HANDBOOK OF WHALE OPTIMIZATION ALGORITHM

VARIANTS, HYBRIDS, IMPROVEMENTS, AND APPLICATIONS

EDITED BY SEYEDALI MIRJALILI

>

Fre

 (\mathbb{AP})

Handbook of Whale Optimization Algorithm

Variants, Hybrids, Improvements, and Applications

Edited by Seyedali Mirjalili

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2024 Elsevier Inc. All rights reserved, including those for text and data mining, Al training, and similar technologies.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-95365-8

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Mara E. Conner Acquisitions Editor: Chris Katsaropoulos Editorial Project Manager: Tom Mearns Production Project Manager: Fahmida Sultana Cover Designer: Mark Rogers

Typeset by VTeX

Contents

List of contributors		xvii	2.4.4 Hybridized versions of WOA	18
Preface xxi 2.5 Applications		2.5 Applications of whale optimizer algorithm	18	
			2.6 Open source software of whale optimizer	
1.	Presenting appointment scheduling		algorithm	23
	with considering whale optimization		2.7 Conclusions	24
	algorithm in healthcare		Conflict of interest	25
	management		Acknowledgment	25
	Ali Ala and Seyedali Mirjalili		References	25
	1.1 Introduction	1	3. A hybrid whale optimization	
	1.2 Whale optimization algorithm	2	algorithm with tabu search algorithm	
	1.3 Problem statement	4	for resource allocation in indoor VLC	
	1.4 Different method of WOA	4	systems	
	1.5 Computational model	5		
	1.6 Solution approach	5	Seima Yania, Yassine Meraini, Seyedali Mirjailii, Sulia Maliharaulih Talah, Sauad Pafaa	
	1.7 Results analysis and discussion	5	Sylla Mekhimoukh Taleb, Soudu Kelas,	
	1.8 Conclusion and future directions	7	Amar Kamuane-Chern, and Hossien B. Eldeed	
	References	7	3.1 Introduction	33
			3.2 System model	34
2.	Recent advances of whale		3.3 Problem formulation	35
	optimization algorithm, its versions		3.4 Preliminaries	36
	and applications		3.4.1 Whale Optimization Algorithm	
	Zaid Abdi Alkaraam Akrasawi Nahaal Salih Ali		(WOA)	36
	Zalu Abui Alkareemi Alyasseri, Nabeel Salin Ali, Mohammad Azmi Al Potar Sharif		3.4.2 Tabu search algorithm (TS)	37
	Nasor Makhadmah Norziana Jamil		3.4.3 Hybrid algorithm (WOATS)	37
	Mohammed A Awadallah Malik Braik and		3.4.4 Time complexity of the proposed	
	Seyedali Mirjalili		WOATS algorithm	39
			3.5 Numerical results	39
	2.1 Introduction	9	3.5.1 Impact of changing the user count	40
	2.2 The growth of whale optimizer algorithm	10	3.5.2 Impact of changing the number of	
	2.2.1 No. publications per year	10	activated PDs	41
	2.2.2 No. publications per publisher	10	3.5.3 Convergence analysis	42
	2.2.3 No. publications per affiliation	11	3.6 Conclusion	42
	2.2.4 No. publications per country	11	References	43
	2.3 Fundamentals to whale optimizer			
	algorithm	11	4. Use of whale optimization algorithm	
	2.3.1 Inspiration of WOA	12	and its variants for cloud task	
	2.3.2 Procedure of WOA	12	scheduling: a review	
	2.4 Variants of WOA algorithm	15	Ali Mohammadzadeh, Amit Chhabra	
	2.4.1 Original versions of WOA	15	Sevedali Mirialili, and Amir Faraii	
	2.4.2 Modified versions of WOA	16		
	2.4.3 Multi-objective WOA	17	4.1 Introduction	47

4.2 Objective of scheduling	48
4.3 Research methodology	48
4.4 Meta-heuristic scheduling methods	50
4.5 WOA algorithm	50
4.6 Types of whale optimization-based	
scheduling	50
4.6.1 Standard WOA	50
4.6.2 Multi-objective WOA	54
4.6.3 Improved WOA	56
4.6.4 Hybrid WOA	58
4.7 Discussions	61
4.8 Conclusion and future work	62
Declaration of competing interest	
References	

5. Whale optimization algorithm and its application in machine learning

Nava Eslami, Mahdi Rahbar,

Seyed Mostafa Bozorgi, and Samaneh Yazdani

5.1	Introduction	69
5.2	Whale optimization algorithm	69
5.3	WOA for various machine learning tasks	70
	5.3.1 Feature selection	70
	5.3.2 WOA for data clustering	75
	5.3.3 WOA for data classification	76
	5.3.4 WOA for neural network and deep	
	neural network training	77
5.4	Discussion	78
5.5	Conclusion and future direction	78
References 7		78

6. Whale optimization algorithm comprehensive meta analysis on hybridization, latest improvements, variants and applications for complex optimization problems

Parijata Majumdar, Sanjoy Mitra, Seyedali Mirjalili, and Diptendu Bhattacharya

6.1 Introduction	81
6.2 Whale optimization algorithm	82
6.3 Research methodology	83
6.4 Literature review	86
6.5 Existing problems, applications, and future	
research avenues	88
6.6 Conclusion	88
References	89

7.	Near-fault ground motion attenuation of large-scale steel structure by upgraded whale optimization algorithm		
	Mahdi Azizi, Mahla Basiri, and Milad Baghalzadeh Shishehgarkhaneh		
	7.1 Introduction	91	
	7.2 Fuzzy logic controller (FLC)	92	
	7.3 Optimization algorithms	92	
	7.3.1 Whale optimization algorithm (WOA)	92	
	7.3.2 Upgraded WOA (UWOA)	95	
	7.4 Design example	97	
	7.4.1 Near-fault ground motion	97	
	7.4.2 FLC implementation	99	
	7.4.3 Performance criteria	100	
	7.5 Statement of the optimization problem	100	
	7.6 Numerical results	103	
	7.7 Conclusion	105	
	References	107	

8. SDN-based optimal task scheduling method in Fog-IoT network using combination of AO and WOA

Taybeh Salehnia, Ahmadreza Montazerolghaem, Seyedali Mirjalili, Mohammad Reza Khayyambashi, and Laith Abualigah 8.1 Introduction 109 8.2 Related works 110 8.2.1 Non-SDN based TSch algorithms 111 8.2.2 SDN-based TSch algorithms 111 8.3 Problem formulation 112 8.4 Prerequisites 112 8.4.1 Software-defined networking 112 8.4.2 Firefly algorithm 113 8.4.3 Harris Hawks algorithm 113 8.4.4 Partial swarm algorithm 113 8.4.5 Aquila optimizer algorithm 114 8.4.6 Whale optimization algorithm 115 8.5 A proposed TSch method using **SDN-based AWOA** 116 8.5.1 Initialization phase 116 8.5.2 Updating the solutions phase 116 8.5.3 Computational complexity of AO, WOA, and AWOA 117 8.5.4 Proposed SDN based framework 117

8.5.5 The limitation of the proposed hybrid	
AO and WOA	118

8.6	Evaluation metrics and experimental	
	results	119
	8.6.1 Evaluation metrics	119
	8.6.2 Results of comparison with existing	
	works	121
8.7	Conclusion and future work	127
Ref	erences	127

9. An enhanced whale optimization algorithm using the Nelder-Mead algorithm and logistic chaotic map

Farouq Zitouni and Saad Harous

9.1	Introduction	129
9.2	Related work	130
9.3	Overview of used algorithms	131
	9.3.1 Whale optimization	131
	9.3.2 Nelder-Mead method	132
	9.3.3 Logistic chaotic map	133
9.4	Proposed algorithm	133
9.5	Experimental results and discussion	133
9.6	Conclusion and future scope	136
References 136		

10. Multi-criterion design optimization of contamination detection sensors in water distribution systems

Jafar Jafari-Asl, Sima Ohadi, and Seyedali Mirjalili

10.1 Introduction	139
10.2 Problem statement	140
10.2.1 Objective functions	140
10.2.2 Whale optimization algorithm	
(WOA)	141
10.3 Comparing metrics	142
10.4 Case study	143
10.5 Results and discussion	144
Conclusion	147
References	147

11. Balancing exploration and exploitation phases in whale optimization algorithm: an insightful and empirical analysis

Aram M. Ahmed, Tarik A. Rashid, Bryar A. Hassan, Jaffer Majidpour, Kaniaw A. Noori, Chnoor Maheadeen Rahman, Mohmad Hussein Abdalla, Shko M. Qader, Noor Tayfor, and Naufel B. Mohammed

149

11.1 Introduction

11.2 Exploration-exploitation tradeoffs in	
WOA	150
11.3 Dimension-wise diversity measurement	151
11.4 Results and analysis	151
11.5 Summary	155
References	155

12. Equitable and fair performance evaluation of whale optimization algorithm

Bryar A. Hassan, Tarik A. Rashid, Aram M. Ahmed, Shko M. Qader, Jaffer Majidpour, Mohmad Hussein Abdalla, Noor Tayfor, Hozan K. Hamarashid, Haval Sidqi, Kaniaw A. Noori, and Awf Abdulrahmam Ramadhan

12.1	Introduction	157
12.2	Background	158
	12.2.1 WOA	158
	12.2.2 BSA	158
	12.2.3 FDO	158
	12.2.4 PSO	158
	12.2.5 FF	159
12.3	Evaluation	159
	12.3.1 Evaluation method	159
	12.3.2 Problems and initial parameters	160
	12.3.3 Statistical analysis and tool	161
12.4	Result evaluation	162
	12.4.1 Results of three evaluations	162
	12.4.2 Computational cost	165
	12.4.3 Convergence analysis	166
12.5	Summary	167
References		168

13. Multi-objective archived-based whale optimization algorithm

Nima Khodadadi, Seyedeh Zahra Mirjalili, Seyed Mohammad Mirjalili, Mohammad H. Nadim-Shahraki, and Seyedali Mirjalili

13.1	Introduction	169
13.2	Whale optimization algorithm	171
13.3	Multi-objective whale optimization	
	algorithm	171
13.4	Simulation and results	172
13.5	Conclusion	175
Refe	rences	176

14. U-WOA: an unsupervised whale optimization algorithm based deep feature selection method for cancer detection in breast ultrasound images

Payel Pramanik, Rishav Pramanik, Anurup Naskar, Seyedali Mirjalili, and Ram Sarkar

14.1	Introduction	179
14.2	Literature review	180
	14.2.1 Methods for breast cancer	
	detection using BUSI database	180
	14.2.2 Applications of WOA	181
14.3	Materials & methods	181
	14.3.1 Dataset description	181
	14.3.2 Whale optimization algorithm	182
	14.3.3 Unsupervised WOA (U-WOA)	183
	14.3.4 Methodology	184
14.4	Results	186
	14.4.1 Performance metrics	186
	14.4.2 Hyperparameters for TL models	187
	14.4.3 Results and discussion	187
14.5	Conclusion	189
References		189

15. Constraint optimization: solving engineering design problems using Whale Optimization Algorithm (WOA)

Syed Kumayl Raza Moosavi, Malik Naveed Akhter, Muhammad Hamza Zafar, and Majad Mansoor

15.1	Introduction	193
	15.1.1 Meta heuristic techniques	194
15.2	Related work	194
15.3	Whale optimization algorithm	195
	15.3.1 Inspiration	195
	15.3.2 Mathematical model	195
15.4	Engineering design problems	197
	15.4.1 Helical spring (FM1)	198
	15.4.2 Tension/compression spring (FM2)	199
	15.4.3 Welded beam design (FM3)	200
	15.4.4 Gear train design (FM4)	201
	15.4.5 Pressure vessel design (FM5)	202
	15.4.6 Three truss design (FM6)	203
	15.4.7 Tubular column design (FM7)	204
	15.4.8 Hydrodynamic thrust bearing	
	design (FM8)	205
	15.4.9 Spur gear design (FM9)	206
	15.4.10 Step cone pulley design (FM10)	208

15.4.11 Reinforced concrete beam design	
(FM11)	209
15.4.12 Piston lever design (FM12)	210
15.4.13 Comparative analysis	211
15.4.14 Computational complexity	
analysis	211
15.5 Conclusion	214
Appendix 15.A	215
References	215

16. F-WOA: an improved whale optimization algorithm based on Fibonacci search principle for global optimization

Saroj Kumar Sahoo, Salpa Reang, Apu Kumar Saha, and Sanjoy Chakraborty

16.1	Introduction	217
16.2	Literature review	218
16.3	Whale optimization algorithm (WOA)	219
16.4	Proposed F-WOA algorithm	221
	16.4.1 Adaption of crossover weight	221
	16.4.2 Improved solution technique	221
16.5	Simulation study and analysis	222
	16.5.1 Benchmark functions	223
	16.5.2 Experimental setup	223
	16.5.3 Results and discussion on classical benchmark functions	223
	16.5.4 Discussion on statistical and convergence performance for basic benchmark problems	224
	16.5.5 Results and discussions on IEEE CEC 2019 benchmark function	226
	16.5.6 Computational complexity of F-WOA algorithm	227
16.6	Engineering design problems	228
	16.6.1 Tension-compression spring design (TSD) problem	228
	16.6.2 Cantilever beam design (CBD) problem	229
16.7	Conclusions and future extensions	230
Com	pliance with ethical standards	230
Арр	endix 16.A Formulation of 14 benchmark	
	functions	231
Appendix 16.B Tension/compression spring		
	design problem	231
Арр	endix 16.C Cantilever beam design	
D (problem	232
Keterences		232

17. A random weight and random best solution based improved whale optimization algorithm for optimization issues

Sanjoy Chakraborty, Apu Kumar Saha, Saroj Kumar Sahoo, and Ashim Saha

17.1 Introduction	235
17.2 Whale optimization algorithm	236
17.2.1 Exploration phase	236
17.2.2 Exploitation phase	237
17.3 Proposed RWbWOA	237
17.4 Discussion of numerical results	239
17.5 Conclusion	240
Appendix 17.A	
References	241

18. Guided whale optimization algorithm (guided WOA) with its application

Abdelhameed Ibrahim, El-Sayed M. El-kenawy, Nima Khodadadi, Marwa M. Eid, and Abdelaziz A. Abdelhamid

18.1	Introduction	243
18.2	Whale optimization algorithm	244
18.3	Guided WOA	246
18.4	Binary guided WOA algorithm	247
18.5	Guided WOA applications	248
	18.5.1 First application: COVID-19	249
	18.5.2 Second application: diagnostic	
	accuracy of transformer faults	249
	18.5.3 Third application: wind speed	
	forecasting	249
	18.5.4 Fourth application: speech	
	emotion recognition	250
18.6	Conclusion	250
Refe	rences	251

19. Optimal Power Flow with renewable power generations using hyper-heuristic technique

M.H. Sulaiman and Z. Mustaffa

19.1	Introduction	253
19.2	Optimal Power Flow incorporating	
	stochastic solar, wind, and small hydro	
	power generation	254
19.3	Metaheuristic algorithms as LLH	256
19.4	Hyper heuristic strategies for OPF	
	solution	258
19.5	Implementation of HH into OPF	
	solution	258

19.6 Results and discussion	260
19.7 Conclusion	262
Acknowledgment	262
References	263

20. An efficient single image dehazing algorithm based on patch-wise transmission map estimation using Whale Optimization Algorithm

K. Ashwini, Hathiram Nenavath, and Ravi Kumar Jatoth

20.1 Introduction	265
20.2 Whale optimization algorithm	266
20.2.1 Encircle of the prey	266
20.2.2 Exploitation stage (bubble-net	
attacking method)	267
20.2.3 Exploration stage (search for prey)	267
20.3 Proposed method	267
20.3.1 Cost function	268
20.4 Experimental results	269
20.4.1 Structural SIMilarity index	272
20.4.2 WPSNR and MSE	273
20.4.3 Feature similarity index	274
20.5 Conclusion	276
References	276

21. An enhanced whale optimization algorithm with opposition-based learning for LEDs placement in indoor VLC systems

Abdelbaki Benayad, Amel Boustil, Yassine Meraihi, Seyedali Mirjalili, Selma Yahia, and Sylia Mekhmoukh Taleb

21.1	Introduction	279
21.2	LEDs placement problem formulation	280
	21.2.1 System model	280
	21.2.2 Mathematical model	280
21.3	Preliminaries	281
	21.3.1 Whale optimizer algorithm (WOA)	281
	21.3.2 Opposition-based learning (OBL)	283
	21.3.3 Chaotic map concept	284
21.4	The proposed EWOA for solving the	
	LEDs placement problem	284
21.5	Experimental results and discussions	286
	21.5.1 Effect of varying the number of	
	LEDs	286
	21.5.2 Effect of varying the number of	
	users	286
21.6	Conclusion	286
References		289

22. Adaptive bi-level whale optimization algorithm for maximizing the power output of hybrid wave-wind energy site

Mehdi Neshat, Nataliia Y. Sergiienko, Leandro S.P. da Silva, Erfan Amini, Mahdieh Nasiri, and Seyedali Mirjalili

22.1	Introduction	291
22.2	System description and modeling	295
	22.2.1 Hybrid wind-wave system	295
	22.2.2 Equations of motion	295
	22.2.3 Deployment site	296
	22.2.4 Performance measures	297
22.3	Optimization setup	297
22.4	Meta-heuristic optimization algorithms	298
	22.4.1 Whale optimization algorithm	
	(WOA)	298
	22.4.2 Adaptive bi-level whale	
	optimization algorithm (AWOA)	300
22.5	Numerical results and discussions	302
22.6	Conclusions	306
Refe	rences	306

23. Sizing optimization of truss structures using hybrid whale optimization algorithm

Mohammed A. Awadallah, Lamees Mohammad Dalbah, Malik Braik, Mohammed Azmi Al-Betar, Zaid Abdi Alkareem Alyasseri, and Seyedali Mirjalili

23.1	Introduction	309
23.2	Truss structure problem	310
23.3	Whale optimization algorithm (WOA)	311
23.4	Adaptive β hill climbing (A β HC)	313
23.5	Hybridizing the WOA with A β HC	314
23.6	Experiments and results	314
	23.6.1 Case study 1: 10-bar planar truss	315
	23.6.2 Case study 2: 25-bar spatial truss	317
	23.6.3 Case study 3: 72-bar spatial truss	319
	23.6.4 Case study 4: 200-bar planar truss	321
23.7	Conclusion and future work	325
Refe	rences	325

24. Whale Optimization Algorithm (WOA) for BIM-based resource trade-off in construction project scheduling

Milad Baghalzadeh Shishehgarkhaneh, Mahla Basiri, and Mahdi Azizi

24.1	Introduction	329
24.2	Problem statement	331
	24.2.1 Decision variables and	
	initialization module	331
	24.2.2 BIM module	333
	24.2.3 Whale Optimization Algorithm	
	(WOA)	333
24.3	Optimization results and discussion	338
24.4	Conclusion	344
Refe	rences	344
App algo pro	blications of whale migration orithm in optimal power flow blems of power systems	
Mojt Sole Seye	taba Ghasemi, Mohsen Zare, iman Kadkhoda Mohammadi, and edali Mirjalili	
25.1	Introduction	347
25.2	Problem formulation	348
	25.2.1 Decision parameters	348
	25.2.2 State variables	348
	25.2.3 Equality limits	348
	25.2.4 Inequality limits	349
	25.2.5 Control constraints	349
25.3	Description of WMA	349
	25.3.1 Initialization	349
	25.3.2 Current local position	350
	25.3.3 Movement of less-experienced	
	whales	350
	25.3.4 Leader role in migrating the less	
	experienced whales	350
	25.3.5 Leaders discovering new space	350
	25.3.6 Application of WMA in OPF	0.54
	problems	351
	25.3./ Advantages of WMA	354
25.4	Simulation	356
25.5	Discussion	357
25.6	Conclusion	35/
Declaration of competing interest		360
References		361

25.

26. Optimizing CNN architecture using whale optimization algorithm for lung cancer detection

K. Sruthi, R.R. Rajalaxmi, R. Thangarajan, and C. Roopa

26.1	Introduction	365
26.2	Literature survey	366
26.3	Optimized convolutional neural	
	network	367

	26.3.1 Convolutional neural network	
	model	367
	26.3.2 Whale optimization algorithm	368
26.4	Experimental results and discussion	370
26.5	Conclusion	371
References		371

27.	Multi-response optimization of
	plasma arc cutting on Monel 400
	alloy through whale optimization
	algorithm

D. Rajamani, M. Siva Kumar, and E. Balasubramanian

27.1 Introduction	373
27.2 Methodologies	374
27.2.1 Response surface methodology	374
27.2.2 Whale optimization algorithm	374
27.3 Experimental details	375
27.4 Results and discussion	375
27.4.1 Statistical analysis of derived	
mathematical models	375
27.4.2 Influence of PAC parameters	377
27.4.3 Multi-response optimization	
through WOA	380
27.5 Conclusions	383
References	385

28. Hybrid whale optimization algorithm for enhancing K-means clustering technique

Malik Braik, Mohammed A. Awadallah, Mohammed Azmi Al-Betar, Zaid Abdi Alkareem Alyasseri, Alaa Sheta, and Seyedali Mirjalili

28.1	Introduction	387
28.2	Related works	388
	28.2.1 K-means clustering	388
	28.2.2 Integration of meta-heuristics with	
	clustering	389
	28.2.3 Whale optimization algorithm	389
	28.2.4 Encircling prey	389
	28.2.5 Chameleon swarm algorithm	393
28.3	Hybrid whale optimization algorithm	395
	28.3.1 Encirclement of prey	395
	28.3.2 Spiral and shrinkage encircling	
	mechanisms	396
	28.3.3 Humpback whales' rotation	396
	28.3.4 Search for prey	397

	28.3.5 Implementation of the proposed	
	HWOA	397
	28.3.6 The proposed clustering approach	
	based-HWOA	397
28.4	Evaluation and discussion of the results	398
	28.4.1 Parameter settings	399
	28.4.2 UCI benchmark datasets	399
	28.4.3 Performance comparison metrics	400
	28.4.4 Performance evaluation of	
	clustering	400
	28.4.5 Performance evaluation of feature	
	selection and clustering	402
	28.4.6 Statistical tests	405
28.5	Conclusion and future work	407
Refe	rences	408

29. Whale optimization algorithm based controller design for air-fuel ratio system

Serdar Ekinci and Davut Izci

29.1	Introduction	411
29.2	Whale optimization algorithm	411
29.3	Problem definition and proposed design	
	methodology	412
29.4	Simulation results	413
	29.4.1 Compared algorithms	414
	29.4.2 Statistical analysis	414
	29.4.3 Computation time	415
	29.4.4 Convergence curve profile and	
	obtained controller parameters	416
	29.4.5 Transient response	416
	29.4.6 Input signal tracking ability	417
	29.4.7 Disturbance rejection	417
	29.4.8 Performance evaluation on various	
	cost functions	417
	29.4.9 Robustness analysis under	
	parameter changes	418
29.5	Conclusion	418
Appendix 29.A		419
References		420

30. Application of whale optimization algorithm to infinite impulse response system identification

Davut Izci and Serdar Ekinci

30.1	Introduction	423
30.2	Whale optimization algorithm	424
30.3	Problem formulation for IIR system	
	identification	424

30.4 Simulation results	425
30.4.1 Example I and related results	426
30.4.2 Example II and related results	428
30.4.3 Example III and related results	430
30.4.4 Example IV and related results	431
30.4.5 Comparison of elapsed times	431
30.5 Conclusion	
Declaration of competing interests	
References	433

31. Optimization of SHE problem with WOA in AC-AC choppers

Satılmış Ürgün and Halil Yiğit

31.1	Introduction	435
31.2	PWM AC-AC chopper	435
31.3	Whale optimization algorithm (WOA)	437
	31.3.1 Surrounding prey stage	437
	31.3.2 Bubble-net attack stage	437
	31.3.3 Hunting prey stage	438
31.4	Problem formulation and simulation	
	result	438
	31.4.1 Case I	442
	31.4.2 Case II	444
	31.4.3 Case III	444
	31.4.4 Case IV	445
	31.4.5 Case V	446
	31.4.6 Case VI	446
31.5	Conclusion	447
References		447

32. A WOA-based path planning approach for UAVs to avoid collisions in cluttered areas

Mehmet Enes Avcu, Harun Gökçe, and İsmail Şahin

32.1	Introduction	449
32.2	The whale optimization algorithm	449
	32.2.1 Prey encircling	450
	32.2.2 Bubble-net attacking method	450
	32.2.3 Search for prey (exploration phase)	451
32.3	Dynamics of agents and constraints	451
	32.3.1 Dynamic of fixed-wing UAV	451
	32.3.2 Dynamic of rotary-wing UAV	452
32.4	Path planning	452
	32.4.1 Path planning preliminaries	452
	32.4.2 Interpolation	454
	32.4.3 Cost functions and boundary	455
32.5	Simulation environment	457
	32.5.1 PX4 autopilot system	457
	32.5.2 QGroundControl and MAVLink	
	messages	457

32.5.3 Simulation results	457
32.6 Conclusion	459
32.7 Future works	459
References	459

33. Application of an Improved Whale Optimization Algorithm for optimal design of shell and tube heat exchanger

Diab Mokeddem, Seyedali Mirjalili, and Dallel Nasri

33.1 Introduction	463
33.2 Mechanism of Whale Optimization	
Algorithm (WOA)	464
33.2.1 Phase of encircling	464
33.2.2 Phase of bubble-net attacking	
(exploitation)	464
33.2.3 Phase of searching (exploration)	464
33.3 Improved Whale Optimization	
Algorithm (IWOA)	465
33.3.1 Arithmetic crossover	465
33.4 Mathematical models of SHTE	465
33.4.1 Heat exchanger design	
formulation	466
33.4.2 Pressure drop	468
33.4.3 Objective function	468
33.5 Results and discussion	469
33.5.1 Case 1	469
33.5.2 Case 2	470
33.5.3 Case 3	471
33.6 Conclusion	475
References	475

34. Whale-optimized convolutional neural network for potato fungal pathogens disease classification

D.N. Kiran Pandiri, R. Murugan, and Tripti Goel

34.1 Introduction	477
34.2 Fungal pathogens	477
34.3 Database	478
34.4 Artificial intelligence (AI)	478
34.5 Convolutional neural network	479
34.6 Whale optimization algorithm	479
34.6.1 Exploitation phase	481
34.6.2 Exploration phase	481
34.7 Performance analysis	482
34.8 Challenges	483
34.9 Conclusion	484
References	484

35. Whale optimization algorithm for scheduling and sequencing

Muhammad Najeeb Khan and Amit Kumar Sinha

35.1 Introduction	487
35.2 Whale optimization algorithm (WOA)	488
35.3 Applications of WOA	490
35.4 Conclusion	493
References	

36. Tuning SVMs' hyperparameters using the whale optimization algorithm

Sunday O. Oladejo, Stephen O. Ekwe, Adedotun T. Ajibare, Lateef A. Akinyemi, and Seyedali Mirjalili

36.1	Introduction	495
36.2	Whale optimization algorithm and	
	improved versions	495
	36.2.1 Whale optimization algorithm	496
	36.2.2 Multi-strategy ensemble whale	
	optimization algorithm	497
	36.2.3 Levy flight trajectory WOA	500
	36.2.4 Elite opposition-based	
	Golden-sine WOA	
	(EGolden-SWOA)	500
	36.2.5 Improved WOA-based on	
	non-linear adaptive weight and $Colden sine operator (NCS M(OA))$	E01
	26.2.6 Whole entimization algorithm	501
	with a modified mutualism phase	503
26.2	SVM: a brief bistory and recent	505
30.5	developments	505
36.4	SVMs: a general overview	505
50.1	36.4.1 The hard-margin SV/M	505
	optimization problem	505
	36.4.2 The soft margin SVM optimization	
	problem	509
	36.4.3 The kernel trick	509
36.5	Hyperparameter tuning	511
36.6	Empirical analysis of	
	metaheuristic-based SVM training	511
	36.6.1 Dataset employed for empirical	
	analysis	512
	36.6.2 Performance evaluation	514
36.7	Conclusion	517
References		520

37.	Gene selection for microarray data classification based on mutual information and binary whale optimization algorithm	
	Maha Nssibi, Ghaith Manita, and Ouajdi Korbaa	
	37.1 Introduction	523
	37.2 Whale Optimization Algorithm (WOA)	524
	37.3 Binary Whale Optimization Algorithm	
	(BWOA)	524
	37.3.1 Proposed fitness function	524
	37.4 Experimental results	526
	37.4.1 Datasets description and	
	parameter settings	526
	37.4.2 Results and discussion	526
	37.5 Conclusion	529
	References	530
38.	A new hybrid whale optimization algorithm and golden jackal optimization for data clustering	

Farhad Soleimanian Gharehchopogh, Seyedali Mirjalili, Gültekin Işık, and Bahman Arasteh

38.1	Introduction	533
38.2	Related works	534
38.3	Fundamental research	535
	38.3.1 Data clustering	535
	38.3.2 Golden jackal optimization	536
38.4	Proposed model	538
	38.4.1 Initial population	538
	38.4.2 Surround the hunt	540
	38.4.3 Network-bubble attack method	
	(mining stage)	540
	38.4.4 Hunting (exploration phase)	540
	38.4.5 Objective function	541
	38.4.6 Computational complexity	541
38.5	Result and discussion	541
	38.5.1 Convergence rate	542
38.6	Conclusion and future works	542
References		545

39. Feature selection based on dataset variance optimization using Whale Optimization Algorithm (WOA)

ŀ	Tassaan Bin Younis,
5	Syed Kumayl Raza Moosavi,
Λ	Muhammad Hamza Zafar,
5	Shahzaib Farooq Hadi, and Majad Mansoor
3	9.1 Introduction

547

39.2 Related work	548
39.3 Method	549
39.3.1 Whale optimization algorithm	549
39.3.2 Exploration phase (search for prey)	549
39.3.3 Limitations of standard whale	
optimization algorithm	551
39.4 Proposed approach	551
39.5 Experimentation	552
39.6 Results and comparative analysis	552
39.6.1 Discussion	559
39.7 Conclusion and future work	562
References	564

40. Whale optimization algorithm for Covid-19 detection based on ECG

Imene Latreche, Mohamed Akram Khelili, Sihem Slatnia, Okba Kazar, and Saad Harous

40.1	Introduction	567
40.2	Related work	567
40.3	Material and methods	568
	40.3.1 Dataset	569
	40.3.2 Preprocessing	569
	40.3.3 Augmentation	570
	40.3.4 Whale optimization algorithm	
	(WOA)	570
	40.3.5 Model description	571
	40.3.6 Model preparation	572
	40.3.7 Classification performance	
	evaluation	573
40.4	Results and description	574
	40.4.1 Binary classification	574
	40.4.2 Three-class classification	575
	40.4.3 Comparative study	577
	40.4.4 Complexity of the algorithm	578
	40.4.5 Limitation of the WOA	578
40.5	Conclusion	578
Refe	rences	578

41. Whale optimization algorithm for optimization of truss structures with multiple frequency constraints

Nima Khodadadi, El-Sayed M. El-kenawy, Marwa M. Eid, Ziad Azzi, Abdelaziz A. Abdelhamid, and Seyedali Mirjalili

41.1	Introduction	581
41.2	Problems definition	582
41.3	Optimization benchmark with results	582
	41.3.1 The 37-bar planar truss	583
	41.3.2 The 72-bar space truss	585
	41.3.3 The 120-bar dome truss	586

	41.4 Conclusion and future work	588
	References	589
42.	A novel version of whale optimization algorithm for solving optimization problems	
	Nima Khodadadi, El-Sayed M. El-kenawy, Sepehr Faridmarandi, Mansoureh Shahabi Ghahfarokhi, Abdelhameed Ibrahim, and Seyedali Mirjalili	
	42.1 Introduction	591
	42.2 Whale optimization algorithm (WOA)	592
	42.3 Advanced whale optimization algorithm	
	(AWOA)	593
	42.4 Engineering problems	594
	42.4.1 Tension/compression spring	594
	42.4.2 Compound gear	594
	42.4.3 Welded beam	596
	42.4.4 Three-bar truss	597
	42.5 Conclusion and future work	599
	References	599
43.	Binary whale optimization algorithm for topology planning in wireless mesh networks	
	Sylia Mekhmoukh Taleb, Yassine Meraihi,	

Sylia Mekhmoukh Taleb, Yassine Meraihi, Seyedali Mirjalili, Selma Yahia, and Amar Ramdane-Cherif

43.1 Introduction	601
43.2 Problem formulation	601
43.3 Whale optimization algorithm (WOA)	603
43.4 Binary whale optimization algorithm	
(BWOA)	604
43.5 Simulation results	606
43.6 Conclusion	608
References	610

44. A survey of different Whale Optimization Algorithm applications in water engineering and management

Yashar Dadrasajirlou and Hojat Karami

44.1 Application of WOA in lake water level	
(LWL) modeling	613
44.2 Application of WOA in pan evaporation	
estimation	614
44.3 Application of WOA in modeling	
reference evapotranspiration	615

44.4 Application of WOA in rainfall & runoff	
modeling estimation	615
44.5 Application of WOA in flood frequency	
analysis and daily water level	617
44.6 Application of WOA in groundwater	
level modeling	618
44.7 Application of WOA in reservoirs	
operation	619
44.8 List of abbreviations	619
References	621

45. A MTIS method using a combined of whale and moth-flame optimization algorithms

Taybeh Salehnia, Farid MiarNaeimi, Saadat Izadi, Mahmood Ahmadi, Ahmadreza Montazerolghaem, Seyedali Mirjalili, and Laith Abualigah

45.1	Introduction	625
45.2	Related work	625

	45.2.1 Image segmentation using single	
	meta-heuristics	626
	45.2.2 Hybrid meta-heuristics	626
	45.2.3 Weakness of single and combined	
	algorithms used to solve MTIS	
	problem	626
45.3	Preliminaries	626
	45.3.1 Fitness function	626
	45.3.2 Whale optimization algorithm	627
	45.3.3 Moth-flame optimization	
	algorithm	628
45.4	Proposed method	629
	45.4.1 Computational complexity of	
	MFWOA	630
45.5	Performance analysis and test results	631
	45.5.1 Evaluation metrics	632
	45.5.2 The results and discussions	633
45.6	Conclusions	650
Refe	erences	650
Index		653
much		055

List of contributors

- Mohmad Hussein Abdalla, Department of Computer Science, University of Raparin, Sulaimani, Iraq
- Abdelaziz A. Abdelhamid, Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
- Laith Abualigah, Computer Science Department, Al al-Bayt University, Mafraq, Jordan
 - Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan MEU Research Unit, Middle East University, Amman, Jordan Department of Electrical and Computer Engineering,
 - Lebanese American University, Byblos, Lebanon
 - School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
 - School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya, Malaysia
- Mahmood Ahmadi, Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
- Aram M. Ahmed, Department of Information Technology, College of Science and Technology, University of Human Development, Sulaimani, Iraq Department of Information Technology, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaimani, Iraq
- Adedotun T. Ajibare, Faculty of Information and Communications Technology, Rosebank College, Cape Town, South Africa
- Malik Naveed Akhter, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
- Lateef A. Akinyemi, Department of Electronic and Computer Engineering, Lagos State University, Epe, Nigeria
- Ali Ala, Industrial Engineering & Management, Shanghai Jiao Tong University, Shanghai, China
- Mohammed Azmi Al-Betar, Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan
- Nabeel Salih Ali, Information Technology Research and Development Center (ITRDC), University of Kufa, Najaf, Iraq

Zaid Abdi Alkareem Alyasseri, Information Technology Research and Development Center (ITRDC), University of Kufa, Najaf, Iraq
Institute of Informatics and Computing in Energy, College of Computing and Informatics, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
Department of Business Administration, College of

Administrative and Financial Sciences, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq

- Erfan Amini, Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
- Bahman Arasteh, Department of Computer Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Turkey
- K. Ashwini, Department of Electronics and Communication Engineering, National Institute of Technology, Warangal, India
- Mehmet Enes Avcu, Unmanned Systems Engineering Department, Titra Technology, Ankara, Turkey
- Mohammed A. Awadallah, Department of Computer Science, Al-Aqsa University, Gaza, Palestine Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
- Mahdi Azizi, Department of Civil Engineering, University of Tabriz, Tabriz, Iran
- Ziad Azzi, Department of Civil and Environmental Engineering, Florida International University, Miami, FL, United States
- E. Balasubramanian, Centre for Autonomous System Research, Department of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
- Mahla Basiri, Department of Civil Engineering, University of Tabriz, Tabriz, Iran
- Abdelbaki Benayad, LIMOSE Laboratory, University of M'Hamed Bougara Boumerdes, Boumerdes, Algeria
- **Diptendu Bhattacharya**, National Institute of Technology, Agartala, Jirania, Tripura, India
- Amel Boustil, LIMOSE Laboratory, University of M'Hamed Bougara Boumerdes, Boumerdes, Algeria
- Seyed Mostafa Bozorgi, Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran

Malik Braik, Department of Computer Science, Al-Balqa Applied University, As-Salt, Jordan

Sanjoy Chakraborty, Department of Computer Science and Engineering, National Institute of Technology Agartala, Agartala, Tripura, India

Department of Computer Science and Engineering, Iswar Chandra Vidyasagar College, Belonia, Tripura, India

Amit Chhabra, Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar, India

Yashar Dadrasajirlou, Civil Engineering, Semnan University, Semnan, Iran

Lamees Mohammad Dalbah, Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates

Leandro S.P. da Silva, School of Mechanical Engineering, University of Adelaide, Adelaide, SA, Australia

Marwa M. Eid, Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, Egypt

Serdar Ekinci, Department of Computer Engineering, Batman University, Batman, Turkey

Stephen O. Ekwe, Department of Electrical, Electronic and Computer Engineering, Cape Peninsula University of Technology, Cape Town, South Africa

Hossien B. Eldeeb, Department of Electrical and Electronics Engineering, Özyeğin University, Istanbul, Turkey

El-Sayed M. El-kenawy, Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, Egypt

Nava Eslami, Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran

Amir Faraji, Construction Management Department, Faculty of Architecture, KHATAM University, Tehran, Iran School of Engineering, Design and Built Environment, Western Sydney University, Sydney, NSW, Australia

Sepehr Faridmarandi, Department of Civil and Environmental Engineering, Florida International University, Miami, FL, United States

Mansoureh Shahabi Ghahfarokhi, Department of Civil and Environmental Engineering, Florida International University, Miami, FL, United States

Farhad Soleimanian Gharehchopogh, Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

Mojtaba Ghasemi, Department of Electronics and Electrical Engineering, Shiraz University of Technology, Shiraz, Iran

Tripti Goel, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India

Harun Gökçe, Faculty of Technology, Department of Industrial Design Engineering, Gazi University, Ankara, Turkey

Shahzaib Farooq Hadi, National University of Sciences and Technology, Islamabad, Pakistan Hozan K. Hamarashid, Department of Information Technology, Computer Science Institute, Sulaimani Polytechnic University, Sulaymaniyah, Iraq

Saad Harous, Department of Computer Science, College of Computing and Informatics, University of Sharjah, Sharjah, United Arab Emirates

Bryar A. Hassan, Department of Computer Science, College of Science, Charmo University, Sulaimani, Iraq

Abdelhameed Ibrahim, Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Gültekin Işık, Department of Computer Engineering, Igdir University, Igdir, Turkey

Saadat Izadi, Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran

Davut Izci, Department of Computer Engineering, Batman University, Batman, Turkey

Jafar Jafari-Asl, Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Norziana Jamil, Institute of Informatics and Computing in Energy, College of Computing and Informatics, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia

Ravi Kumar Jatoth, Department of Electronics and Communication Engineering, National Institute of Technology, Warangal, India

Soleiman Kadkhoda Mohammadi, Department of Electrical and Electronic Engineering, Boukan Branch, Islamic Azad University, Boukan, Iran

Hojat Karami, Civil Engineering, Semnan University, Semnan, Iran

Okba Kazar, College of Computing and Informatics, Department of Computer Science, University of Sharjah, College of Arts, Sciences & Information Technology, University of Kalba, Sharjah, United Arab Emirates

Muhammad Najeeb Khan, School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India

Mohammad Reza Khayyambashi, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran

Mohamed Akram Khelili, Department of Computer Science, University of Biskra, Biskra, Algeria Numidia Institute of Technology, Algies, Algeria

Nima Khodadadi, Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, United States

Ouajdi Korbaa, Laboratory MARS, LR17ES05, ISITCom, University of Sousse, Sousse, Tunisia ISITCom, University of Sousse, Sousse, Tunisia

Imene Latreche, Department of Computer Science, University of Biskra, Biskra, Algeria

Jaffer Majidpour, Department of Computer Science, University of Raparin, Sulaimani, Iraq

Parijata Majumdar, National Institute of Technology, Agartala, Jirania, Tripura, India

Sharif Naser Makhadmeh, Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates

Ghaith Manita, Laboratory MARS, LR17ES05, ISITCom, University of Sousse, Sousse, Tunisia ESEN, University of Manouba, Manouba, Tunisia

Majad Mansoor, Dept. of Automation, University of Science and Technology of China, Hefei, China

Yassine Meraihi, LIST Laboratory, University of M'Hamed Bougara Boumerdes, Boumerdes, Algeria Systems Engineering and Telecommunications Laboratory, University of Boumerdes, Boumerdes, Algeria

Farid MiarNaeimi, Faculty of Engineering, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Seyedali Mirjalili, Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, QLD, Australia University Research and Innovation Center, Obuda University, Budapest, Hungary

Yonsei Frontier Lab, Yonsei University, Seoul, South Korea

Seyedeh Zahra Mirjalili, Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, QLD, Australia

Seyed Mohammad Mirjalili, Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, Canada

Sanjoy Mitra, Tripura Institute of Technology, Agartala, Narsingarh, Tripura, India

Ali Mohammadzadeh, Department of Computer Engineering, Shahindezh Branch, Islamic Azad University, Shahindezh, Iran

Naufel B. Mohammed, Department of Information Technology, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaimani, Iraq

Diab Mokeddem, Department of Electrical Engineering, Faculty of Technology, University of Ferhat Abbas Setif-1, Setif, Algeria

Ahmadreza Montazerolghaem, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran

Syed Kumayl Raza Moosavi, School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad, Pakistan National University of Sciences and Technology, Islamabad, Pakistan

R. Murugan, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India

Z. Mustaffa, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia

Mohammad H. Nadim-Shahraki, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran Mahdieh Nasiri, Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States

Anurup Naskar, Department of Computer Science and Engineering, Jadavpur University, Kolkata, India

Dallel Nasri, Department of Electrical Engineering, Faculty of Technology, University of Ferhat Abbas Setif-1, Setif, Algeria

Hathiram Nenavath, Department of Electronics and Communication Engineering, National Institute of Technology, Jamshedpur, India

Mehdi Neshat, Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, QLD, Australia

Kaniaw A. Noori, Database Department, Sulaimani Polytechnic University, Sulaimani, Iraq Department of Database Technology, Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, Iraq

Maha Nssibi, Laboratory MARS, LR17ES05, ISITCom, University of Sousse, Sousse, Tunisia ENSI, University of Manouba, Manouba, Tunisia

Sima Ohadi, Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Sunday O. Oladejo, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa

D.N. Kiran Pandiri, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Assam, India

Payel Pramanik, Department of Computer Science and Engineering, Jadavpur University, Kolkata, India

Rishav Pramanik, Department of Computer Science and Engineering, Jadavpur University, Kolkata, India

Shko M. Qader, Database Department, Sulaimani Polytechnic University, Sulaimani, Iraq
Department of Computer Science, Kurdistan Technical Institute, Sulaimani, Iraq
Department of Information Technology, Computer Science Institute, Sulaimani Polytechnic University, Sulaimani, Iraq

Department of Information Technology, University College of Goizha, Sulaimani, Iraq

Mahdi Rahbar, Department of Computer Science, Saint Louis University, St. Louis, MO, United States

Chnoor Maheadeen Rahman, Department of Computer Science, College of Science, Charmo University, Sulaimani, Iraq

R.R. Rajalaxmi, Department of CSE, Kongu Engineering College, Perundurai, India

D. Rajamani, Centre for Autonomous System Research, Department of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India

Awf Abdulrahmam Ramadhan, Public Health Department, College of Health and Medical Techniques - Shekhan, Duhok Polytechnic University, Duhok, Iraq

- Amar Ramdane-Cherif, LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, Velizy, France Systems Engineering Laboratory of Versailles (LISV), University of Paris-Saclay, Velizy, France
- **Tarik A. Rashid**, Department of Computer Science and Engineering, School of Science and Engineering, University of Kurdistan Hewler, Erbil, KRI, Iraq
- Salpa Reang, Department of Mathematics, National Institute of Technology Agartala, Agartala, Tripura, India
- **Souad Refas**, LIST Laboratory, University of M'Hamed Bougara Boumerdes, Boumerdes, Algeria
- **C. Roopa**, Department of CSE, Kongu Engineering College, Perundurai, India
- **Apu Kumar Saha**, Department of Mathematics, National Institute of Technology Agartala, Agartala, Tripura, India
- Ashim Saha, Department of Computer Science and Engineering, National Institute of Technology Agartala, Agartala, Tripura, India
- İsmail Şahin, Faculty of Technology, Department of Industrial Design Engineering, Gazi University, Ankara, Turkey
- Saroj Kumar Sahoo, Department of Mathematics, National Institute of Technology Agartala, Agartala, Tripura, India
- Taybeh Salehnia, Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
- Ram Sarkar, Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
- Nataliia Y. Sergiienko, School of Mechanical Engineering, University of Adelaide, Adelaide, SA, Australia
- Alaa Sheta, Computer Science Department, Southern Connecticut State University, New Haven, CT, United States
- Milad Baghalzadeh Shishehgarkhaneh, Department of Civil Engineering, Islamic Azad University of Tabriz, Tabriz, Iran Department of Construction Management, Islamic Azad University of Tabriz, Tabriz, Iran Department of Civil Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
- Haval Sidqi, Department of Database Technology, Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, Iraq

- Amit Kumar Sinha, School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
- M. Siva Kumar, Centre for Autonomous System Research, Department of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
- Sihem Slatnia, Department of Computer Science, University of Biskra, Biskra, Algeria
- K. Sruthi, Department of IT, Kongu Engineering College, Perundurai, India
- M.H. Sulaiman, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia

Sylia Mekhmoukh Taleb, LIST Laboratory, University of M'Hamed Bougara Boumerdes, Boumerdes, Algeria Systems Engineering and Telecommunications Laboratory, University of Boumerdes, Boumerdes, Algeria

- Noor Tayfor, Department of Computer Science, Kurdistan Technical Institute, Sulaimani, Iraq
- **R. Thangarajan**, Department of IT, Kongu Engineering College, Perundurai, India
- Satılmış Ürgün, Faculty of Aeronautics and Astronautics, Kocaeli University, Kocaeli, Türkiye
- Selma Yahia, LIST Laboratory, University of M'Hamed Bougara Boumerdes, Boumerdes, Algeria Systems Engineering and Telecommunications Laboratory, University of Boumerdes, Boumerdes, Algeria
- Samaneh Yazdani, Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Halil Yiğit, Department of Information Systems Engineering, Kocaeli University, Kocaeli, Türkiye
- Hassaan Bin Younis, National University of Sciences and Technology, Islamabad, Pakistan
- Muhammad Hamza Zafar, Department of Engineering Sciences, University of Agder, Grimstad, Norway
- Mohsen Zare, Department of Electrical Engineering, Faculty of Engineering, Jahrom University, Jahrom, Iran
- Farouq Zitouni, Department of Computer Science, Kasdi Merbah University, Ouargla, Algeria

Preface

Welcome to "Whale Optimization Algorithm: Variants, Improvements, Hybrids, and Applications." In the ever-evolving world of Artificial Intelligence, optimization algorithms play a crucial role in solving complex problems across various domains. Among the plethora of meta-heuristic techniques, the Whale Optimization Algorithm (WOA) has emerged as one of the most well-regarded and widely-used approaches.

The WOA has garnered significant attention due to its effectiveness in addressing optimization problems, both in scientific research and industrial applications. However, harnessing the full potential of this algorithm requires tackling numerous challenges. These challenges range from dealing with multiple objectives and constraints to handling binary decision variables, large-scale search spaces, dynamic objective functions, and noisy parameters, to name just a few.

This handbook aims to provide you with an in-depth analysis of the Whale Optimization Algorithm and the existing methods in the literature that address these challenges. We delve into the fundamental concepts and principles behind the WOA, exploring its strengths and limitations. By reviewing the extensive body of literature surrounding this algorithm, we offer insights into its applications across various domains.

But this book goes beyond a comprehensive analysis of the WOA. It also presents a collection of improvements, variants, and hybrids that have been developed to enhance its performance and overcome specific challenges. These novel approaches push the boundaries of the algorithm, offering new possibilities for optimization in different contexts. By incorporating these advancements, you will be equipped with a broader toolkit to tackle complex optimization problems.

Furthermore, this handbook showcases a range of real-world applications that demonstrate the practical applicability of the methods presented within. From engineering to finance, from healthcare to logistics, the WOA finds its place in diverse domains, addressing critical challenges and delivering valuable solutions.

I would like to express my gratitude to the researchers, practitioners, and enthusiasts who have contributed to the development and understanding of the Whale Optimization Algorithm. Without their dedication and expertise, this book would not have been possible.

I hope that this handbook serves as a valuable resource for both researchers and practitioners in the field of optimization. Whether you are a seasoned expert or a newcomer to the domain, we believe that the insights and methodologies presented here will inspire new ideas, facilitate problem-solving, and foster innovation.

Enjoy your journey into the world of the Whale Optimization Algorithm, where the search for optimal solutions meets the vastness of possibility.

Seyedali Mirjalili 21/05/2023