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Abstract. This study aims to evaluate the performance of pool boiling heat transfer on a
structured surface subjected to constant heat flux. A nanosecond laser ablation was used to create
different surface profiles on copper samples. Specifically, a series of step-like microstructured
surfaces with varying secondary groove widths were fabricated to investigate their effect on pool
boiling heat transfer performance of distilled water. The results indicated a significant
enhancement in heat transfer performance for the laser-structured surfaces compared to the
smooth surface at low heat flux. This improvement was attributed to the increased surface area,
nucleation frequency, and nucleation site density. However, at higher heat flux, the surface with
a smaller secondary groove width (LS 2) exhibited a decline in heat transfer performance, which
was likely due to larger bubble escaping resistance. In contrast, the surface with a larger
secondary groove width (LS 1) demonstrated the best heat transfer performance. The current
work would help in finding an optimum surface structuring design for gaining higher boiling
heat transfer performance which benefits industries dealing with thermal management processes.

1. Introduction

Pool boiling, which is a phase change heat transfer technique, offers a highly effective means of
achieving significant heat exchange even with minimal temperature differences, and it has diverse
applications in high heat flux density scenarios. There are two ways to improve boiling heat transfer on
a surface, either by passive or active methods. The presence of microstructures [1]-[2], porous surfaces
[3]-[4], protrusions, and crevices on a surface can affect the pool boiling characteristics. The
modification of heating surfaces has led to a substantial improvement in boiling heat transfer
performance, known as heat transfer coefficient (HTC).

For the surface modification technique to be widely applicable, the procedures must be reliable,
environmentally friendly technology, adaptable, mechanically stable, and durable for long-term use, and
economical. There are various surface modifications that have been used to fabricate microstructured
surfaces such as micromachining [5], chemical vapor deposition, nanoparticle coating [6]-[7], chemical
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etching [8]-[9] etc. Recently, laser fabrication method has gained traction as an alternative surface
modification technique for improving heat transmission during pool boiling process. In particular, laser
ablation has been adopted for surface texturing in a variety of investigations, demonstrating its
significant potential to enhance heat transfer during pool boiling [10]. This technique allows for faster
fabrication of a variety of micro-scale structured geometry [11].

Grabas conducted a study on heat transfer enhancement of flat steel workpieces using vibration-
assisted laser processing. The results exhibited that the HTC on the textured surfaces increased by more
than four times. Moreover, the maximum critical heat flux (CHF) enhancement is attained on the surface
with higher roughness [12]. Kurse et al. performed a study on the heat transfer during pool boiling of
deionized water on metallic surfaces that were functionalized at both the micro and nano scale. They
found that the surfaces treated with femtosecond laser exhibited significantly improved both the HTC
and CHF to the smooth sample [13]. Moze et al. employed laser texturing to boost the boiling heat
transfer performance on copper surfaces. The method involved producing microcavities that acted as
favoured nucleation sites for boiling. The outcomes indicated a substantial improvement in both CHF
and HTC [14]. Liu et al. conducted the experiments on hierarchical micro/nano structured surfaces
which were modified by femtosecond laser processing in FC-72 boiling liquid. They have found that
surfaces with wider separations showed improved CHF and HTC, while surfaces with closely spaced
structures only showed improved HTC. Their study suggests that the spacing of micro/nano structures
on surfaces can have an outstanding impact on HTC and CHF [15].

The literature suggests that laser ablation can enhance pool boiling performance by creating
structured surfaces for heat exchange. This study introduces a novel approach for the pool boiling heat
transfer enhancement by utilizing stepped microchannels of varying widths developed using nanosecond
laser surface processing. It is anticipated that different step configurations would affect the bubble
dynamics leading to increasing and deteriorating boiling heat transfer performance.

2. Methodology

2.1. Surface processing and characterization

Three copper samples (99.964% Cu) were machined as illustrated in figure 1. Each sample contained
three 1 mm diameter holes that were drilled to a depth of 6 mm. Three type K thermocouples were then
installed into the holes to measure the temperature of the samples. To ensure uniform surface roughness
across all samples, the surfaces were finely ground with P1000 grit sandpaper. A laser machine-
(Herolaser ML-MF-AO1) was used to fabricate the stepped microstructure on copper samples. This
machine is an optical fiber laser marking machine that is engineered for use on metal materials. This
machine features a 30 W IPG laser that generates a 1064 nm wavelength beam capable of producing
accurate and intricate marks and engravings on metal surfaces. Two samples, marked as LS 1 and LS 2,
were fabricated with stepped microchannels having varying groove widths, as shown in table 1 and
figure 2, using a laser speed of 500 mm/s, a frequency of 20 KHz, and 80% power.

Table 1. Geometric parameters of the copper sample.

Groove Width / pm Groove Depth / pm
Sample Primary  Secondary Ratio Primary Secondary Ratio of
(a) (b) (a/b) (c) (d) (c/d)
SS (Smooth surface) - - - - - -
LS I (Laser Structured )56 59 15655 1.8 100.52 85.11 1.2
Surface 1)
LS 2 (Laser Structured 51 g¢ 38.52 5.8 87.59 67.43 1.3
Surface 2)
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Figure 1. Schematic diagram of copper sample
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Figure 2. 2-D profile of laser structured microstructured surfaces: (i) LS 1, (ii) LS 2

2.2. Pool boiling experimental setup and procedure

Figure 3 illustrates the experimental setup used in this pool boiling study. The setup consists of a heating
system, boiling chamber, visualization system, data acquisition system, and cooling water bath. The
boiling chamber is constructed from aluminum plates with Pyrex glass windows for visualization
purposes. Two 1000 W cartridge heaters were installed within the boiling chamber to ensure the distilled
water remained at saturation temperature during the experiment. A glass condenser was also affixed to
the top aluminum cover to condense and recycle vapor initiated during the pool boiling process.

The copper samples underwent a cleaning process with acetone and ethanol in an ultrasonic cleaner,
lasting for 5 minutes each. Subsequently, the copper sample was affixed to a polycarbonate holder with
Permatex Ultra copper gasket maker. A Watlow Ultramic 600 Advance ceramic heater was employed
to heat the copper sample, while the K-type thermocouples were inserted into the side holes of the copper
sample to measure its internal temperature. These thermocouples were linked to the data acquisition
system, which enabled the calculation of wall temperature and heat flux according to Fourier's law of
heat conduction.

The distilled water inside the testing chamber was heated towards reaching its saturation temperature.
Then the ceramic heater was turned on to heat the sample with a specified power until the steady state
condition is attained (when the average temperature remains stable within a rate of change of 0.5 °C
over a period of three minutes), followed by measurements of ceramic heater temperature, bulk
temperature, reading from the three thermocouples (TCi, TC, and TCs3), input electrical power were
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taken and recorded. The data were taken at an increment of approximately 0.01 MW/m? at the incipience
and 0.05-0.07 MW/m? after bubble nucleation [16].
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Figure 3. The experimental setup.

3. Results and discussion

Figures 4 and 5 depict the pool boiling heat transfer performance for the smooth surface and the laser-
structured stepped microstructure surfaces. The laser-structured surfaces exhibit an earlier onset of
nucleate boiling than the smooth surface due to their larger nucleation sites, which initiates nucleate
boiling at a lower wall superheat temperature. Furthermore, the laser structured surface area is larger
than the smooth surface, allowing more liquid to evaporate and thereby boosting the heat transfer
performance. The structured surfaces also outperform the smooth surface in terms of heat transfer
performance when the heat flux is below 100,000 W/m?. This superiority is attributed to a combination
of factors, including a high density of microscale cavities. When the heat flux is below 100000 W/m?,
this regime is considered as a lower heat flux regime. At this regime, isolated small bubbles are
developed, and these small bubbles will evaporate quickly once they dispatch from the heated surface.

However, the heat transfer performance of LS 2 began to deteriorate when the heat flux increases
above 100,000 W/m?, entering a higher heat flux regime. In this regime, more nucleation sites were
activated, resulting in bubbles forming at a greater rate. These bubbles quickly coalesce into larger
bubbles, which cause difficulty escaping from smaller secondary grooves. As a result, the bubbles
coalesced further and formed a vapor layer that blocked the liquid replenishment path, eventually
leading to a decline in heat transfer performance.

The best heat transfer performance was attained for LS 1, exhibiting a significant improvement in
heat transfer coefficient (HTC). The wider secondary grooves of LS 1 facilitate the escape of more
bubbles, thereby reducing the resistance for bubble escaping and enhancing the heat transfer
performance.



6th International Conference on Clean Energy and Technology 2023 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 1281 (2023) 012062 doi:10.1088/1755-1315/1281/1/012062
8 1
] X
7 ®5SS #LS1 XLS2 N o »
1 L 4 o «
&6 4
£ 7] * 3 X
SE ¢ (L >K>K
S ] N X
= 4 i ) ¥
o "N X
S 34 2 [ ) X
= i "N X
bS] E ¢ [ ) X
1 ] « w
] X
0 2 4 6 8 10 12 14

Wall superheat (°C)
Figure 4. Comparison of heat flux versus wall superheat
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Figure 5. Comparison of heat transfer coefficient versus heat flux.

4. Conclusion

This study aimed to investigate the water pool boiling heat transfer performance of laser-structured
stepped microstructure surfaces fabricated using nanosecond laser processing. The focus was on
exploring the effect of the stepped groove width on the heat transfer performance. The results indicated
that the laser-structured microstructure surfaces demonstrated superior heat transfer performance
compared to the smooth surface at heat flux below 100,000 W/m?. This was attributed to the higher
nucleation sites and surface area of the laser-structured surfaces, which boosted the bubble formation
and liquid replenishment rate. However, the heat transfer performance of the surface with a smaller
secondary groove width (LS 2) experienced a declination trend as the heat flux increased. This was
because, at lower heat fluxes, smaller isolated bubbles were produced at a lower rate. As the heat flux
increased, these bubbles merged with adjacent bubbles to form larger bubbles, which encountered
resistance when trying to escape, ultimately leading to a deterioration in heat transfer performance. In
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contrast, the sample with a larger secondary groove width (LS 1) demonstrated the best heat transfer
performance, as wider grooves provided more channels for the bubbles to escape, thereby boosting the
liquid replenishment process.
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