SUPERCAPACITORS Materials, Design, and Commercialization

Edited by

Syam G. Krishnan, Hong Duc Pham, and Deepak P. Dubal

Supercapacitors

Supercapacitors

Materials, Design, and Commercialization

Edited by

Syam G. Krishnan

Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Victoria, Australia

Hong Duc Pham

Centre for Future Materials, University of Southern Queensland, Toowoomba, QLD, Australia

Deepak P. Dubal

Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands 125 London Wall, London EC2Y 5AS, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-443-15478-2

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Megan Ball Acquisitions Editor: Edward Payne Editorial Project Manager: Ellie Barnett Production Project Manager: Prasanna Kalyanaraman Cover Designer: Matthew Limbert

Typeset by MPS Limited, Chennai, India

Contents

Lis	List of contributors		xi
1.	Introduction to supercapacitors, materials and design		1
	Syam G. Krishnan, Hong Duc Pham and Deepak P. Dubal		
	1.1	Introduction	1
	1.2	Materials realm for supercapacitors	2
	1.3	Electrolytes for supercapacitors	5
	1.4	Separators for supercapacitors	8
	1.5	Categories and design of supercapacitors	9
	1.6	Machine learning and supercapacitors	10
	1.7	Future of supercapacitors as energy storage devices and	
		their commercial markets	11
	1.8	Conclusion	13
	Ref	erences	13
2.	Nar	ocarbons and electric double-layer capacitors	17
	Mid	hun Harilal and Syam G. Krishnan	
	2.1	Introduction	17
	2.2	EDLC charge storage mechanism	18
	2.3	Nanocarbons—source and synthesis	20
	2.4	Nanocarbons for electric double-layer capacitance	26
	2.5	Conclusion and future perspectives	34
	Ref	erences	35
3.		egories of pseudocapacitor: intrinsic, extrinsic, and rcalation materials	45
			45
		za Bibi, Ong Gerard, Abdul Jabbar Khan, Mohammad Khalid and hid Numan	
	Arsi 3.1		15
	0.1		45 49
	3.2	Charge storage process in supercapacitors	49
	3.3	Difference between hybrid supercapacitor and hybrid energy	50
	2.4	storage devices	52
	3.4		53
	3.5	1 1	55
	3.6	e, e e	61
	3.7	New material trends in commercial pseudocapacitors	62

	3.8 Conclusion	65	
	References	65	
4.	Electrochemical characterization and calculation methods of	71	
	supercapacitors	71	
	<i>Ellie Yi Lih Teo and Kwok Feng Chong</i> 4.1 Introduction	71	
	4.1 Introduction 4.2 Conclusion	86	
	References	86	
	References	80	
5.	Transition metal oxides/sulfides electrode-based supercapacitors		
	Percy J. Sephra, P. Baraneedharan and C. Tharini		
	5.1 Introduction	93	
	5.2 The charge storage mechanism of pseudocapacitive supercapacitors	95	
	5.3 Transition metal oxides for supercapacitors	95	
	5.4 Transition metal sulfides for supercapacitors	103	
	5.5 Transition metal oxide composites as supercapacitor electrodes	109	
	5.6 Commercial possibilities of transition metal oxides/sulfides	117	
	5.7 Conclusion	118	
	Acknowledgments	119	
	References	119	
6.	Conducting polymers and their composites as supercapacitor		
	electrodes	125	
	Rudolf Holze		
	6.1 Introduction	125	
	6.2 Evolution of conducting polymers for electrochemical		
	energy storage	126	
	6.3 Conducting polymers for supercapacitors	128	
	6.4 Conducting polymer composites for supercapacitors	134	
	6.5 Conducting polymers in flexible supercapacitors	145	
	6.6 Conclusions	152	
	Acknowledgments		
	References	153	
7.	Metal-organic frameworks and their derivatives for	167	
	supercapacitors		
	Tuan Sang Tran and Thanh Tung Tran		
	7.1 Introduction	167	
	7.2 Pristine metal–organic frameworks	168	
	7.3 Metal–organic framework composites	174	
	7.4 Metal-organic framework derivatives	181	
	7.5 Metal–organic framework–based materials with different	102	
	dimensionalities	183	
	7.6 Conclusion	186 187	
	References 1		

supercapacitors221Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri2219.1Introduction2219.2Redox properties of polyoxometalates2229.3Polyoxometalates-based electrodes for supercapacitors2259.4Polyoxometalates-based composite electrodes for supercapacitors2289.5Hybrid capacitors based on polyoxometalates2349.6Conclusions240References24110.Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le245Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes25010.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25010.5Conclusion26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26712.2Electrochemistry of solid-state and gel-type electrolytes268	8.	Supercapacitors based on MXene (carbides/nitrides) and black			
Te-Wei Chiu 93 8.1 Introduction of MXene 193 8.2 History and invention of MXene 194 8.3 Introduction of black phosphorus 201 8.4 Supercapacitors 207 8.5 MXene for supercapacitor applications 209 8.6 Black phosphorus for supercapacitor electrode 210 8.7 Conclusion 212 References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 21 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based cemposite electrodes for supercapacitors 225 9.4 Polyoxometalates-based on polyoxometalates 234 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations				193	
8.1 Introduction of MXene 193 8.2 History and invention of MXene 194 8.3 Introduction of black phosphorus 201 8.4 Supercapacitors 207 8.5 MXene for supercapacitor applications 209 8.6 Black phosphorus for supercapacitor electrode 210 8.7 Conclusion 212 References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 221 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based composite electrodes for supercapacitors 228 9.4 Polyoxometalates-based composite electrodes for supercapacitors 224 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 10.4 General introduction and basic properties 246 10.5 Conclusion 245					
8.2 History and invention of MXene 194 8.3 Introduction of black phosphorus 201 8.4 Supercapacitors 207 8.5 MXene for supercapacitor applications 209 8.6 Black phosphorus for supercapacitor electrode 210 8.7 Conclusion 212 References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 211 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodytes reprecapacitors 224 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations 245					
8.3 Introduction of black phosphorus 201 8.4 Supercapacitors 207 8.5 MXene for supercapacitor applications 209 8.6 Black phosphorus for supercapacitor electrode 210 8.7 Conclusion 212 References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 221 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 228 9.5 Hybrid capacitors based on polyoxometalates 234 9.6 Conclusions 240 References 241 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le 245 <th></th> <th></th> <th></th> <th></th>					
8.4 Supercapacitors 207 8.5 MXene for supercapacitor applications 209 8.6 Black phosphorus for supercapacitor electrode 210 8.7 Conclusion 212 References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 211 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 228 9.5 Hybrid capacitors based on polyoxometalates 234 9.6 Conclusions 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le 245 Abbreviations 245 249 10.3 Organic solvents-based electrolytes 250 10.4 Ionic liquid-based electrolytes 250			-		
8.5 MXene for supercapacitor applications 209 8.6 Black phosphorus for supercapacitor electrode 210 8.7 Conclusion 212 References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 211 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based clectrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 228 9.5 Hybrid capacitors based on polyoxometalates 234 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations 245 10.1 General introduction and basic properties 246 246 10.2 Aqueous-based electrolytes 256 256 10.3 Organic solvent					
8.6 Black phosphorus for supercapacitor electrode 210 8.7 Conclusion 212 References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 221 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 234 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le 245 Abbreviations 245 249 10.3 Organic solvents-based electrolytes 249 10.3 Organic solvents-based electrolytes 256 10.4 Ionic liquid-based electrolytes 256 10.5 Conclusion 260 10.4 Ionic liquid-based electrolyte			· ·		
8.7 Conclusion 212 References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 221 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 228 9.5 Hybrid capacitors based on polyoxometalates 234 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le 245 Abbreviations 245 10.1 General introduction and basic properties 246 10.2 Aqueous-based electrolytes 250 10.3 Organic solvents-based electrolytes 250 10.4 Ionic liquid-based electrolytes 256 10.5 Conclusion 260 References 260 11. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers 267					
References 213 9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 221 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 228 9.5 Hybrid capacitors based on polyoxometalates 234 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le 245 Abbreviations 245 10.1 General introduction and basic properties 246 10.2 Aqueous-based electrolytes 250 10.3 Organic solvents-based electrolytes 250 10.4 Ionic liquid-based electrolytes 256 10.5 Conclusion 260 10.4 Ionic liquid-based electrolytes 256 10.5 Conclusion 260 10.4 Ionic liquid-based electrolytes 256					
9. Polyoxometalates and redox-active molecular clusters for supercapacitors 221 Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 221 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 224 9.5 Hybrid capacitors based on polyoxometalates 234 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le 245 Abbreviations 245 10.1 General introduction and basic properties 246 10.2 Aqueous-based electrolytes 250 10.3 Organic solvents-based electrolytes 250 10.4 Ionic liquid-based electrolytes 256 10.5 Conclusion 260 References 260 10.4 Ionic liquid-based electrolytes 260 10.5 Conclusion 260 References 260 10.5 Conclusion		8.7	Conclusion	212	
supercapacitors221Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri2119.1Introduction2219.2Redox properties of polyoxometalates2229.3Polyoxometalates-based electrodes for supercapacitors2259.4Polyoxometalates-based composite electrodes for supercapacitors2289.5Hybrid capacitors based on polyoxometalates2349.6Conclusions240References24110.Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes25010.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25010.5Conclusion26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26712.2Electrochemistry of solid-state and gel-type electrolytes268		Refer	rences	213	
Susmi Anna Thomas, Anjana Baby, Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and Jayesh Cherusseri 9.1 Introduction 221 9.2 Redox properties of polyoxometalates 222 9.3 Polyoxometalates-based electrodes for supercapacitors 225 9.4 Polyoxometalates-based composite electrodes for supercapacitors 228 9.5 Hybrid capacitors based on polyoxometalates 234 9.6 Conclusions 240 References 241 10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le 245 Abbreviations 245 10. General introduction and basic properties 246 10.2 Aqueous-based electrolytes 249 10.3 Organic solvents-based electrolytes 250 10.4 Ionic liquid-based electrolytes 250 10.5 Conclusion 266 10.6 Constant and gel-type supercapacitor electrolytes—polymers and cross-linkers 260 11. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers <	9.	Polyoxometalates and redox-active molecular clusters for			
Deepthi N. Rajendran and Jayesh Cherusseri2219.1Introduction2219.2Redox properties of polyoxometalates2229.3Polyoxometalates-based electrodes for supercapacitors2259.4Polyoxometalates-based composite electrodes for supercapacitors2289.5Hybrid capacitors based on polyoxometalates2349.6Conclusions240References24110.Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes25010.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25610.5Conclusion26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		super	rcapacitors	221	
9.1Introduction2219.2Redox properties of polyoxometalates2229.3Polyoxometalates-based electrodes for supercapacitors2259.4Polyoxometalates-based composite electrodes for supercapacitors2289.5Hybrid capacitors based on polyoxometalates2349.6Conclusions240References24110.Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes25010.3Organic solvents-based electrolytes25610.5Conclusion26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268					
9.2Redox properties of polyoxometalates2229.3Polyoxometalates-based electrodes for supercapacitors2259.4Polyoxometalates-based composite electrodes for supercapacitors2289.5Hybrid capacitors based on polyoxometalates2349.6Conclusions240References24110.Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le245Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes24910.3Organic solvents—based electrolytes25010.4Ionic liquid—based electrolytes25610.5Conclusion26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.2Electrochemistry of solid-state and gel-type electrolytes267				221	
9.3Polyoxometalates-based electrodes for supercapacitors2259.4Polyoxometalates-based composite electrodes for supercapacitors2289.5Hybrid capacitors based on polyoxometalates2349.6Conclusions240References24110.Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes24910.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25610.5Conclusion26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.2Electrochemistry of solid-state and gel-type electrolytes268					
9.4Polyoxometalates-based composite electrodes for supercapacitors2289.5Hybrid capacitors based on polyoxometalates2349.6Conclusions240References24110.Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes24910.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25610.5Conclusion26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh 11.126711.2Electrochemistry of solid-state and gel-type electrolytes268					
9.5Hybrid capacitors based on polyoxometalates2349.6Conclusions240References24110.Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes24910.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25610.5Conclusion260References26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh 11.126711.2Electrochemistry of solid-state and gel-type electrolytes268					
9.6 Conclusions240References24110. Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations24510.1 General introduction and basic properties24610.2 Aqueous-based electrolytes24910.3 Organic solvents-based electrolytes25010.4 Ionic liquid-based electrolytes25610.5 Conclusion260References26011. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.2 Electrochemistry of solid-state and gel-type electrolytes268					
References24110. Conventional supercapacitor electrolytes: aqueous, organic, and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le Abbreviations24510.1 General introduction and basic properties24610.2 Aqueous-based electrolytes24910.3 Organic solvents-based electrolytes25010.4 Ionic liquid-based electrolytes25610.5 Conclusion260References26011. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.2 Electrochemistry of solid-state and gel-type electrolytes268					
10. Conventional supercapacitor electrolytes: aqueous, organic, and ionic 245 Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le 245 Abbreviations 245 10.1 General introduction and basic properties 246 10.2 Aqueous-based electrolytes 249 10.3 Organic solvents-based electrolytes 250 10.4 Ionic liquid-based electrolytes 256 10.5 Conclusion 260 References 260 11. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers 267 Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh 267 11.1 Introduction 267 11.2 Electrochemistry of solid-state and gel-type electrolytes 268					
and ionic245Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le245Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes24910.3Organic solvents—based electrolytes25010.4Ionic liquid—based electrolytes25610.5Conclusion260References11.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.2Electrochemistry of solid-state and gel-type electrolytes268		Refer	ences	241	
Tuyen T.T. Truong, Linh T.M. Le, Man V. Tran, Phat T. Vu, Quan Phung, Duc Q. Truong and Phung M.L. Le245Abbreviations24510.1 General introduction and basic properties24610.2 Aqueous-based electrolytes24910.3 Organic solvents—based electrolytes25010.4 Ionic liquid—based electrolytes25610.5 Conclusion260References26011. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.2 Electrochemistry of solid-state and gel-type electrolytes268	10.				
Quan Phung, Duc Q. Truong and Phung M.L. Le245Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes24910.3Organic solvents—based electrolytes25010.4Ionic liquid—based electrolytes25610.5Conclusion260References26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		and ionic 2			
Abbreviations24510.1General introduction and basic properties24610.2Aqueous-based electrolytes24910.3Organic solvents—based electrolytes25010.4Ionic liquid—based electrolytes25610.5Conclusion260References260III. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		•	•		
10.1General introduction and basic properties24610.2Aqueous-based electrolytes24910.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25610.5Conclusion260References26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268					
10.2Aqueous-based electrolytes24910.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25610.5Conclusion260References26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		Abbr	eviations		
10.3Organic solvents-based electrolytes25010.4Ionic liquid-based electrolytes25610.5Conclusion260References26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		10.1			
10.4Ionic liquid—based electrolytes25610.5Conclusion260References26011.Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		10.2		249	
10.5 Conclusion260References26011. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh 11.1 Introduction26711.2 Electrochemistry of solid-state and gel-type electrolytes268		10.3		250	
References26011. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh 11.1 Introduction26711.2 Electrochemistry of solid-state and gel-type electrolytes268		10.4		256	
11. Solid-state and gel-type supercapacitor electrolytes—polymers and cross-linkers 267 Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh 267 11.1 Introduction 267 11.2 Electrochemistry of solid-state and gel-type electrolytes 268		10.5	Conclusion	260	
cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		Refer	rences	260	
cross-linkers267Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah, Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh26711.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268	11.	Solid-state and gel-type supercapacitor electrolytes—polymers and			
Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh11.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		cross	-linkers	267	
Chun-Chen Yang, Snehal Lokhandwala and Nikhil M. Parekh11.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268		Karuppiah Nagaraj, Srinivasan Alagar, Chelladurai Karuppiah,			
11.1Introduction26711.2Electrochemistry of solid-state and gel-type electrolytes268					
11.2 Electrochemistry of solid-state and gel-type electrolytes 268				267	
		11.3	Solid-state electrolytes for supercapacitors	276	

Contents

	11.4		278	
	11.5	Influence of solid-state and gel electrolytes on stability of	201	
	11.0	supercapacitors	281	
	11.6 Defer	Conclusion	281	
	Refei	ences	281	
12.		ter-in-salt" electrolyte—toward high-voltage aqueous		
	-	rcapacitors	289	
		i Anna Thomas, Jawahar Vigneshwaran, S. Abinaya,		
	-	thi N. Rajendran, Sujin P. Jose and Jayesh Cherusseri	• • • •	
	12.1		289	
	12.2	5	291	
	12.3		295	
	12.4	Different types of "water-in-salt electrolytes" and their	• • • •	
	10.5	electrochemistry	296	
	12.5	Water-in-salt electrolytes for supercapacitors	301	
	12.6	Capacitance, energy, and power density of water-in-salt	2 0 5	
	10.7	electrolytes	305	
	12.7	Conclusions and future perspectives	308	
	Refei	rences	311	
13.	Deep eutectic solvents as green and cost-effective supercapacitor			
	electrolytes		317	
		nayee Padwal, Hong Duc Pham, Linh Thi My Hoang, Sagadevan		
		lree and Deepak P. Dubal		
		Introduction	317	
		Overview of deep eutectic solvent electrolytes and their properties	319	
		Deep eutectic solvent as an electrolyte in SCs	320	
		Conclusion and outlook	325	
	References		326	
14.		ce configuration—asymmetric versus hybrid supercapacitors	331	
	Vanessa Klobukoski, Camila Melo Pesqueira, Rafael J. Silva,			
		a Hryniewicz, Raquel Anastácio, Isabela Jasper, Renata Lima and		
		io Vidotti		
	14.1	Introduction	331	
	14.2	Symmetric versus asymmetric SCs	333	
	14.3	Performance metrics in energy storage devices	334	
	14.4	Electrolytes	337	
	14.5	Performance comparison of symmetric and asymmetric SCs	339	
	14.6	Devices	342	
	14.7	Market trends and research target	345	
	14.8	From lab to commercialization	346	
	14.9	Conclusion	348	
	References 34			

15.	Machine learning and data-driven material exploration for			
	supercapacitors Sijie Wang, Kai Huang, Cheng Lian and Honglai Liu			
	15.2	Applications of machine learning in supercapacitors	357	
	15.3	Summary and outlook	366	
	Ackn	owledgments	367	
	References		367	
16.	Tran	slation of supercapacitor technology from laboratory scale to		
	commercialization		371	
	Susmi Anna Thomas, Raghvendra Kumar Mishra, Anjana Baby,			
	Sreeja Puthenveetil Balakrishnan, Deepthi N. Rajendran and			
	Jayesh Cherusseri			
	16.1	Introduction	371	
	16.2	Improvement in energy densities of supercapacitors	374	
	16.3	Commercialization of laboratory research	384	
	16.4	Future supercapacitor markets	386	
	16.5	Supercapacitors—a future power device	389	
	16.6	Conclusion	391	
	Refer	ences	392	
Inde	Index			

List of contributors

S. Abinaya Advanced Materials Laboratory, School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu, India

Srinivasan Alagar Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, Taiwan, R.O.C.

Raquel Anastácio Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil

Anjana Baby Department of Chemistry, CHRIST (Deemed to be) University, Bengaluru, Karnataka, India

Sreeja Puthenveetil Balakrishnan Department of Chemistry, CHRIST (Deemed to be) University, Bengaluru, Karnataka, India

P. Baraneedharan Photonics and Nanotechnology Research Laboratory, Department of Electronics and Communication Engineering, Saveetha Engineering College, Chennai, Tamil Nadu, India

Faiza Bibi Sunway Center for Electrochemical Energy Storage and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Subang Jaya, Selangor, Malaysia

Jayesh Cherusseri Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5 Jalan University, Bandar Sunway, Subang Jaya, Selangor, Malaysia

Te-Wei Chiu Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan

Kwok Feng Chong Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Sultan Al-Abdullah, Kuantan, Pahang Darul Makmur, Malaysia; Center for Advanced Intelligent Materials, Universiti Malaysia Pahang Sultan Al-Abdullah, Kuantan, Pahang Darul Makmur, Malaysia

Deepak P. Dubal Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia

Ong Gerard Sunway Center for Electrochemical Energy Storage and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Subang Jaya, Selangor, Malaysia; Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Midhun Harilal Department of Physics, MES College Nedumkandam, Idukki, Kerala, India

Linh Thi My Hoang Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia

Rudolf Holze State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China; Chemnitz University of Technology, Chemnitz, Germany; Saint Petersburg State University, Institute of Chemistry, St. Petersburg, Russia

Bruna Hryniewicz Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil

Kai Huang State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China

Isabela Jasper Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil

Sujin P. Jose Advanced Materials Laboratory, School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu, India

Chelladurai Karuppiah Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, Taiwan, R.O.C.

Mohammad Khalid Sunway Center for Electrochemical Energy Storage and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Subang Jaya, Selangor, Malaysia

Abdul Jabbar Khan College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, P.R. China

Vanessa Klobukoski Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil

Syam G. Krishnan Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Victoria, Australia

Linh T.M. Le Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, United States

Phung M.L. Le Faculty of Chemistry, VNUHCM - University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam; Pacific Northwest National Laboratory, Richland, WA, United States

Cheng Lian State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China

Renata Lima Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil

Honglai Liu State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China

Snehal Lokhandwala SRICT-Institute of Science and Research, UPL University of Sustainable Technology, Vataria, Gujarat, India

Ganesh Abinaya Meenakshi Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan

Raghvendra Kumar Mishra Enhanced Composites and Structures Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, United Kingdom

Sagadevan Mundree School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia

Karuppiah Nagaraj School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India

Arshid Numan Sunway Center for Electrochemical Energy Storage and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Subang Jaya, Selangor, Malaysia

Chinmayee Padwal Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia

Nikhil M. Parekh SRICT-Institute of Science and Research, UPL University of Sustainable Technology, Vataria, Gujarat, India

Camila Melo Pesqueira Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil

Hong Duc Pham Centre for Future Materials, University of Southern Queensland, Toowoomba, QLD, Australia

Quan Phung Faculty of Chemistry, VNUHCM - University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam

Deepthi N. Rajendran Department of Physics, Government College for Women (Affiliated to University of Kerala), Thiruvananthapuram, Kerala, India

Subramanian Sakthinathan Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan; Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan

Percy J. Sephra Department of Electronics and Communication Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India

Rafael J. Silva Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil

Ellie Yi Lih Teo Department of Science & Technology, Faculty of Humanities, Management and Science, Putra University Malaysia, Bintulu, Sarawak, Malaysia; Institute of Ecosystem Science Borneo, Putra University Malaysia, Bintulu, Sarawak, Malaysia

C. Tharini Department of Electronics and Communication Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India

Susmi Anna Thomas Department of Physics, Government College for Women (Affiliated to University of Kerala), Thiruvananthapuram, Kerala, India

Man V. Tran Applied Physical Chemistry Laboratory, VNUHCM - University of Science, Ho Chi Minh City, Vietnam; Faculty of Chemistry, VNUHCM - University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam

Thanh Tung Tran School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, Australia

Tuan Sang Tran School of Engineering, RMIT University, Melbourne, VIC, Australia; School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia

Duc Q. Truong Battery cell Institute, Vinfast LLC, Cat Ba, Hai Phong City, Vietnam

Tuyen T.T. Truong Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States

Marcio Vidotti Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil

Jawahar Vigneshwaran Advanced Materials Laboratory, School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu, India

Phat T. Vu Applied Physical Chemistry Laboratory, VNUHCM - University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam

Sijie Wang State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China

Chun-Chen Yang Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, Taiwan, R.O.C.