EFFECT OF NITRIDING ON FATIGUE LIFE OF THE CYLINDER BLOCK FOR TWO-STROKE ENGINE

NOR AZINEE BINTI SAID

Report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering
UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2008
ACKNOWLEDGEMENTS

In the name of Allah, the Most Benevolet, the Most Merciful. First of all I wish to record immeasurable gratitude and thankfulness to the One and The Almighty Creator, the Lord and Sustainer of the universe, and the Mankind in particular. It is only Hod mercy and help that this work could be completed and it is keenly desired that this little effort be accepted by Him to be some service to the cause of humanity.

I am grateful and would like to express my sincere gratitude to my supervisor Dr. Md. Mustafizur Rahman for his germinal ideas, invaluable guidance, continuous encouragement and constant support in making this research possible. He has always impressed me with his outstanding professional conduct, his strong conviction for science, and his belief that a doctorale program is only a start of a life-long learning experience. I appreciate his consistent support from the first day I applied to graduate program to these concluding moments. I also sincerely thanks for the time spent proofreading and correcting my many mistakes.

My sincere thanks go to all my members of the staff of the Mechanical Engineering Department, UMP, who helped me in many ways and made my stay at UMP pleasant and unforgettable. Many special thanks go to member group for their excellent co-operation, inspirations and supports during this study.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I can not find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals. Special thanks should be given to my committee members. I would like to acknowledge their comments and suggestions, which was crucial for the successful completion of this study.
ABSTRACT

Aluminum alloys are one of the most capable material selections for automobiles parts and electrical component to reduce their weight and to increase their specific strength. This project report describes the role of nitriding process on fatigue life of the cylinder block for a two-stroke internal combustion engine. The objectives of this project are to predict the fatigue life of cylinder block using stress-life, to identify the critical location, to investigate the effect nitriding process and to optimize cylinder block’s material. The structural model of cylinder block was developed using the computer aided design software. The finite element modeling and analysis were performed utilizing finite element analysis code. The set of aluminum alloys is consider in this study. The three-dimension solid model was imported to the MSC.PATRAN software and employed to generate meshes and define material properties for finite element modeling. The finite element analysis was performed using MSC.NATRAN code. The finite element model of component was analyzed using the linear elastic approach. The fatigue life analysis was carried out using MSC. FATIGUE software. Fatigue stress-life approach was used and sensitivity analysis on fatigue life is discussed. Stresses obtained previously are employed as input for the fatigue life. From the result, it was shown that the Goodman mean stress correction method is predicted more conservative (minimum life) results. It was found to differ considerably the compressive and tensile mean stresses to give noticeable advantages and fond to be design criteria. Based on the finite result, it is observed that the nitrieded treatment produces longest life for all loading conditions. Therefore, the nitriding process is one of the promising surface treatments for aluminum alloy part to increase the fatigue life of the linear engine cylinder block.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Problem Statement 2
2.3 Objectives 3
2.4 Scope of Study 3
2.5 Overview of the Report 3

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 5
2.2 Fatigue Life Prediction Method 5
2.3 Variable Amplitude Loading 7
2.4 Surface Treatment 9
2.5 Conclusions 11
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Mechanichal and cyclic properties of the AA6061-T6-80-HF aluminum alloy</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison between with and without surface treatment</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparisons between the materials with and without treatment S-N Approaches</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparisons between the materials with and without treatment for surface finish</td>
<td>38</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Flowchart of the project</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>3D structural modeling of the cylinder block (two different views)</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>Finite element modeling of the cylinder block (two different views)</td>
<td>15</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic diagram of the fatigue life estimation</td>
<td>17</td>
</tr>
<tr>
<td>3.5</td>
<td>Symbols used with cyclic stresses and cycles</td>
<td>19</td>
</tr>
<tr>
<td>3.6</td>
<td>$S-N$ curve</td>
<td>20</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of Mean Stress equation</td>
<td>22</td>
</tr>
<tr>
<td>3.8</td>
<td>Positive mean variable amplitude loading histories</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>3D Finite Element Model</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Loading and Constraints</td>
<td>27</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison between TET10 and TET4 using maximum principle stresses</td>
<td>28</td>
</tr>
<tr>
<td>4.4</td>
<td>Finite element modeling for (a) TET10 (b) TET4 using he same global mesh length</td>
<td>29</td>
</tr>
<tr>
<td>4.5</td>
<td>Von-Mises stress contours (a) TET4 and (b) TET10 meshes at high load level.</td>
<td>30</td>
</tr>
<tr>
<td>4.6</td>
<td>Predicted fatigue life contour plotted for TET10 and TET4 meshing using Coffin-Manson method</td>
<td>31</td>
</tr>
<tr>
<td>4.7</td>
<td>Maximum principle stresses versus mesh size for TET10 of cylinder block</td>
<td>32</td>
</tr>
<tr>
<td>4.8</td>
<td>Maximum principle stresses contour with SAETRN loading</td>
<td>33</td>
</tr>
<tr>
<td>4.9</td>
<td>Predicted life contour with SAETRN loading</td>
<td>34</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison between (a) No treatment and (b) Nitride treatment using SAETRN loading condition</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

N_i Number of fatigue life
S_i Load cycle with amplitude
D Cumulative damage
n_i Number of load cycles at this amplitude
S_p Constant stress range
S_a Constant stress amplitude
N_f Fatigue life
S_m Mean stress
R Stress ratio
A Amplitude ratio
σ_a Stress amplitude
σ'_s Fatigue coefficient,
b fatigue strength exponent
S_e Altering stress
σ_m Mean stress
S_u Ultimate tensile strength
σ_f True fracture strength
S_f Fatigue strength
n Strain hardening exponent
K Strength Coefficient
KIC Fracture toughness
S_y Yield Strength
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Aluminum Alloy</td>
</tr>
<tr>
<td>A-A</td>
<td>ASTM air to air typical fighter loading</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Drafting</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-Aided Engineering</td>
</tr>
<tr>
<td>DS</td>
<td>Double Strap</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Modeling</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>IC</td>
<td>Internal Combustion</td>
</tr>
<tr>
<td>MBD</td>
<td>Multibody Dynamics</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>MPC</td>
<td>Multi-Point Constraints</td>
</tr>
<tr>
<td>AISI</td>
<td>Steel</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The most of the failure observed in the real structure and mechanical component are due to the fatigue. In the design of the real system subjected to the environment loadings, both the fatigue strength and dynamic properties of the external loads are important. Fatigues are the progressive and localize material damage that occurs when material is subjected to cyclic loading. Fatigue is an important parameter to be considered in the behavior of components subjected to constant and variable amplitude loading (Torres and Voorwald, 2002). In this study variable amplitude are consider due to the service load histories. Realistic representation of service load is a key ingredient of successes fatigue analysis. Therefore, it is important to accurate measure the applied load on existing component or structure or to predict loads on a component or structure does not yet exist. (Koster and Field, 1973) suggested that the main mechanical property adversely affected by machining is high cycle fatigue strength, the actual endurance limit being dependent on the particular process used and the severity of operation. While it is known that fatigue life is heavily influenced by residual stresses, the metallurgical condition of the materials and the presence of notch-like surface irregularities induced by machining play a key role (Novovic et al., 2004).

Cylinder block is the most critical component of engine in automotive industry. The cylinder block or engine block is a machined casting (or sometimes an assembly of modules) containing cylindrically bored holes for the pistons of a multi-cylinder reciprocating internal combustion engine, or for a similarly constructed
device such as a pump. The engine cylinder block or "block" is cast in one piece. Usually, this is the largest and most intricate single piece of metal in the automobile. Even when the cylinders, cylinder heads, or cylinder sleeves are separate pieces, the crankcase is still the largest single part in the engine. The cylinder block serves as the main structural component of the engine and houses what’s commonly referred to as the “the bottom end” (crankshaft, rods, pistons). Cylinder block structures are very commonly subjected to fatigue loading (Rahman et al., 2006a).

Aluminum (Al) and its alloy have benefit over non metallic materials: aluminum alloys have a high melting point, a good workability and also have a good thermal conductivity. Aluminum alloys are one of the most capable material selections for automobiles parts and electrical component to reduce their weight and to increase their specific strength (Rahman et al., 2007a). Aluminum alloys is suitable material due to safety, environmental and performance benefit.

Nitriding is now widely used in manufacturing for surface hardening of ferrous and non-ferrous materials. Nitriding, one of the most widely used thermo-chemical methods, produces a high compressive residual stresses on the surface of components. Nitriding is a process for hardening the surface by diffusing nitrogen into the surface. All machining, stress relieving, as well as hardening and tempering are normally carried out before nitriding. Nitriding steels offer many advantages: a much higher surface hardness is obtainable when compared with case-hardening steels; they are extremely resistant to abrasion and have high fatigue strength.

1.2 PROBLEM STATEMENT

Cylinder block is the critical component in the internal combustion engine. The cylinder block failure is due to the fatigue. Due to the market pressure for improvements in productivity, reliability, ductility, wear resistance and profitability of mechanical system, manufacturers replacing increasing demands on available materials (Rahman et al., 2006). Surface treatment likes nitriding is used to improve fatigue performance and increased the life. This simplification allows designers to use linear elastic stress results obtained from multibody dynamic FE (finite element)
simulations for fatigue life analysis. To optimize component material, aluminum alloys is the suitable material due to light and less weight. Nowadays, the most capable material selection for automobiles parts and manufacturing is aluminum alloys because it light and less weight.

1.3 OBJECTIVES OF THE PROJECT

This project is focus on the finite element based on the fatigue analysis of the cylinder block for a two-stroke internal combustion engine using positive mean loadings.

The overall objectives of this project were:

(i) To predict the fatigue life of the cylinder block using stress-life method and to identify the critical locations
(ii) To investigate the effect of nitriding treatment
(iii) To optimize cylinder block’s material

1.4 SCOPE OF STUDY

This project concentrates on the stress-life approach under variable amplitude loading. The scopes of study are as follows:

(i) Structural modeling
(ii) Finite element modeling (FEM)
(iii) Fatigue analysis
(iv) Surface treatment analysis
(v) Optimization of material

1.5 OVERVIEW OF THE REPORT

Chapter 1 gives the brief the content and background of the project. The problem statement, scope of study and objectives are also discussed in this chapter.
Chapter 2 discusses about the fatigue life prediction method, fatigue life prediction in variable amplitude loading and surface treatment process.

Chapter 3 presents the development of methodology, finite element modeling and analysis, fatigue life prediction technique and linear elastic analysis.

Chapter 4 discusses the result and discussion of the project. The discussion aims is to determine the predicted facts and correlate them with the current international researches on the field of the fatigue mean stress effects.

Chapter 5 presents the conclusions of the project. Suggestions and recommendations for the future work are put forward I this chapter.
CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The purpose of this chapter is to provide a review of the past research related to the surface treatment, fatigue life method and variable amplitude loading. The review is organized chronologically so as to offer approaching to how research hard works have laid the base for subsequent studies, including the present research effort. The review is fairly detailed so that the present research effort can be properly modified to add to the present body of literature as well as to justify the scope and direction of present research effort.

2.2 FATIGUE LIFE PREDICTION METHOD

Fatigue analysis can be used to determine how long the component can maintain in a given service condition. In general, fatigue life refers to the ability of a component to function in the presence of defect for a given loading. In practice, the predominant failure mode is fatigue and hence, the term fatigue life analysis was used to describe the analysis of the fatigue performance. In engineering design, the criteria for the fatigue life of a component can very depending of the functional requirements of material characteristic. The fatigue properties are determined from the constant amplitude loading test. However, the real structural seldom experience constant amplitude loading. Therefore, an irregular loading history must be reduced to a series of constant amplitude events each with its corresponding mean and amplitude for comparison with sample laboratory specimen testing data.
Rahman et al. (2007b) were studied about finite element based durability assessment in a two-stroke free piston linear engine component using variable amplitude loading. The study discussed the finite element analysis to predict the fatigue life and identify the critical locations of the component. The effect of mean stress on the fatigue life also investigated. The linear static finite element analysis was performed using MSC.NASTRAN finite element software. The result was capable of showing the contour plots of the fatigue life histogram and damage histogram at the most critical location.

Conle and Mousseau (1991) used vehicle simulation and the finite element result to generate the fatigue life contours for the chassis component using automotive proving ground load history result combine with the computational techniques. They concluded that the combination of the dynamics modeling, finite element analysis is the practical techniques for the fatigue design of the automotive component.

Srikantan et al. (2000) discussed vehicle durability and fatigue analysis using data from proving ground testing. The authors discuss the differences between yield strength based durability analysis and fatigue analysis. Fatigue analysis reduces the design cycle and produces a more optimally design structure. The authors concentrated on the design of the truck body structure and the service duty that accompany them. The loads from proving ground test of similar vehicle. The simulation used to calculate fatigue life is MSC.FATIGUE, while the stresses are determined using MSC.NASTRAN. When the fatigue life design criteria are met a prototype is then built and tested. If the design criteria are not met the prototype is modified. The results from a correlation study showed the analytical strains from FE analysis and proving ground test correlated very well.

Nadot and Denier (2003) have been studied fatigue phenomena for nodular cast iron automotive suspension arms. They find out that the major parameter influencing fatigue failure of casting components are casting defects. The high cycle fatigue behavior is controllers mainly by surface defects and oxides while the low
cycle fatigue is governed by multiple cracks initiated independently from casting defects.

Kim et al. (2002) also studied a method for simulating vehicles dynamic loads, but they add durability assessment. For their multibody dynamics analysis (MDA) they use DADS and a flexible body model. The model was for a transit bus. For the dynamic stresses analysis MSC.NASTRAN was used. The fatigue life was then calculated using a local strain approach. From the fatigue life, it was found that the majority of the fatigue damaged occurred over a frequency range that depend on terrain traveled (service or accelerated test course). This showed that the actual service environment could be simulated instead of using an accelerated testing environment.

2.3 VARIABLE AMPLITUDE LOADING

When components are subjected to variable amplitude service loads, additional uncertainties arise, whether the loading in laboratory tests related to the loads that could be expected to appear. Traditionally this problem is solved by using the simplifying assumption of damage accumulation, and constant amplitude tests in laboratory are transformed to variable amplitude severity by the Palmgren-Miner rule which says that a

$$D = \sum_{i=1}^{m} \frac{n_i}{N_i}$$

(2.1)

load cycle with amplitude S_i adds to the cumulative damage D, a quantity $(1/N_i)$. Here, N_i denotes the fatigue life under constant amplitude S_i loading with amplitude and n_i is the number of load cycles at this amplitude. The lack of validity of this accumulation rule has been demonstrated in many applications and in consequence its usage will introduce uncertainties which must be compensated for by safety factors, see for instance (Berger et al., 2002).
One possible way to diminish the deviations from the damage accumulation rule is to perform the laboratory experiments closer to the service behavior with respect to the loads. A method for establishing a Wohler curve based on variable amplitude loads has recently been developed and is presented in a parallel paper (Johannesson et al., 2003). The use of this method should be customized to each specific application by performing laboratory tests with load spectra covering different service requirements. One idea is that service measurements are used to establish a few reference load spectra for use in laboratory tests. Based on the resulting variable amplitude Wohler curve, fatigue life can be predicted for load spectra similar to the reference types.

Svensson et al. (2004) conducted the fatigue life prediction based on variable amplitude tests—specific applications. Three engineering components have been tested with both constant amplitude loading and with different load spectra and the results are analyzed by means of a new evaluation method. The method relies on the Palmgren-Miner hypothesis, but offers the opportunity to approve the hypothesis validity by narrowing the domain of its application in accordance with a specific situation. In the first case automotive spot weld components are tested with two different synthetic spectra and the result is extrapolated to new service spectra. In the second case, the fatigue properties of a rock drill component are analyzed both by constant amplitude tests and by spectrum tests and the two reference test sets are compared. In the third case, butt welded mild steel is analyzed with respect to different load level crossing properties and different irregularity factors.

Nolting et al. (2007) investigated the effect of variable amplitude loading on the fatigue life and failure mode of adhesively bonded double strap (DS) joints made from clad and bare 2024-T3 aluminum. They concluded that the fatigue life of a variable amplitude loading spectra can be calculated with reasonable accuracy using an effective stress range vs. life fatigue curve. The effective stress range vs. failure life curve is dependent on the bond geometry and therefore this curve must be developed for component geometry of interest. The effective stress range vs. life fatigue curve should be used to predict the fatigue life of clad
specimens if the failure mode of the clad specimens is expected to be adhesive failure (i.e., if the spectrum includes large overload cycles).

Molent et al. (2007) have been evaluated the spectrum fatigue crack growth using variable amplitude data. This paper summarizes a recent semi-empirical model that appears to be capable of producing more accurate fatigue life predictions using flight load spectra based on realistic in-service usage. The new model described here provides an alternative means for the interpretation of full-scale and coupon fatigue test data, and can also be used to make reliable life predictions for a range of situations. This is a very important capability, particularly where only a single full-scale fatigue test can be afforded and should lead to more economical utilization of airframes.

2.4 SURFACE TREATMENT

The surface treatment of a component is a common site for initiation of fatigue crack. Therefore, the manner in which the surface is prepare during manufacturing of the components has a vital role in dictating the initiation life for the surface fatigue cracks. There exists a variety of surface treatment such as carburizing, nitriding, and flame hardening which is design to impart high strength, wear resistance or corrosion resistance locally in the near surface regions of the material.

Nitriding is often used high strength aluminum and titanium alloy to improve fatigue performance (Novovic et al., 2004; Bell et al., 1998). Nitriding is now widely used in manufacturing for surface hardening of ferrous and non-ferrous materials. Nitriding ia a well-known case hardening process in which nitrogen is introduced into the surface of a solid ferrous alloy by holding the alloy at a suitable temperature in contact with a nitrogenous gas (usually ammonia) or a liquid cyanide bath (ASM, 1991). The nitriding temperature for all steels is generally between 530 and 580°C. The principle reasons for nitriding are:

(i) To obtain high surface hardness
(ii) To increase wear resistance and anti-galling properties
(iii) To improve fatigue life
(iv) To obtain a surface that is resist to the softening effects of heat at temperatures up to the nitriding temperature.

Although, at suitable temperature, all steels are capable of forming iron nitrides in the presence of nascent nitrogen, the nitriding results are more favorable in those steels containing one or more of the major nitride forming alloying elements. Unalloyed carbon steels are not suitable for nitriding as they form an extremely brittle case that spills readily and the hardness increase in the diffusion zone small. Of the alloying elements commonly used in commercial steels, aluminum, chromium, vanadium, and molybdenum are beneficial in nitriding as they form hard nitrides that are stable up to the nitriding temperature. Since aluminum is the strongest nitride former of the common alloying elements, aluminum-containing steels (0.85-1.25% Al) yield the best nitriding results in terms of total alloy content. Chromium-containing steels can approximate these results if their chromium content is high enough.

Farrahi and Ghadbeig (1995) carried out an investigation into the effect of various surface treatments on fatigue life of a tool steel. The effects of nitriding, nitrocarburizing and shot peening on fatigue behavior of AISI D3 cold work tool steel were investigated. They found out that nitriding and nitrocarburizing treatments may improve abrasive-wear resistance of this material by increasing surface hardness and the peening is the best treatment to improve the fatigue life of AISI D3 tool steel.

Karaoğlu (2002) conducted an investigation on the wear of plasma nitrided AISI 5140 low-alloy steel in relation to the effect of parameters such as temperature, time and nitrogen partial pressure. The work carried out by this author indicated that the case depth and compound layer thickness that are formed during nitriding increased with increasing process temperature and time and that, although the wear resistance improved considerably after the plasma nitriding, for achieving the maximum resistance to wear, process parameters should be chosen to minimize the compound layer thickness and maximize the surface hardness and case depth.
Hosmani et al. (2005) investigated the nitriding behavior of a Fe–7Cr alloy at 580 °C in a gas mixture of ammonia and hydrogen, when the nitriding potential was varied from 0.03 to 0.818 atm$^{-1/2}$. The nitrided zone in this material was observed to be composed of two different regions, one with finely dispersed small CrN continuous precipitates in α-Fe grains and another, near the surface, where the precipitates were observed to coarsen in a discontinuous manner leading to a lamellar CrN/α-Fe morphology. The maximum hardness in the nitrided zone and the nitriding depth were both observed to increase with increasing nitriding potential, as long as no iron nitride layer developed at the surface of the specimens. Also, the nitriding depth was observed to depend roughly linearly on the square root of the nitriding potential.

2.5 CONCLUSIONS

Different types of the fatigue life prediction method and durability assessment approach have been reviewed in this chapter in conjunction with surface treatment and variable amplitude. Many researchers have carried out their research based on the fatigue life, durability assessment, surface treatment and variable amplitude. Most of the methods available in literature reviews are used for the study. The next chapter will be concentrated on the methodology will be presented in the
CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

The fatigue life of engineering structure principally depends upon that of its critical structure members. There is an increasing within the internal combustion engine industry in the ability to produce design that safe, reliable, light in weight, economic and easy to produce. Nowadays, increasing demands in develop and deliver the reliable products in a timely manner necessary more testing to be coupled with the CAE procedures such as the finite element analysis and fatigue life analysis. In this chapter, the proposed fatigue analysis, stress-life method, structural modeling, material information and loading information are presented.
3.2 PROJECT FLOWCHART

Figure 3.1 shows the overall flowchart of the project

Figure 3.1: Flowchart of the project
3.3 STRUCTURAL MODELING

The Figure 3.2 shows 3D structural modeling of cylinder block in two different views. This structural modeling was developed using the computer aided design (SOLIDWORK) software.

Figure 3.2: 3D structural modeling of the cylinder block (two different views)