahatma Gandhi University, Kerala, India

PRAMENDRA KUMAR BAJPAI

Department of Manufacturing Process and Automation, Netaji Subhas University of Technology, Delhi, India

KAJAL GHOSAL

Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India

SHASHANK SHEKHAR

Department of Chemistry, Netaji Subhas University of Technology, Delhi, India

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2024 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-91764-3

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Ana Claudia A. Garcia Editorial Project Manager: Tim Eslava Production Project Manager: Surya Narayanan Jayachandran Cover Designer: Greg Harris

Typeset by Aptara, New Delhi, India

Contents

Contributors Preface		xi xvii	
PA	RTI	Advances techniques in bionanocomposites	
	Natı aspe	ural and synthetic biopolymers: Classification and fundamental ects of bionanocomposites t Sisodia, Partha Pratim Das and Vijay Chaudhary	3
	1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	Introduction Natural and synthetic biopolymers Properties Nanofiller based composites: Bionanocomposites Processing methods Characterization of bionanocomposites Applications of bionanocomposites Future scope and challenges Conclusion ences	3 4 5 9 9 10 11 14
2.		en synthesis and methodologies of nanomaterials: State of the art	17
	2.1 2.2 2.3 2.4	Martínez-Barbosa and M.D. Figueroa-Pizano Green synthesis of nanoparticles Green synthesis methodologies Applications of green synthesis-produced nanoparticles Side effects or potential toxicology of nanoparticles produced by green synthesis ences	17 24 35 39 40
3.	of su	essing methods and characterization techniques ustainable polymers: Challenges and emerging technologies mamul Hoque, Ahmed Hasnine Abuzar and Asif Ahmed	55
	3.2 3.3 3.4 3.5 3.6	Introduction Significance of sustainable polymers Processing techniques for sustainable polymers Characterization of sustainable polymers Challenges and opportunities with sustainable polymers Conclusion ences	55 55 57 66 84 85 85

PART II Materials

4.	Polylactic acid-based bionanocomposites: Synthesis, properties, and applications		
	Irene	S. Fahim, Karim Abdelrahman, Alshaymaa Mostafa and Nahla Hazem	
	4.1	Introduction	93
	4.2	Overview of poly (lactic acid)	94
	4.3	Synthesis of poly (lactic acid)	95
	4.4	Properties of poly (lactic acid)	97
	4.5	Limitations of poly (lactic acid) toward engineering applications	98
	4.6	What is a polymer bionanocomposite?	98
	4.7	Classification of bionanocomposites	99
	4.8	Processing of PLA and its bionanocomposites	100
	4.9	PLA bionanocomposites: Properties and challenges	104
	4.10	Advances in PLA bionanocomposites applications	108
	4.11	Limitations of using PLA-based bionanocomposites	110
	4.12	Conclusion	111
	Refer	ences	112
5.	Polv	vinyl alcohol-based bionanocomposites: Synthesis, properties,	
	and applications		
	Kajal	Ghosal, Shreya Chatterjee, Soumalya Chakraborty and Sanjoy Kumar Das	
	5.1	Introduction	117
	5.2	Synthesis of PVA-based bionanocomposites	118
	5.3	Properties of PVA-based bionanocomposites	119
	5.4	Applications of PVA-based bionanocomposites	121
	5.5	Advantages of PVA	128
	5.6	Limitations of PVA	128
	5.7	Conclusion	129
	Refer	ences	129
6.	Chit	osan-based bionanocomposites: Synthesis, properties, and applications	133
		a Azmana, Syed Mahmood, Abdullah Nayeem and Mohd Azmir Bin Arifin	
	6.1	Introduction	133
	6.2	Chitosan—source, chemistry, and properties	134
	6.3	Chitosan modification	137
	6.4	Chitosan-based bionanocomposites	142
	6.5	Properties of chitosan-based bionanocomposites	143
	6.6	Synthesis and preparation techniques of chitosan-based bionanocomposites	146
	6.7	Applications of chitosan-based bionanocomposites	151
	6.8	Advantages and disadvantages of chitosan-based bionanocomposites	157

6.9 Conclusion References	160 161
7. Starch-based bionanocomposites: Synthesis, properties, and applications Long Chen, Dexiang Li, Yuanhui Chen, Zhongyu Yang, David Julian McClements, Zhengyu Jin, Yaoqi Tian and Ming Miao	169
 7.1 Introduction 7.2 Starch properties 7.3 Preparation of nano-sized starch 7.4 Characterization 7.5 Modification 7.6 Application in foods 7.7 Conclusion Acknowledgment References 	169 170 174 179 183 184 185 186 186
8. Cellulose-based bionanocomposites: Synthesis, properties, and applicatio Jaison Jeevanandam, João Rodrigues, Sharadwata Pan and Michael K. Danquah	ns 191
 8.1 Introduction 8.2 Cellulose-based bionanocomposites: synthesis strategies 8.3 Cellulose-based bionanocomposites: distinctive characteristics 8.4 Cellulose-based bionanocomposites: biomedical applications 8.5 Future perspectives and conclusion Acknowledgment References 	191 192 196 201 205 205 205
9. Protein based bionanocomposites: Synthesis, properties, and applications Abhijith Krishna, Arya V.T., Geethanjali D., Jeffy Joji and Neetha John	211
 9.1 Introduction 9.2 Types of protein-based composites 9.3 Properties of protein-based composites 9.4 Applications of protein nanocomposites 9.5 Conclusion References 	211 212 215 217 220 221
PART III Applications of bionanocomposites	
10. Electrospinning of bionanocomposites: Properties and applications Princy, Shubham Gupta, Shivam Sharma and Anupreet Kaur	227

10.1 Introduction

227

	10.2 Electrospinning process for fabrication	230
	10.3 Parameters influencing fiber characteristics	232
	10.4 Limitations of bionanocomposites via electrospinning	234
	10.5 Applications of bionanocomposites	234
	10.6 Conclusion	238
	References	239
11.	3D printing of bionanocomposites and their broad spectrum of applications	247
	Monireh Kouhi, Zahra Sadat Sajadi-Javan and Niloufar Abedi	
	11.1 Introduction	247
	11.2 3D printing technique overview	247
	11.3 Materials used in 3D printing of bionanocomposites	251
	11.4 Applications of 3D printed bionanocomposites	252
	11.5 Future perspectives and limitation of 3D printing with nanobiocomposites	270
	11.6 Conclusion	271
	References	271
12.	Applications of bionanocomposites in high entropy alloys	277
	Modupeola Dada, Patricia Popoola and António B. Mapossa	
	12.1 Introduction	277
	12.2 High entropy alloy composites	279
	12.3 High entropy nanocomposites	281
	12.4 Bionanocomposites as high entropy alloys and their applications	285
	12.5 Future prospects of bionanocomposites as HEAs	287
	12.6 Outlook of HEAs	287
	12.7 Conclusion	287
	Acknowledgment	
	Conflicts of interest	
	References	288
13.	Wastewater remediation using bionanocomposites	293
	Paresh Kumar Samantaray and Chaoying Wan	
	13.1 Introduction	293
	13.2 Bionanocomposites for rare earth elements remediation	295
	13.3 Bionanocomposites for heavy metal remediation	298
	13.4 Bionanocomposites for phosphate and nitrogenous compound removal	299
	13.5 Bionanocomposites for organic pollutant removal	304
	13.6 Bionanocomposites for oil-water separation	314
	13.7 Future prospects in wastewater and other treatment processes	317
	References	319

14.	Fatin	Agricultural applications of bionanocomposites Fatima Javed, Sumreen Hayat, Bilal Aslam, Muhammad Saqalein, Muhammad Waseem, Atika Meklat and Saima Muzammil				
	14.1	Introduction	327			
	14.2	Role of bionanocomposites in agriculture	328			
	14.3	Application of bionanocomposites in crop production	330			
	14.4	Nanofertilizers	330			
	14.5	Nanopesticides	333			
	14.6	Nanoencapsulation	336			
	14.7	Bionanocomposites in hydroponics	337			
	14.8	Nanobiosensors	338			
	14.9	Use of nanobiocomposites in biotechnology	339			
	14.10 Nanofiltration					
	14.11 Use of nanotechnology in particle farming		340			
	14.12 Reduce toxicology effects					
	14.13 Role of bionanocomposites in water management					
	14.14 Role of bionanocomposites in food industry					
	14.15 Conclusion					
	Refer	ences	344			
15.	Bior	nedical applications of bionanocomposites	351			
	Sam	uel Fura, Queen Hakim (Assala), Daniela Toledo and Christian Agatemor				
	15.1	Introduction	351			
	15.2	Bionanocomposites: a class of hybrid biomaterials with tunable properties	351			
	15.3	Bionanocomposite-based antimicrobial materials	352			
	15.4	Bionanocomposites-based drug delivery systems	354			
	15.5	Bionanocomposites-based tissue engineering scaffolds	355			
	15.6	Bionanocomposites-based wound dressing materials	357			
	15.7	Conclusion and future perspectives	360			
	Acknowledgment		361			
	Refer	ences	361			
16.	Circ	ular economy and upcoming horizons in the field of bionanocomposites	365			
	Garv	Gupta and Bhasha Sharma				
	16.1	Introduction	365			
	16.2	Prolegomenon to circular economy	367			
		Paragons of circular economy	372			
		The bio-plastic economy	373			
		Bionanocomposites	376			

		Challenges in the plastic circular economy ences	380 380
PAF	RT IV	Biodegradation, life cycle, and circular economy	
17.		ronmental impact, health implications, and life cycle assessment onanocomposites	387
		na Riaz, Ijaz Rasul, Farrukh Azeem, Muhammad Zubair, Habibullah Nadeem, ammad Imran, Aqsa Muzammil, Muhammad Afzal and Muhammad Hussnain Siddique	
	17.1	Introduction	387
	17.2	Life cycle environmental assessment of nanocomposites	392
	17.3	Biomedical applications of bionanocomposites	395
	17.4	Water purification/treatment industries	398
	17.5	Limitation of bionanocomposites and its repercussions in environment	399
	17.6	Conclusion	400
	Refer	ences	401
Index	<		407

Contributors

Karim Abdelrahman

School of Engineering and Applied Sciences and Smart Engineering Systems Research Center (SESC), Nile University, Sheikh Zayed, Giza, Egypt; Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt

Niloufar Abedi

Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran

Ahmed Hasnine Abuzar

Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

Muhammad Afzal

Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan

Christian Agatemor

Department of Chemistry, University of Miami, Coral Gables, FL, United States; Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States; Department of Biology, University of Miami, Coral Gables, FL, United States

Asif Ahmed

Department of Mechanical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh

Mohd Azmir Bin Arifin

Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia

Bilal Aslam

Institute of Microbiology, Government College University, Faisalabad, Pakistan

Farrukh Azeem

Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan

Motia Azmana

Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia

Soumalya Chakraborty

National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India

Shreya Chatterjee

Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India

Vijay Chaudhary

Department of Mechanical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India

Long Chen

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China; The Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China

Yuanhui Chen

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR. China

Geethanjali D.

CIPET—Central Institute of Petrochemical Engineering and Technology, Kochi, Kerala, India

Modupeola Dada

Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

Michael K. Danquah

Chemical Engineering Department, University of Tennessee, Chattanooga, TN, United States

Partha Pratim Das

Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India

Sanjoy Kumar Das

Institute of Pharmacy, Jalpaiguri, West Bengal, India

Irene S. Fahim

School of Engineering and Applied Sciences and Smart Engineering Systems Research Center (SESC), Nile University, Sheikh Zayed, Giza, Egypt

M.D. Figueroa-Pizano

Department of Polymers and Materials Research, University of Sonora, Hermosillo, Sonora, Mexico

Samuel Fura

Department of Chemistry, University of Miami, Coral Gables, FL, United States

Kajal Ghosal

Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India

Shubham Gupta

Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India

Garv Gupta

Department of Chemistry, Shivaji College, University of Delhi, New Delhi, India

Queen Hakim (Assala)

Department of Chemistry, University of Miami, Coral Gables, FL, United States

Sumreen Hayat

Institute of Microbiology, Government College University, Faisalabad, Pakistan

Nahla Hazem

School of Engineering and Applied Sciences and Smart Engineering Systems Research Center (SESC), Nile University, Sheikh Zayed, Giza, Egypt

Md Enamul Hoque

Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh

Muhammad Imran

Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari Campus, Vehari, Pakistan

Fatima Javed

Institute of Microbiology, Government College University, Faisalabad, Pakistan

Jaison Jeevanandam

CQM - Madeira Chemistry Centre, MMRG, University of Madeira, Funchal, Portugal

Zhengyu Jin

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China; The Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China

Neetha John

CIPET—Central Institute of Petrochemical Engineering and Technology, Kochi, Kerala, India

Jeffy Joji

CIPET-Central Institute of Petrochemical Engineering and Technology, Kochi, Kerala, India

Anupreet Kaur

Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India

Muhammad Saqalein

Institute of Microbiology, Government College University, Faisalabad, Pakistan

Monireh Kouhi

Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran

Abhijith Krishna

CIPET-Central Institute of Petrochemical Engineering and Technology, Kochi, Kerala, India

Dexiang Li

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China

Syed Mahmood

Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia; Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia

Antonio B. Mapossa

Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Hatfield, South Africa

M.E. Martínez-Barbosa

Department of Polymers and Materials Research, University of Sonora, Hermosillo, Sonora, Mexico

David Julian McClements

Department of Food Science, University of Massachusetts, Amherst, MA, United States

Atika Meklat

Laboratoire de Biologie des Systèmes Microbiens, Ecole Normale Supérieure de Kouba, Algiers, Algeria

Ming Miao

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; The Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China

Alshaymaa Mostafa

School of Engineering and Applied Sciences and Smart Engineering Systems Research Center (SESC), Nile University, Sheikh Zayed, Giza, Egypt; Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt

Saima Muzammil

Institute of Microbiology, Government College University, Faisalabad, Pakistan

Aqsa Muzammil

Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan

Habibullah Nadeem

Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan

Abdullah Nayeem

College of Engineering, Universiti Malaysia Pahang, Gambang, Malaysia

Sharadwata Pan

TUM School of Life Sciences, Technical University of Munich, Freising, Germany

Patricia Popoola

Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

Princy

Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India

Ijaz Rasul

Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan

Fatima Riaz

Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan

João Rodrigues

CQM - Madeira Chemistry Centre, MMRG, University of Madeira, Funchal, Portugal

Zahra Sadat Sajadi-Javan

Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran

Paresh Kumar Samantaray

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States

Shivam Sharma

Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India

Bhasha Sharma

Department of Chemistry, Shivaji College, University of Delhi, New Delhi, India

Muhammad Hussnain Siddique

Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan

Rohit Sisodia

Department of Mechanical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India

Yaoqi Tian

School of Food Science and Technology, Jiangnan University, Wuxi, PR China

Daniela Toledo

Department of Chemistry, University of Miami, Coral Gables, FL, United States

Arya V.T.

CIPET-Central Institute of Petrochemical Engineering and Technology, Kochi, Kerala, India

Chaoying Wan

International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, Coventry, United Kingdom

Muhammad Waseem

Institute of Microbiology, Government College University, Faisalabad, Pakistan

Zhongyu Yang

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China

Muhammad Zubair

Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan

Preface

Biopolymer nanocomposites are the most auspicious aspirant to intercept hazardous situations which can replace conventional plastics. Quest amidst sustainable and green materials has been developed due to their utilization in versatile applications from biomedical to packaging. This book will deliver a robust overview of potential fortuitous promises by bionanocomposites and nanomaterials involving recent evolution and techniques. Our purpose of writing this book is to deliver the idea to work on sustainable development which could be beneficial for researchers, students, and industries. Detailed descriptions of synthesis, processing, characteristic features, and applications of biopolymer-based nanocomposites have been outlined. The readers will get help to fabricate sustainable products and their utility in various fields. The main emphasis of our book is to cover a broad range of biopolymers and their applications in different fields which could be an asset to researchers, industries as well as academicians. The aforementioned books are very well written but focused only on some specific polymers and biological applications. But the key components in this book will be going to cover the methods and techniques to evaluate the resultant bionanocomposites too. So, that readers and scientists from all over the world could have a proposition to select the desired material for selective applications. This book will cover the remedy of global issues faced by the people.