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A B S T R A C T   

Salinity is a classic problem in planning the quality of freshwater resources management. Recent studies related 
to hybrid machine learning models have shown it’s capability to simulate salinity dynamics. However, previous 
studies of metaheuristic algorithms have not dealt with comparing single- and hybrid-based algorithms in much 
detail. The present study aimed to develop univariate salinity by applying an artificial neural network model 
(ANN) integrated with (hybrid-based) coefficient-based particle swarm optimisation and chaotic gravitational 
search algorithm (CPSOCGSA). The methodology was developed and tested using electrical conductivity (EC) 
and total dissolved solids (TDS) data collected from the Euphrates River in Babylon Province, Iraq, from 2010 to 
2019. The CPSOCGSA performance was evaluated by various single-based ones, including multi-verse optimiser 
(MVO), marine predator’s optimisation algorithm (MPA), particle swarm optimiser (PSO), and the slim mould 
algorithm (SMA). The principal finding here confirms that hybrid-based outperformed four single-based algo
rithms based on different criteria. The outcomes for TDS were 0.004, 0.0248, and 0.98 for CPSOCGSA-ANN 
technique concern scatter index (SI), root-mean-squared error (RMSE), and correlation coefficient (R2), 
respectively. For EC, the results were 0.96 for R2, 0.0386 for RMSE, and 0.006 for SI. Due to its predictive ac
curacy, the proposed CPSOCGSA-ANN approach is suggested as a potential strategy for predicting monthly 
salinity data. Considering agriculture’s vital role in Babylon Province’s economy, this study may help inform 
future freshwater quality management decisions.   

1. Introduction 

Water quality (WQ) refers to water’s chemical, physical, and bio
logical features and suitability for specific purposes [1]. Various studies 
have revealed the potential WQ degradation caused by increased ac
tivities that demand large amounts of water due to the continued growth 
of the world’s population. In addition, the drop-in river flow reduced the 

pollutants’ dilution and increased their concentration in various world 
rivers. Thus, several of these actions pollute the environment and breach 
the sustainability limits around water resource employment [2–4]. 
Furthermore, many river systems, which are used for drinking, irriga
tion, and industrial, worldwide have recently suffered from water 
pollution due to increased salinity levels [5,6]. 

Since 2003, Iraq’s rivers (the Euphrates and Tigris) have significantly 
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reduced discharge and water levels due to terrorist attacks on numerous 
barrages and dams. In addition, between 2009 and 2014, several dams 
were built on the paths of rivers (i.e., Syria, Iran, and Turkey), which had 
a negative effect on the water control of the rivers in recent years. 
Consequently, WQ has degraded, creating concerns about excessive 
salinity levels [2,7]. Also, salinity levels in the Euphrates River in Iraq 
have risen [8]. The problem at hand is that high concentrations of total 
dissolved solids and electrical conductivity (TDS and EC) lead to low WQ 
indices, which are essential criteria in defining water salinity for 
municipal and agricultural water [9]. As a result, trusty prediction 
techniques are a critical need for policymakers, as they enable improved 
management and conservation of water quality. In response, an open 
approach would be to develop predictive models that rely on machine 
learning (ML) algorithms built on comprehensive datasets, including all 
the relevant parameters, allowing for effective WQ management. 

Conventional modelling approaches are inadequately practical in 
WQ issues because they only deal with linear relationships [10]. 
Meanwhile, employing ML creates a flexible mathematical expression 
capable of detecting non-linear and complicated correlations between 
predictor and target factors [11,12]. ML approaches have been applied 
in the prediction of WQ parameters, including adaptive neuro-fuzzy 
inference system [13], support vector regressions [14], random forest 
[5,15], and artificial neural network (ANN) [16]. Several studies on WQ 
forecasting, including Sha et al. [17], Wang et al. [18], Choi et al. [19], 
and Monteiro and Costa [20], have used historical WQ data as predictors 
in their forecast models because of their simplicity and limited data 
needs. As a basic and functional model, ANN is suited to handling 
non-linear, uncertain problems and can capture functional correlations 
between WQ parameters [21,22]. Therefore, its application in hydro
logical modelling has been extensive [23]. Unfortunately, single models 
do not yield accurate results because of the intricacy of the data struc
ture and the use of the trial-and-error methodology in choosing the 
hyperparameters [24]. Hence, the tendency toward using hybrid ANN 
models has been increasing. These techniques play an essential role in 
the simulations of WQ parameters. Additionally, they can be combined 
with metaheuristic algorithms (MHAs) to create efficient and flexible 
models [21]. In these hybrid systems, one of the techniques is usually 
considered the major, with the others serving as pre- or post-processing 
procedures [25]. Multiple researchers applied hybrid models in hydro
logical prediction and improved outperformed them on the same single 
technique, such as Zhou et al. [26] and Raheli et al. [27]. 

In the same context, the pre-processing data methods are another 
crucial factor to consider. They may effectively overcome the WQ issue 
and choose the appropriate independent scenario, as proven by Sha et al. 
[17]. As a result, different pre-treatment signal techniques have been 
applied to reduce noise in WQ data, including the singular spectrum 
analysis (SSA) [28] and ensemble empirical mode decomposition [29]. 
Another essential part of pre-processing data is choosing the optimal set 
of model input factors, e.g. a univariate procedure using mutual infor
mation (MI) [30]. A non-linear statistical dependency approach, i.e., MI, 
is appropriate for choosing model input factors for ANN models [31]. 

Moreover, different MHAs are available for usage in diverse appli
cation settings. The optimisation algorithms aim to find the best system 
parameter values under many scenarios [32]. Among these techniques is 
particle swarm optimisation (PSO), which has been applied to handle 
multiple optimisation issues since it can deal with complex problems, 
has a fast convergence rate, and has good generalisation capabilities for 
various situations [33]. Thus, several fields of study have benefited from 
its implementation, such as forecasting floods [34], water quality [35], 
electric vehicles [36], and industrial design [37]. In addition, the slim 
mould algorithm (SMA) is one of the newest nature-inspired algorithms 
developed by Li et al. [38]. It has been applied to a wide range of 
optimisation problems, including those arising in engineering design 
[39] and solar photovoltaic systems [40]. Also, the multi-verse opti
miser (MVO) developed by Mirjalili et al. [41], which has been effi
ciently used in several fields, such as stream flow field [42], and 

hydrology [43]. Moreover, a marine predator’s algorithm (MPA) was 
proposed by Faramarzi et al. [44] and has multiple uses, such as water 
level [45]. 

Furthermore, Khudhair et al. [46] reviewed a combined technique to 
predict WQ and indicated that space for development concerning the 
WQ parameter prediction exists. Thus far, few combination strategies 
(data pre-processing approaches, ML models, and metaheuristic algo
rithms) have been applied to predict WQ parameters. Additionally, the 
use of SSA as a pre-treatment signal method has also been suggested. 
Support using various methods to choose the optimum predictors to 
enhance the model’s performance has also been provided. Along with 
creating new (single-based, i.e., SMA) metaheuristic algorithms, alter
native strategies combine several algorithms’ best features to create a 
superior algorithm (hybrid-based, i.e., CPSOCGSA). 

Hajirahimi and Khashei [47] mentioned that by combining two or 
more hybrid classes rather than just joining the conventional individual 
predicting approaches, a new concept called hybridisation of hybrid 
models has been put out in the literature to achieve highly accurate 
results. The hybridisation of parameter optimisation-based with 
preprocessing-based hybrid models (HOPH) is one of the effectively 
implemented methods that has several current gaps that need to be 
filled. 

Accordingly, this paper aims to build a new methodology to forecast 
water salinity precisely utilising previous WQ data lags (TDS and EC). To 
achieve this aim, the following objectives will be carried out: (1) Apply 
pre-processing data approaches to increase quality data by SSA tech
nique and choose the best predictor (lags) by MI method. (2) Integrate 
the ANN method with the CPSOCGSA algorithm for hyper-parameters 
tuning and structure configuration to forecast better water salinity. (3) 
Evaluate the performance of the recent CPSOCGSA-ANN method by 
comparing it with SMA-ANN, MPA-ANN, PSO-ANN, and MVO-ANN 
techniques to raise the forecast range and reduce uncertainty. (4) 
Apply the novel hybrid technique of HOPH to simulate monthly water 
salinity considering multiple time lags. (5) Test various new meta
heuristic techniques to expand the range of possible outcomes from 
monthly water salinity simulations and reduce the associated uncer
tainty (i.e., one hybrid-base algorithm and four single-based 
algorithms). 

In order to accomplish all of the aforementioned objectives, this 
research contributes to the body of knowledge: (1) This study examines 
a new HOPH model including SSA, MI, and ANN integrated with 
CPSOCGSA technique to forecast monthly salinity data. (2) Applying 
and comparing a hybrid-based algorithm (CPSOCGSA-ANN) with four 
single-based algorithms (SMA, MPA, MVO, and PSO). (3) The province 
of Babylon relies economically on agriculture but is already experi
encing water salinity stress, and this is the first time that the salinity of 
the Al-Euphrates River has been predicted at Babylon Governorate using 
data with multiple time lags. 

2. Case study and data description 

Iraq is a country in southwest Asia that covers 438,320 square kil
ometres (km2). Discharge rates in the Euphrates and Tigris rivers, Iraq’s 
principal sources of surface water, have already dropped to less than a 
third of their typical capacity due to climate change. As a result, 
investigating river water quality is important because decreased river 
water leads to increased salinity. The catchment area in this research is 
the Al-Musayyab District, north Babylon Governorate, between longi
tudes (44◦20′43“E and 44◦29′32“E), latitudes (32◦31′50“N and 
33◦7′36“N), and it has an area of land of 1008 km2. Babylon Gover
norate, which covers 5119 km2. Generally, the climate in the Babylon 
district is dry; the temperatures exceed 40 ◦C in summer, and agriculture 
is an essential economic resource [48]. Monthly time series of TDS 
(milligram/litter, mg/l) and EC (micromhos/centimetre, μ mhos/cm) 
parameters were used in the study. The data were gathered over ten 
years (2010–2019) from the AL-Musayyab point at the Euphrates River 
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by the Ministry of the Environment. 

3. Methodology 

Four categories describe the approach proposed for monthly salinity 
forecasting: (1) data pre-processing, (2) CPSOCGSA algorithm, (3) ANN 
model, and (4) model evaluation metrics (see Fig. 1). 

3.1. Data pre-processing 

Data should be appropriately formatted and pre-processed before 
being utilised in an ANN model. These techniques guarantee that each 
input in the learning period receives equal attention [49]. It can be 
classified into three phases: normalisation, cleaning, and choosing the 
optimum predictors. Normalisation is performed to ensure that the time 
series follows a normal distribution or a distribution that is extremely 
near to it. The natural logarithm method has been used to reduce mul
ticollinearity among independent parameters, as in Zubaidi et al. [25]. 
Cleaning data is compulsory to detect and treat unacceptable values 
because these values may have an adverse effect on data analysis and the 
performance of the proposed technique [25]. Data is subsequently 
denoised using the SSA approach. 

SSA successfully analyses the normalised and clean data into several 
principal components (PCs). The 1st PC has the biggest variation value, 
and the latter PC has the smallest percentage; hence, each PC explains a 
piece of the variation of the original data. It can be utilised with 
nonlinear and linear time series data and a decent sample size. SSA may 
be used to denoise data by choosing the PCs with the highest proportions 
of variation and ignoring the lowest proportions of variance, which 
often account for the time series’ structureless noise. In addition, SSA 
optimises the coefficient of regression and reduces the scale of error by 
detecting and removing noise in the data [50]. Extra details regarding 
SSA are available in Golyandina and Zhigljavsky [51]. 

The final step of the data pre-processing technique, which is 
considered one of the most critical phases in developing a suitable 
prediction technique, is the choice of the best scenario’s input. In this 
study, the best explanatory factors are identified using the MI approach. 
Using this technique, we can find out how well the goal and delayed data 
correlate statistically. This feature enables the selection of the most 
highly correlated components with the highest MI [52]. 

3.2. Overview of the hybridised Constriction Coefficient-Based Particle 
Swarm Optimisation and chaotic gravitational search algorithm 
(CPSOCGSA) 

This algorithm integrates constriction-based PSO with chaotic GSA 
to address the intensification, randomisation, and local minimum diffi
culties that plague traditional GSA and PSO. The component of the 
current combined technique is investigated in this section.  

A. Constriction Coefficient-Based Particle Swarm Optimisation (CPSO) 

The PSO method was developed after observing how schools of fish 
or flocks of birds locate sources of food. There are limitations to this 
approach, such as how to properly take into account particle motions 
that occur outside of the solution space. For example, the time of 
convergence through the optimisation procedure can be addressed by 
developing constriction coefficients to enhance the PSO exploitation 
stage [53].  

B. Chaotic Gravitational Search Algorithm CGSA 

GSA is one of the optimisation approaches based on physical phe
nomena. It is influenced mainly via Newton’s theory of gravity and 
motion. This method begins the optimisation procedure by modelling 
the seeking agents as masses. It is necessary to introduce the constant G 
to ensure that the solution space is sufficiently constrained to support a 
viable region. Rather and Bala [54] and Rather and Bala [55] used the 
chaotic normalisation process to describe how G will behave over time.  

C. Combination of CCPSO and CGSA 

Combining the two methods (CPSO and CGSA) can help mitigate 
each method’s drawbacks and reinforce both positives. More details 
about the CPSOCGSA algorithm can be found in Rather and Bala [55]. 

3.3. Artificial neural network (ANN) technique 

This technique is a ML strategy similar to a human brain simulation. 
It can handle large datasets, link inputs and outputs, and can quickly 
learn a pattern and predict a model’s output in a dimensional space [32, 
56]. This research uses a multilayer perceptron, feed-forward network 
(MLFFNN), and Levenberg-Marquart (LM) method is used to train al
gorithms because it is flexible computation with high demands [57]. By 

Fig. 1. An illustration of the proposed method to foretell monthly salinity data.  
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comparing MLFFNNs with one and two hidden layers, Thomas et al. [58] 
sought to determine whether the latter had superior generalisation 
performance. Researchers discovered that two-hidden-layer networks 
achieved exceptionally well in nine out of ten situations, even while the 
exact degree of enhancement varies from case to case. Additionally, 
ANNs with two hidden layers are effective in several studies in repre
senting the nonlinear connection between observed and predicted data 
[32,59]. Thus, the proposed ANN has four layers: (i) an input layer 
where the data are first introduced to the network; (ii) two hidden layers 
where the data are processed; and (iii) an output layer, which serves as 
the target and is activated using a linear activation function. ANN is 
beneficial for many different kinds of hydrology, such as water and 
wastewater management [60], riverine load forecast [61], and predic
tion of water quality index [62]. 

The time series were segmented into three categories: seventy 
percent of the data was used for training, 15 percent for testing, and 15 
percent for validation, respectively, as earlier done by Tahraoui et al. 
[63]. The trial-and-error strategy does not always produce the optimum 
result. Several metaheuristic techniques were utilised with ANN to 
determine the ideal neuron number in the first and second hidden layers 
(N1 and N2), respectively, and the ideal learning rate value (Lr) to create 
the best independent/dependent mapping and minimise over- and un
derestimation [25]. 

3.4. Model performance indicators 

Due to the lack of universal performance metrics suited for specific 
usage, the effectiveness of the proposed methodologies was validated 
using a wide range of statistical criteria. In this research, five criteria 
were used: root mean square error (RMSE) (Equation (1)), mean abso
lute error (MAE) (Equation (2)), mean absolute relative error (MARE) 
(Equation (3)), coefficient of determination (R2) (Equation (4)), and 
scatter index (SI) (Equation (5)). In addition, the statistical graphs were 
used to inspect the precision of the predicted model, and several tests 
were considered to inspect the stationarity and normality of the residual 
data. 

RMSE=
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SI=
RMSE

O
× 100 (5)  

Where Fi represent simulated WQ parameters, Oi is the measured WQ 
variables, Oi represents the mean of measured WQ variables, Fi is the 
mean of simulated WQ variables, and N is the data length. Model per
formance is considered to be good when R2 > 0.85 [64]. The best model 
in which the MAE, MARE, and RMSE metrics are all close to zero [29]. 
Besides, when SI is less than 10 %, the model’s accuracy is excellent, 
between 10 and 20 % is good, between (20–30)% is suitable, and above 
30 % is poor [65]. Additionally, graphical plots (i.e., Taylor diagram and 
box plot) are utilised to estimate the efficiency of the suggested strategy. 

4. Results 

The results from the implementation of our module are summarised 
in this section, along with a detailed analysis of those results. Our 
module’s implementation led to significant results demonstrating its 
usefulness and potential impact. The three subsections are described 
below. 

4.1. Improvement model input 

According to Tabachnick and Fidell [66], the TDS and EC data were 
normalised by applying the natural logarithm to minimise the effects of 
outliers and make the distribution of the time series close to the normal 
distribution. Then, the remaining outliers (if found) were rescaled. After 
that, the SSA technique was used to denoise the time series. Fig. 2 shows 
the decomposition time series for TDS and EC parameters: the top row 
(normalised and cleaned data), the second row (the modified time se
ries), and the third and fourth rows (two noise components). 

The quality of the raw data was improved via data pre-processing 
techniques and raised the correlation coefficient (R) for Lag1 between 
target and model input factors for various lags of monthly WQ data (TDS 
and EC) (such as the R of raw TDS data of Lag1 improved (from 0.788 to 
0.969). The R values for the first three lags of denoise TDS are 0.969, 

Fig. 2. Normalised and clean time series and three components after pre-processing data for TDS and EC time series.  

Fig. 3. Average mutual information (AMI) function of the electrical conduc
tivity data. 
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0.888, and 0.783. Moreover, for EC, the R values for the first three lags 
are 0.976, 0.916, and 0.839. This study’s outcomes of improving the 
quality of raw data by preprocessing technique agree with previous 
research that conducted by Pham et al. [67] and Apaydin et al. [68]. 

The MI approach was also employed to determine the optimum 
model input scenarios for the TDS and EC forecasting techniques. The 
time lag is nominated as an initial minimum of average mutual infor
mation (AMI), as described in the literature [69]. Therefore, three 
monthly water salinity data lags were utilised to simulate future water 
salinity based on the AMI figure, as demonstrated in Fig. 3 for the EC 
parameter. 

Also, choosing the optimal sample size for evolving a suitable model 
according to Tabachnick and Fidell [66] suggested utilising a sample 
size that is based on the predictors’ number, as revealed in Equation (6):  

N ≥ 50+8 m                                                                                  (6) 

Where N represents the sample size, and m is the number of predictor 
factors, in this paper, N = 117, which is more than the wanted (i.e., 74). 

4.2. Application hybrid Algorithms-ANN models 

CPSOCGSA-ANN, MVO-ANN, SMA, MPA, and PSO are the five 
hybrid methods used to determine the optimal ANN hyperparameters. 
This work investigated swarm sizes ranging from 10 to 50 by hybridising 
several metaheuristic algorithms with the ANN model. To get the best 
possible fitness function (MSE) (for example, Fig. S1 for simulating TDS, 
CPSOCGSA-ANN technique), each algorithm’s swarm was performed 

five times. 
As can be seen in Figs. 4 and 5, the optimal swarm for the TDS and EC 

models was selected and compared to other swarms for the same algo
rithm. Fig. 4 shows that the CPSOCGSA-ANN, MVO-ANN, PSO-ANN, 
SMA-ANN, and MPA-ANN algorithms each have optimal swarm sizes 
of 40-4, 20-5, 30-5, 40-1, and 50-2, respectively, for the TDS model. That 
means, for example, the best solution for CPSOCGSA-ANN algorithm is 
swarm 40, the fourth trial. 

Fig. 5 also shows that the CPSOCGSA-ANN, MVO-ANN, PSO-ANN, 
SMA-ANN, and MPA-ANN methods all have optimal swarm sizes of 
40-2, 20-1, 50-4, 10-5, and 20-3, respectively, for each EC model. 
Swarm40, the second trial, is the optimal solution for the CPSOCGSA- 
ANN algorithm, for instance. 

The ideal hyperparameters of ANN obtained from the four hybrid 
models based on the best swarm for TDS and EC models are listed in 
Table 1. 

4.3. Performance evaluation 

Five ANN models were constructed using the hyperparameter values 
listed in Table 1. Every ANN technique was executed many times to 
locate the optimal network that delivers precise results. In addition, 
multiple statistical standards were calculated to inspect and compare the 
performance of the configured techniques. Table 2 displays the R2, MAE, 
RMSE, and MARE of all techniques. Based on Dawson et al. [64], the 
findings of approaches demonstrated a good level of simulation of both 
TDS and EC with R2 of more than 0.85, which means good outcomes 

Fig. 4. The best swarm for CPSOCGSA, MVO, PSO, and SMA techniques in modelling TDS parameter.  
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except for the PSO-ANN technique in modelling TDS data with R2 less 
than 0.85. For the rest of the indices, including MAE, RMSE, and MARE, 
the CPSOCGSA-aANN algorithm offers the lowest values for TDS and EC 
models. However, it is worth noting that the new proposed model 
(CPSOCGSA-ANN) exhibited the best forecast performance among all 
other suggested models. This may be because the GSA optimisation of 
the PSO algorithm assisted PSO in identifying the best hyperparameters 
of the ANN model. 

In addition, Fig. 6 (Taylor diagram) shows the performance of all 
hybrid techniques for TDS and EC at the validation phase. This figure 
summarises the degree of agreement between the patterns of observed 
and forecast data, accounting for correlation coefficient (R), standard 
deviation (SD), and root-mean-squared error (RMSD). On the X-axis of 
the Taylor diagram, the measured WQ (Reference) indicates that if a 
model is near the observed node, it is regarded to be superior. As a result, 
it is possible to compare the relative performances of several techniques. 
According to the diagram, the CPSOCGSA-ANN model produced best 
performed with high R, and low SD, RMS when compared to the PSO- 
ANN, MVO-ANN, MPA-ANN, and SMA-ANN models at TDS and EC 

Fig. 5. The best swarm for CPSOCGSA, MVO, PSO, and SMA techniques in modelling EC parameters.  

Table 1 
Results of hyperparameters for all meta-heuristic techniques.  

WQ Parameter ANN Hyperparameter CPSOCGSA-ANN SMA-ANN MVO-ANN PSO-ANN MPA-ANN 

TDS Lr 0.3289 0.2982 0.5143 0.3496 0.5785 
N1 8 3 5 3 17 
N2 2 16 5 11 1 

EC Lr 0.1783 0.0615 0.7618 0.4090 0.4414 
N1 6 12 3 6 1 
N2 7 3 14 4 15 

Lr: learning rate, N1 and N2: number of neurons hidden for the 1st and 2nd layers, respectively. 

Table 2 
Performance assessment of suggested models for validation data phase.  

WQ 
Parameter 

Hybrid 
Models 

R2 MAE (mg/l) RMSE (mg/l) MARE 

TDS CPSOCGSA- 
ANN 

0.98 0.0189 0.0248 0.0029 

PSO-ANN 0.81 0.0495 0.0739 0.0078 
MVO-ANN 0.89 0.0644 0.0855 0.0101 
SMA-ANN 0.86 0.0716 0.0969 0.0112  
MPA-ANN 0.96 0.0471 0.0587 0.0074 

Parameter Models R2 MAE (μ 
mhos/cm) 

RMSE (μ 
mhos/cm) 

MARE 

EC CPSOCGSA- 
ANN 

0.96 0.0302 0.0386 0.0044 

PSO-ANN 0.94 0.0684 0.0905 0.0100 
MVO-ANN 0.94 0.0689 0.0867 0.0101 
SMA-ANN 0.93 0.0646 0.0863 0.0095  
MPA-ANN 0.94 0.0652 0.0879 0.0096  
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forecasting. For EC model, it can be seen that the performance of MPA- 
ANN, PSO-ANN, SMA-ANN, and MVO-ANN are nearly equal compared 
with TDS model, which may relate to the patterns of data and their 
nonlinear relationship. 

Also, the Box–Whisker plot was used to assess the models’ perfor
mance. Fig. 7 displays the box plots of the measured and predicted data 
for TDS and EC. It can be observed when modelling TDS that all models 
have median and upper borders similar to measured values but different 
in the lower borders and extremes. However, the CPSOCGSA-ANN 

technique is close to observing, revealing the highest forecast model, 
and the PSO-ANN technique is the lowest forecast model. Besides that, 
the medians for all suggested models were close to the observed EC 
values for modelling EC. While the extreme values for the CPSOCGSA- 
ANN model and upper border were closest to the observed EC values, 
followed by the MPA-ANN, MVO-ANN, PSO-ANN, and SMA-ANN 
models. It means that the CPSOCGSA-ANN model is superior to other 
strategies. 

5. Discussion 

Providing an accurate water salinity methodology is still one of the 
important research topics that has attracted many researchers. In Iraq, 
where the correlation between salinity levl and the water quality index 
is strong, the Ministry of Water Resourse’s decision-makers need an 
accurate measure for water quality to intervene in a suitable form. 
Therefore, this study presents a new methodology of five scenarios for a 
univariate prediction for each of TDS and ED. These parameters are clear 
indicators of the salinity level. The methodology has taken into 
consideration the necessity of pretreatment of time series. This was done 
through the reduction of structureless noise via the application of SSA, 
where the components of the lowest variance were neglected. In addi
tion, the correlation among the lags of the univariate series (i.e. of TDS 
and ED) has been increased. For instance, the correlation coefficient (R) 
for the first three lags of denoise TDS are 0.969, 0.888, and 0.783, while 
for EC, they are 0.976, 0.916, and 0.839. After achieving the necessary 
improvement for the time series through the pretreatment stage, another 
enhancement for the prediction process was conducted through a 
combination of the conventional ANN with various metaheuristic 
techniques (single-based and hybrid-based). The purpose behind this 
combination is to optimise the ANN hyperparameter, which no doubt 
reflects positively on the hybridised model performance. Among the five 
model scenarios, the CPSCOGSA-ANN method (hybrid-based) was 
shown to be the most accurate in predicting the time series with mini
mum error compared to other model scenarios. This significant perfor
mance comes from the combined capabilities of GSA’s exploration and 
the PSO’s exploitation. In the CPSO, the tuning of coefficients will 
control the movement of its particles, while the CGSA provides more 
diversity to avoid the local optima. Supporting earlier studies [70,71], 
the present study’s results show that hybrid-based metaheuristic algo
rithms outperform single-based algorithms. This outperforming was 
proven clearly in several statistical metrics. As for the SI, the hybridised 
model shows 0.004 for the TDS prediction and 0.006 for the ED pre
diction. In addition, the R2, MSE, MARE, and MAE have supported this 
superiority. These results provide credence to the theory put forward in 
the literature [72,73], which states that hybrid-based algorithms can 
avoid local minima while achieving greater precision, stability, and 
reliability in solving real-world problems. 

Further studies could be considered to examine the performance of 
different hybrid-based metaheuristic algorithms integrated with other 
machine learning techniques, such as random forest and support vector 
regression. These new hybrid models can be combined with various data 

Fig. 6. Taylor diagram to compare the performance of the suggested 
hybrid models. 

Fig. 7. Box plots of predictions were used during the validation stage to assess the models for TDS and EC.  
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preprocessing techniques to create different HOPH models. 

6. Practical implications 

The reliability of water quality models is essential for effective water 
resource management. TDS and EC are necessary standards used to 
manage and control the Euphrates River. This means that changes in 
water quality can be predicted before they occur; Thus, poor water 
quality can be avoided. This is particularly the case in Babil Gover
norate, where water is called blue gold due to its use for irrigation, 
domestic use, as well as industrial use. Thus, Effective forecasts help 
preserve the environment and protect public health by reducing the 
negative effects of high levels of TDS and EC. Efficient water quality 
management can be enhanced through proper prediction of TDS and EC. 
Thus, knowing the time and place where the water quality is more likely 
to decline, the government can direct their efforts more efficiently. 
Accurate predictions assist sustainable management by showing the 
long-run tendencies and possible developments in the future. This vision 
enables the stakeholders to design measures that can foster water use for 
agricultural, industrial, and domestic purposes without jeopardising the 
river’s health. 

7. Conclusion 

The importance of properly portraying salinity behaviour in water 
quality research has sparked a growing interest in the modelling re
quirements. The current study investigates the capacity of hybridisation 
of ANN with metaheuristic techniques for TDS and EC time series pre
diction in Iraq. A novel method for estimating univariate salinity time 
series was proposed in this study, which contains data preprocessing 
procedures and an ANN method integrated with a CPSOCGSA (hybrid- 
based) algorithm. The performance of the CPSOCGSA algorithm was 
compared with four single-based algorithms (PSO, MVO, SMA, and 
MPA). 

Because the MHAs applied in the optimisation process follow various 
strategies, the hybridisation process results in different values for the 
hyperparameters, which in turn yield different model scenarios. In 
general, all the predicting techniques performed well, and there are a 
few potential reasons for that. One probable reason for this edge could 
be that the data pretreatment method improved the data quality, leading 
to more accurate predictions. Another possible reason is that each al
gorithm’s swarm was run five times to find the optimal solution, which 
resulted in a broader range of predictions and less uncertainty. 

Overall, the results for TDS and EC models showed that the pre
treatment processing method had improved the time series quality 
through data denoising using the SSA technique, where the structureless 
noise components were neglected. In addition, the outperformance of 
CPSOCGSA-ANN compared to other techniques. In terms of several 
statistical metrics, CPSOCGSA-ANN (hybrid-based) performance was 
found to be better than other single-based models (i.e. SMA-ANN, PSO- 
ANN, MPA-ANN, and MVO-ANN), where the R2 was the highest (0.98 
for TDS and 0.96 for EC). In addition, the MAE, RMSE, and MARE were 
the minimum, as shown in Table 2. 

The province of Babylon relies economically on agriculture but is 
already experiencing water salinity stress, and this is the first time that 
the salinity of the Al-Euphrates River has been predicted at Babylon 
Governorate using data with multiple time lags. This study may help 
inform future freshwater quality management decisions. For future 
research direction, the present study forms a stepping stone towards 
more research, including exploring more hybrid forecast methodologies 
over various time scales. Accordingly, these outcomes support the hy
pothesis that a hybrid-based metaheuristic algorithm performs better 
than a single-based one. Using multi-criteria decision-making in order to 
select the best algorithms for this data from multiple perspectives. 
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