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In this paper, a collocation method is presented based on the Modified Cubic B-spline 
Method (MCBSM) for the numerical solution of the heat equation. The PDE is fully 
discretized by using the Modified Cubic B-spline basis collocation for spatial 
discretization and the finite difference method is used for the time discretization. A 
numerical example from PDE is used to evaluate the accuracy of the proposed method. 
The numerical results are evaluated in comparison to the exact solutions. The findings 
consistently indicate that the suggested technique provides good error estimates. We 
also discovered that our proposed method was unconditionally stable. Hence, based 
on the results and the efficiency of the method, the method is suitable for solving heat 
equation. 
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1. Introduction 
 

Consider the following partial differential equation (PDE) [1]: 
 
𝜕𝑢

𝜕𝑡
= 𝛼2

𝜕2𝑢

𝜕𝑥2
 , 𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0, 𝑢(𝑥, 0) = 𝑔(𝑥) , 𝑥 ∈ [0,1]         (1) 

 
Here 𝛼2 is a constant. 
This problem belongs to a well-known second-order parabolic linear PDE [1-4]. The heat equation 

is very important in physics and engineering. It is a classical parabolic PDE in mathematics. It shows 
how heat conduction is distributed in a rod or each region over a given time. This PDE is of 
fundamental importance in the field of Thermal physics. In statistics and a more specific area 
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probability theory, this equation is jointly studied with the Brownian motion using the Fokker – Planck 
equation [5].  

The heat equation is used to simulate a variety of processes and is frequently used in financial 
mathematics to model options. The differential equation of the well-known Black – Scholes option 
pricing model may be converted into the heat equation, allowing for comparatively simple solutions 
using a well-known portion of mathematics [6]. It is also significant in Riemannian geometry, and 
therefore Richard S. Hamilton used it to establish the Ricci flow, which Grigori Perelman later used 
to answer the topological Poincare conjecture [7].   

The more advanced forms of heat equation are wave equation, convection–diffusion problems 
and Burgers’s, equation. Mittal and Jain [8, 9] proposed to approximate the solution of the linear and 
nonlinear Burgers’ equation using modified cubic B-splines over finite elements. This PDE is also 
solved by Hadhoud et al., [10] using non-polynomial B-spline and shifted Jacobi spectral collocation 
techniques but time step size used must be small enough for these solutions.  Raslan and Ali [11] 
presented the tensor product schemes of Cubic B-splines of order 3 and 4 to solve some PDEs such 
as heat equation and MHD Duct flow problem but the meshing grid size are extremely large. 
Nonlinear Burgers–Fisher equation [12] was numerically solved by Singh et al., using higher order 
cubic B-spline scheme which makes it computationally higher cost. Yaseen et al., [13] numerically 
solved the generalized form of time-fractional diffusion equation using cubic trigonometric B-splines 
with collocation method but having trigonometric spline basis makes the subsequent process very 
difficult as the matrix system generated by this method is relatively very large. This type of PDE is 
also studied by Singh et al., [14] in the form of reaction-diffusion equation using trigonometric B-
spline with Neumann and Dirichlet boundary conditions. Jena and Senapati [15] presented solution 
of heat and advection-diffusion equation using improvised cubic B-spline collocation, finite element 
method and Crank-Nicolson technique but these methods have high arithmetic computations, lower 
accuracy, and complexity in computer programming. Goh and Ismail [16] used cubic b-spline 
collocation for the solution of heat and wave equation but to sustain accuracy smaller space steps 
are needed. Another paper from Goh et al., [17] were presented on the solution of heat equation 
using cubic and higher order spline schemes. Mohebbi and Dehghan [18] studied the cubic B-spline 
collocation method and compact 4th order finite difference approximation method for the solution 
of heat equation. The implicit Crank – Nicolson method can be used to efficiently solve the heat 
equation [19, 20]. Many authors [21-25] have used higher order B-splines such as quintic, quartic, 
sextet and septic B-splines for the solutions of different PDEs but faced computational higher cost. 
Also, Riccati matrix delay differential equations has solved with variational iteration method in these 
papers [26-30]. 

In this paper, Modified Cubic B-spline Method (MCBSM) with collocation method is used to solve 
the heat equation (1). The MCBSM basis with a free parameter 𝛾 is used to approximate the spatial 
derivative while finite difference method is used for the temporal derivative. The results are tested 
in comparison to the exact solution based on parametric value 𝛾 = 2 . The motivation behind 
suggesting MCBSM stems from its applicability to real-world problems in engineering, physics, 
biology, and other scientific disciplines. Its ability to capture complex behaviours and accurately 
represent experimental data makes it a valuable tool for modelling and simulation purposes. The 
benefits of using MCBSM is its free parameter 𝛾  which gives more control on edges of curve solution 
globally enhancing smoothness, flexibility, and applicability to various scientific and engineering 
domains. 

In section two, the generalized derivation of the MCBSM collocation method has been provided. 
Section 3 is comprised of the stability of the proposed method. The solution of the problem (1) using 
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MCBSM based on the free parameter 𝛾 and the numerical results are discussed to analyze errors in 
section 4. Finally, the concluding remarks are given in section 5. 
 
2. Modified Cubic B-spline Collocation Method (MCBSM) 
 

In the cubic B-splines collocation method, the approximate solution can be written as a linear 
combination of cubic B-spline basis functions for the approximation space.  

Consider a mesh 0 = 𝑥0  <  𝑥1, . . . , 𝑥𝑁−1  <  𝑥𝑁  =  𝑃 as a uniform partition of the solution 

domain 0 ≤  𝑥 ≤  𝑃 by the knots 𝑥𝑖 with ℎ = 𝑥𝑖+1 − 𝑥𝑖 =
𝑃

𝑁
 , 𝑖 = 0,1, … ,𝑁 − 1 .  

Suppose that the proposed spline solution [31] to problem (1) is: 
 

𝑢(𝑥, 𝑡) ≅ 𝑈(𝑥𝑖 , 𝑡) = 𝑈𝑖
𝑛 = 𝑆(𝑥) = ∑ 𝑑𝑖(𝑡)𝐵𝑖(𝑥𝑖)

𝑁+1
𝑖=−1             (2) 

 
Here 𝑑𝑖(𝑡) are unknown time-dependent constants while 𝐵𝑖(𝑥) are the set of basis functions 

based on the definition of cubic B-spline Basis (CBS) for 𝑖 = 0,1,2, …𝑁 is: 
 

𝐵𝑖(𝑥) =

{
 
 
 
 

 
 
 
 (

𝑥−𝑥𝑖−2

ℎ
)
3
 ,                                                                      𝑖𝑓 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]

1 + 3 (
𝑥−𝑥𝑖−1

ℎ
) + 3 (

𝑥−𝑥𝑖−1

ℎ
)
2
+ (

𝑥−𝑥𝑖−1

ℎ
)
3
 ,       𝑖𝑓 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

1 + 3 (
𝑥𝑖+1−𝑥

ℎ
) + 3 (

𝑥𝑖+1−𝑥

ℎ
)
2
+ (

𝑥𝑖+1−𝑥

ℎ
)
3
 ,       𝑖𝑓 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]

(
𝑥𝑖+2−𝑥

ℎ
)
3
 ,                                                                        𝑖𝑓 𝑥 ∈ [𝑥𝑖+2, 𝑥𝑖+1]

0 ,                                                                                                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

      (3) 

 
where {𝐵−1, 𝐵0, 𝐵1, … , 𝐵𝑁 , 𝐵𝑁+1} are basis set over the interval 0 ≤  𝑥 ≤  𝑃. 

Eq. (3) can be rewritten in a recurrence relation as:  
 

𝐵𝑖(𝑥𝑗) = {

4,              𝑖𝑓 𝑖 = 𝑗,
1,    𝑖𝑓 𝑖 − 𝑗 = ±1,
0,   𝑖𝑓 𝑖 − 𝑗 = ±2

    𝑖, 𝑗 = −1,0,1, … ,𝑁, 𝑁 + 1         (4) 

 
and that 𝐵𝑖(𝑥) = 0 for 𝑥 ≤ 𝑥𝑖−2 and 𝑥 ≥ 𝑥𝑖+2.  

The first and second-order derivatives of 𝐵𝑖(𝑥𝑗) are given by: 

 

𝐵𝑖
′(𝑥𝑗) = {

0,              𝑖𝑓 𝑖 = 𝑗,

±
3

ℎ
,    𝑖𝑓 𝑖 − 𝑗 = ±1,

0,   𝑖𝑓 𝑖 − 𝑗 = ±2

     𝑖, 𝑗 = −1,0,1, … , 𝑁,𝑁 + 1        (5) 

 
and 
 

𝐵𝑖
′′(𝑥𝑗) = {

−
12

ℎ2
,              𝑖𝑓 𝑖 = 𝑗,

6

ℎ2
,    𝑖𝑓 𝑖 − 𝑗 = ±1,

0,   𝑖𝑓 𝑖 − 𝑗 = ±2

    𝑖, 𝑗 = −1,0,1, … , 𝑁,𝑁 + 1         (6) 
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Table 1 summarized the value at each knot for 𝐵𝑖(𝑥), 𝐵𝑖
′(𝑥) and 𝐵𝑖

′′(𝑥). 
 

Table 1 
Basis values at corresponding knots from Eq. (4-6) 
𝑥 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 
𝐵𝑖(𝑥) 0 1 4 1 0 
ℎ𝐵𝑖

′(𝑥) 0 -3 0 3 0 
ℎ2𝐵𝑖

′′(𝑥) 0 6 -12 6 0 

 
The basis functions ought to disappear at the boundary of the curve when boundary conditions 

are given in the collocation technique. However, in the case of cubic B-splines the basis functions 
𝐵−1, 𝐵0, 𝐵1, . . . , 𝐵𝑁−1, 𝐵𝑁, 𝐵𝑁+1 are not disappearing on one of the boundary locations [12]. 
Consequently, the basis functions need to be adjusted to form a new set that vanishes on the 
boundaries where the boundary conditions are applied. To solve this, the modified term is introduced 
into Eq. (2) using a free parameter 𝛾, given by equation below [8]: 
 

𝐵̅𝑖(𝑥) =

{
 
 

 
 
𝐵0(𝑥) + 𝛾𝐵−1(𝑥)             𝑓𝑜𝑟 𝑖 = 0

𝐵1(𝑥)  −  𝐵−1(𝑥)             𝑓𝑜𝑟 𝑖 = 1

𝐵𝑖(𝑥)              𝑓𝑜𝑟  𝑖 =  2, … , 𝑁 − 2

𝐵𝑁−1(𝑥) − 𝐵𝑁+1(𝑥) 𝑓𝑜𝑟 𝑖 = 𝑁 − 1

𝐵𝑁(𝑥) + 𝛾𝐵𝑁+1 (𝑥)         𝑓𝑜𝑟 𝑖 = 𝑁

          (7) 

 
The free parameter 𝛾 = −4, 2, is used to modify the end points. Therefore, we can rewrite Eq. 

(2) using modified basis from Eq. (7) as, 
 

𝑢(𝑥, 𝑡) ≅ 𝑆̅(𝑥) = ∑ 𝑑𝑖𝐵̅𝑖(𝑥)
𝑁
𝑖=0             (8) 

 
Eq. (8) is equivalent to 

 
𝑆̅(𝑥) = 𝑑0𝐵̅0(𝑥) + 𝑑1𝐵̅1(𝑥) + ⋯+ 𝑑𝑁𝐵̅𝑁(𝑥).    (9) 
 

Subsequently, Eq. (9) is used for the numerical computation of problem (1). The expression 
𝜕2𝑢

𝜕𝑥2
 

in (1) is substituted with the corresponding Spline function and expressed in the matrix form. The 
unknowns 𝑑𝑖 , 𝑖 = 0, … , 𝑁 are finally solved by fulfil the collocation equations as well as the boundary 
conditions.  
 
3. Implementation of MCBSM 
 

Eq. (1) can be rearranged as: 
 
−𝑢𝑥𝑥 + 𝑢𝑡 = 0, 𝛼

2 = 1                      (10) 
 

Suppose 𝐿 is a linear differential operator for the solution of (10). The proposed solution must 
satisfy the linear differential operator properties such as: 
 

𝐿(𝑢(𝑥)) = 𝑋(𝑥)                       (11) 
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Using differential operator properties and Taylor series, Eq. (11) expands to 
 

(𝐶0𝐷
(𝑛) + 𝐶1𝐷

(𝑛−1) + 𝐶2𝐷
(𝑛−2) +⋯+ 𝐶𝑛)𝑢(𝑥) = 𝑋(𝑥)                   (12) 

 
Here D is the 𝑛𝑡ℎ order differentiation operator. In the case of heat equation, we have order 𝑛 =

2 derivative of spatial value 𝑥. Therefore, the corresponding MCBSM associates with Eq. (11) is,  
 

𝐿(𝑆̅(𝑥)) = 𝑋(𝑥𝑗), 0 ≤ 𝑥𝑗 ≤ 𝑁,                     (13) 

 
with boundary conditions  
 
𝑆̅(0) = 𝛽0, 𝑆̅(1) = 𝛽1                          (14) 
 

Expanding (13) according to Eq. (12), we have: 
 

−𝑆̅′′(𝑥𝑗) + 𝑇(𝑥𝑗)𝑆̅(𝑥𝑗) = 𝑋(𝑥𝑗)                     (15) 

 

Here 𝐶0𝐷
(2)𝑢(𝑥) = −𝑆̅′′(𝑥𝑗), 𝐶𝑛𝑈 = 𝑇(𝑥𝑗)𝑆̅(𝑥𝑗), 𝑋(𝑥) = 𝑋(𝑥𝑗) and 𝐶𝑛 = 𝑇(𝑥𝑗) is positive 

variable coefficient comes due to linear differential operator properties. 
 

−∑ 𝑑𝑖𝐵̅𝑖
′′
(𝑥𝑗)

𝑁
𝑖,𝑗=0 + 𝑇(𝑥𝑗)∑ 𝑑𝑖𝐵̅𝑖(𝑥𝑗) =

𝑁
𝑖,𝑗=0 𝑋(𝑥𝑗)                   (16) 

 
Eq. (16) is expanded as: 

 

−[𝑑𝑗−1𝐵̅𝑗−1
′′
(𝑥𝑗) + 𝑑𝑗𝐵̅𝑗

′′
(𝑥𝑗) + 𝑑𝑗+1𝐵̅𝑗+1

′′
(𝑥𝑗)]

+ 𝑇(𝑥𝑗)[𝑑𝑗−1𝐵̅𝑗−1(𝑥𝑗) + 𝑑𝑗𝐵̅𝑗(𝑥𝑗) + 𝑑𝑗+1𝐵̅𝑗+1(𝑥𝑗)] = 𝑋(𝑥𝑗), ∀ 𝑗 = 0,1,2, … ,𝑁. 

 
Rearranging the terms according to 𝑑𝑗 as: 

 

𝑑𝑗−1[−𝐵̅𝑗−1
′′
(𝑥𝑗) + 𝑇(𝑥𝑗)𝐵̅𝑗−1(𝑥𝑗)] 

+𝑑𝑗[−𝐵̅𝑗
′′
(𝑥𝑗) + 𝑇(𝑥𝑗)𝐵̅𝑗(𝑥𝑗)] + 𝑑𝑗+1[−𝐵̅𝑗+1

′′
(𝑥𝑗) + 𝑇(𝑥𝑗)𝐵̅𝑗+1(𝑥𝑗)] = 𝑋(𝑥𝑗), 

 ∀ 𝑗 = 0,1,2,… ,𝑁.                        (17) 
 

Using table 1, Eq. (17) is simplified to: 
 

(−6 + 𝑇𝑗ℎ
2)𝑑𝑗−1 + (12 + 4𝑇𝑗ℎ

2)𝑑𝑗 + (−6 + 𝑇𝑗ℎ
2)𝑑𝑗+1 = ℎ

2𝑋𝑗 , ∀ 𝑗 = 0,1,2, … , 𝑁.                 (18) 

 

where 𝑇(𝑥𝑗) = 𝑇𝑗 and 𝑋(𝑥𝑗) = 𝑋𝑗. 

For the given boundary conditions in (14), the MCBSM is equivalent to: 
 

𝑆̅(𝑥𝑗) = 𝑆̅(𝑥0) = 𝛽0 

 

Expand the 𝑆̅(𝑥𝑗) according to (9) 

 
𝑑−1𝐵̅−1(𝑥0) + 𝑑0𝐵̅0(𝑥0) + 𝑑1𝐵̅1(𝑥0) + ⋯+ 𝑑𝑁𝐵̅𝑁(𝑥0) + 𝑑𝑁+1𝐵̅𝑁+1(𝑥0) = 𝛽0 
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Using table 1, 
 
0𝑑−1 + 6𝑑0 + 0𝑑1 = 𝛽0  
 
and therefore  
   
6𝑑0 = 𝛽0                         (19) 
 

The same approach in (19) is applied to the second boundary condition in (14)   
 
6𝑑𝑁 = 𝛽1                         (20) 
 

Eq. (18-20) generates a (𝑁 + 3) × (𝑁 + 3) trigonal system with (𝑁 + 3) unkonwns, 
 

𝑑𝑁 = (𝑑0, … , 𝑑𝑁)
𝑡. 

 
and from the (17) and (18),  
 
36𝑑0 = 𝑋0ℎ

2 − 𝛽0(−6 + 𝑇0ℎ
2)                      (21) 

 
Again eliminating 𝑑𝑁+1 from the (17) and (19), we find 

 
36𝑑𝑁 = 𝑋𝑁ℎ

2 − 𝛽1(−6 + 𝑇𝑁ℎ
2)                      (22) 

 
From (17) we have, 

 
𝑗 = 1, (−6 + 𝑇1ℎ

2)𝑑0 + (12 + 4𝑇1ℎ
2)𝑑1 + (−6 + 𝑇1ℎ

2)𝑑2 = ℎ
2𝑋1,

𝑗 = 2, (−6 + 𝑇2ℎ
2)𝑑1 + (12 + 4𝑇2ℎ

2)𝑑2 + (−6 + 𝑇2ℎ
2)𝑑3 = ℎ

2𝑋2,
⋮

𝑗 = 𝑖, (−6 + 𝑇𝑗ℎ
2)𝑑𝑗−1 + (12 + 4𝑇𝑗ℎ

2)𝑑𝑗 + (−6 + 𝑇𝑗ℎ
2)𝑑𝑗+1 = ℎ

2𝑋𝑗 ,

⋮
𝑗 = 𝑁 − 1, (−6 + 𝑇𝑁−1ℎ

2)𝑑𝑁−2 + (12 + 4𝑇𝑁−1ℎ
2)𝑑𝑁−1 + (−6 + 𝑇𝑁−1ℎ

2)𝑑𝑁 = ℎ
2𝑋𝑁−2 }

  
 

  
 

         (23) 

 
Eq. (21), (22) and (23) led to the system of (𝑁 + 1) linear equations 𝐴𝑥𝑁 = 𝐶𝑁 in the (𝑁 + 1) 

unknowns 𝑥𝑁 = (𝑑0, 𝑑1, … , 𝑑𝑁)
𝑡 of the form: 

 

[
 
 
 
 
 
36
𝛿
0

0
𝜔
𝛿

0 0 0 0
𝛿 0 0 0
𝜔 𝛿 0 0

0 0 ⋱ ⋱ ⋱ 0
0
0

0
0

0
0

𝛿
0

𝜔 𝛿
0 36]

 
 
 
 
 

[
 
 
 
 
 
𝑑0
𝑑1
𝑑2
⋮

𝑑𝑁−1
𝑑𝑁 ]

 
 
 
 
 

=

[
 
 
 
 
 
 
𝑋0ℎ

2 − 𝛽0𝛿

𝑋1ℎ
2

𝑋2ℎ
2

⋮
𝑋𝑁−1ℎ

2

𝑋𝑁ℎ
2 − 𝛽1𝛿]

 
 
 
 
 
 

                   (24) 

 
where 𝛿 = −6 + 𝑇ℎ2 , 𝜔 = 12 + 4𝑇ℎ2. Since 𝑇(𝑥) > 0, so obviously 𝐴 has strictly dominance 
property and therefore 𝐴 is non-singular. The system  𝐴𝑥𝑁 = 𝐶𝑁 can be solved for  𝑑0, 𝑑1, … , 𝑑𝑁 using 
Thomas Method. 
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4. Stability Analysis  
 

For the solution of (1) at time level 𝑡𝑗+1𝑡ℎ [17], consider: 

 

(𝑈𝑡)𝑖
𝑘  +  (1 −  𝜃)𝑓𝑖

𝑘  +  𝜃𝑓𝑖
𝑘+1 =  0,                    (25) 

 

Here 𝑓𝑖
𝑘  =   − 𝛼2(𝑈𝑥𝑥)𝑖

𝑘 and for the successive time levels, we used 𝑘 and 𝑘 +  1 , 𝑘 =  0,1,2, . ... 
Now, using a first-order accurate forward difference technique to discretize the time derivative and 
rewriting the equation,  
 

𝑈𝑖
𝑘+1 + 𝜃∆𝑡𝑓𝑖

𝑘+1  =  𝑈𝑖
𝑘  −  (1 −  𝜃) ∆𝑡𝑓𝑖

𝑘                       (26) 
 

Here we use ∆𝑡 as the time step. For 𝜃 =  0 system becomes an explicit technique, for 𝜃 =  1 it 
becomes implicit technique, and for 𝜃 =  0.5 it becomes a mixed technique of Crank-Nicolson. 

Here we used Von Neumann stability method to analyze the stability of the said method [9, 15-
17][9, 15-17]. Consider the Fourier mode solution at a given point 𝑥𝑚 
 

𝐶𝑚
𝑘  =  𝜎𝑘 𝑒𝑥𝑝(𝑖𝛿𝑚ℎ)                                   (27) 

 

where 𝑖 =  √−1 and 𝛿 is the mode number. 

By substituting 𝑈𝑖
𝑘 = ∑ 𝑑𝑖𝐵̅𝑖(𝑥)  

𝑁+1
𝑖=−1 into (26) and rearranging the equation, we have, 

 

𝑃𝐴𝐶𝑚−2
𝑘+1 + 𝑃𝐵𝐶𝑚−1

𝑘+1  =  𝑄𝐴𝐶𝑚−2
𝑘 + 𝑄𝐵𝐶𝑚−1

𝑘                       (28) 
 
where, 
 

𝑃𝐴 =
1

6
−
𝜃∆𝑡𝛼2

ℎ2
 , 𝑃𝐵 =

4

6
+
2𝜃∆𝑡𝛼2

ℎ2
 , 𝑄𝐴 =

1

6
+
(1−𝜃)∆𝑡𝛼2

ℎ2
 , 𝑄𝐵 =

4

6
−
2(1−𝜃)∆𝑡𝛼2

ℎ2
  

 
Applying the Eq. (18) into (19) and evaluating the equation we have, 

 

𝛾 =
𝑆

𝑇
                          (29) 

 
where, 

𝑆 =
2+𝑐𝑜𝑠𝛿ℎ

3
−
2(1−𝜃)∆𝑡𝛼2

ℎ2
[1 − 𝑐𝑜𝑠𝛿ℎ]  

 
And 
 

𝑇 =
2+𝑐𝑜𝑠𝛿ℎ

3
+
2𝜃∆𝑡𝛼2

ℎ2
[1 − 𝑐𝑜𝑠𝛿ℎ]  

 
This implies that, 
 

|𝛾| = |
𝑆

𝑇
| ≤ 1  
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Thus, this shows that the presented numerical scheme for the heat equation is unconditionally 
stable. 
 
5. Numerical Results 
 
Eq. (1) is given below: 
 
𝜕𝑢

𝜕𝑡
= 𝛼2

𝜕2𝑢

𝜕𝑥2
 , 𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0, 𝑢(𝑥, 0) = 𝑔(𝑥)        

 
Using notation for u to the mesh point as 𝑝(𝑥𝑗 , 𝑡𝑛) by 

 

𝑈𝑝 = 𝑈(𝑥𝑗 , 𝑡𝑛) = 𝑈𝑗
𝑛  

 
Using the forward difference relation for 𝑢𝑡 is 

 

𝑢𝑡 ≈
𝑢𝑗
𝑛+1−𝑢𝑗

𝑛

∆𝑡
                         (30) 

 
Substituting 𝑝 = 𝑢𝑗 in above equation we have, 

 
𝑝𝑛+1(𝑥)−𝑝𝑛(𝑥)

∆𝑡
= 𝛼2

𝜕2𝑝𝑛+1(𝑥)

𝜕𝑥2
,  

 
−∆𝑡𝛼2𝑝𝑥𝑥

𝑛+1 + 𝑝𝑛+1 = 𝑝𝑛  
 

At 𝑡 = 0, 𝑛 = 0, 𝑡0 
 
−∆𝑡𝛼2𝑝𝑥𝑥

1 + 𝑝1 = 𝑝0                       (31) 
 

Using Eq. (4), (5) and (7), the following results are deduced: 
 

𝑝𝑥𝑥
1 = ∑ 𝑑𝑖𝐵̅𝑖

′′
(𝑥𝑗)

𝑁+1
𝑖=−1 , 𝑝1 = ∑ 𝑑𝑖𝐵̅𝑖(𝑥𝑗), 𝑝

0 = 𝑢(𝑥𝑗 , 0) = 
𝑁+1
𝑖=−1 𝑔(𝑥𝑗)  

 
Using these results in Eq. (29), we have: 

 

−∆𝑡𝛼2∑ 𝑑𝑖𝐵̅𝑖
′′
(𝑥𝑗)

𝑁
𝑖,𝑗=0 + ∑ 𝑑𝑖𝐵̅𝑖(𝑥𝑗) =

𝑁
𝑖,𝑗=0 𝑔(𝑥𝑗)  

 
Using expansion of these series, 

 

−∆𝑡𝛼2[𝑑𝑗−1𝐵̅𝑗−1
′′
(𝑥𝑗) + 𝑑𝑗𝐵̅𝑗

′′
(𝑥𝑗) + 𝑑𝑗+1𝐵̅𝑗+1

′′
(𝑥𝑗)] + [𝑑𝑗−1𝐵̅𝑗−1(𝑥𝑗) + 𝑑𝑗𝐵̅𝑗(𝑥𝑗) +

𝑑𝑗+1𝐵̅𝑗+1(𝑥𝑗)] = 𝑔(𝑥𝑗), ∀ 𝑗 = 0,1,2,… , 𝑁.                     (32) 

 

𝑑𝑗−1[−∆𝑡𝛼
2𝐵̅𝑗−1

′′
(𝑥𝑗) + 𝐵̅𝑗−1(𝑥𝑗)]

+ 𝑑𝑗[−∆𝑡𝛼
2𝐵̅𝑗

′′
(𝑥𝑗) + 𝐵̅𝑗(𝑥𝑗)] + 𝑑𝑗+1[−∆𝑡𝛼

2𝐵̅𝑗+1
′′
(𝑥𝑗) + 𝐵̅𝑗+1(𝑥𝑗)] = 𝑔(𝑥𝑗), ∀ 𝑗

= 0,1,2, … , 𝑁.                                                        
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Using Eq. (3)-(5) and table 1, we get 
 
(−6∆𝑡𝛼2 + ℎ2)𝑑𝑗−1 + (12∆𝑡𝛼

2 + 4ℎ2)𝑑𝑗 + (−6∆𝑡𝛼
2 + ℎ2)𝑑𝑗+1 = ℎ

2𝑔𝑗 ,  

∀ 𝑗 = 0,1,2,… ,𝑁.                        (33) 
 

where 𝑔(𝑥𝑗) = 𝑔𝑗. 

 
𝑗 = 1, (−6∆𝑡𝛼2 + ℎ2)𝑑0 + (12∆𝑡𝛼

2 + 4ℎ2)𝑑1 + (−6∆𝑡𝛼
2 + ℎ2)𝑑2 = ℎ

2𝑔1,  
 
𝑗 = 2, (−6∆𝑡𝛼2 + ℎ2)𝑑1 + (12∆𝑡𝛼

2 + 4ℎ2)𝑑2 + (−6∆𝑡𝛼
2 + ℎ2)𝑑3 = ℎ

2𝑔2, 
      ⋮ 
𝑗 = 𝑖, (−6∆𝑡𝛼2 + ℎ2)𝑑𝑗−1 + (12∆𝑡𝛼

2 + 4ℎ2)𝑑𝑗 + (−6∆𝑡𝛼
2 + ℎ2)𝑑𝑗+1 = ℎ

2𝑔𝑗 , 

      ⋮ 
𝑗 = 𝑁 − 1, (−6∆𝑡𝛼2 + ℎ2)𝑑𝑁−2 + (12∆𝑡𝛼

2 + 4ℎ2)𝑑𝑁−1 + (−6∆𝑡𝛼
2 + ℎ2)𝑑𝑁 = ℎ

2𝑔𝑁−1  
 

These equations led to the system of (𝑁 + 1) linear equations 𝐴𝑥𝑁 = 𝐶𝑁 in the (𝑁 + 1) 
unknowns 𝑥𝑁 = (𝑑0, 𝑑1, … , 𝑑𝑁)

𝑡 of the form: 
 

[
 
 
 
 
 
36∆𝑡
𝛿
0

0
𝜔
𝛿

0 0 0 0
𝛿 0 0 0
𝜔 𝛿 0 0

0 0 ⋱ ⋱ ⋱ 0
0
0

0
0

0
0

𝛿
0

𝜔 𝛿
0 36∆𝑡]

 
 
 
 
 

[
 
 
 
 
 
𝑑0
𝑑1
𝑑2
⋮

𝑑𝑁−1
𝑑𝑁 ]

 
 
 
 
 

=

[
 
 
 
 
 
 
𝑔0ℎ

2

𝑔1ℎ
2

𝑔2ℎ
2

⋮
𝑔𝑁−1ℎ

2

𝑔𝑁ℎ
2 ]
 
 
 
 
 
 

                   (34) 

 
where 𝛿 = −6∆𝑡𝛼2 + ℎ2 , 𝜔 = 12∆𝑡𝛼2 + 4ℎ2. The system is strictly dominant and hence 
nonsingular. Finally, the system  𝐴𝑥𝑁 = 𝐶𝑁 are solved for 𝑑0, 𝑑1, … , 𝑑𝑁 of the spline function, 𝑆̅(𝑥).  
 
Problem 1 [1] 

We have exact solution of above equation with thermal diffusivity constant 𝛼2 = 1 as: 
 
𝑢(𝑥, 𝑡) = sin (2𝜋𝑥). 𝑒𝑥𝑝(−4𝛼2𝜋2𝑡), 𝑔(𝑥) = sin (2𝜋𝑥) 
 

Table 2 shows the numerical results of the proposed MCBSM for the step size, ℎ = 0.05. The 
computational work is done by MATLAB program. Here Table 2 consists of errors generated by the 
proposed numerical method of problem 1 and shows better approximations in comparison of table 
given in [1] while Table 3 shows absolute errors of problem 2 [17]. From problem 1, Figure 1 shows 
3d image of exact data values while Figure 2 displays numerical data values at h =  0.05; ∆𝑡 =
0.001, and 𝛾 = 2. Figure 3 shows comparison of errors between proposed and cubic B-spline method 
[1]. In Figures 4 and 5, exact and numerical data values of problem 2 are shown in terms of surfaces. 
From tables and figures MCBSM is working better in comparison of results given in [1]. 
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Table 2 
Comparison of Numerical and Exact values with corresponding error values. 

 

  
Fig. 1. Numerical Solution of Heat Equation at 
h =  0.05; ∆t = 0.001, γ = 2 

Fig. 2. Exact Solution of Heat Equation at h =
 0.05; ∆t = 0.001, γ = 2 

  

𝑥 Approximated values Exact values Absolute Error Absolute Error[1] 

0 0.0000000000 0.0000000000 0.0000000000 0 
0.05 0.0062348614 0.0059628855 0.0012914192 0.0185 
0.10 0.0118594112 0.0113420823 0.0024564253 0.0353 
0.15 0.0163230792 0.0156110370 0.0033809793 0.0486 
0.20 0.0191889304 0.0183518746 0.0039745796 0.0571 
0.25 0.0201764354 0.0192963029 0.0041791203 0.06 
0.30 0.0191889304 0.0183518746 0.0039745796 0.0571 
0.35 0.0163230792 0.0156110370 0.0033809793 0.0486 
0.40 0.0118594112 0.0113420823 0.0024564253 0.0353 

0.45 0.0062348614 0.0059628855 0.0012914192 0.0185 

0.50 0.0000000000 0.0000000000 0.0000000000 0 
0.55 -0.0062348614 -0.0059628855 0.0012914192 0.0185 
0.60 -0.0118594112 -0.0113420823 0.0024564253 0.0353 
0.65 -0.0163230792 -0.0156110370 0.0033809793 0.0486 
0.70 -0.0191889304 -0.0183518746 0.0039745796 0.0571 
0.75 -0.0201764354 -0.0192963029 0.0041791203 0.06 
0.80 -0.0191889304 -0.0183518746 0.0039745796 0.0571 
0.85 -0.0163230792 -0.0156110370 0.0033809793 0.0486 
0.90 -0.0118594112 -0.0113420823 0.0024564253 0.0353 
0.95 -0.0062348614 -0.0059628855 0.0012914192 0.0185 
1 0.0000000000 0.0000000000 0.0000000000 0 
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Fig. 3. Error plot of Heat Equation at h =
 0.05; ∆t = 0.001, γ = 2 

 
Problem 2 [17] 

We have exact solution of above equation with thermal diffusivity constant 𝛼2 = 1 as: 
 

𝑢(𝑥, 𝑡) = cos (
𝜋𝑥

2
) . 𝑒𝑥𝑝 (−

𝛼2𝜋2𝑡

4
) , 𝑔(𝑥) = cos (

𝜋𝑥

2
)  

 
Table 3 shows the numerical results of the proposed MCBSM for the step size, ℎ = 0.1. 

 
Table 3 
Comparison of Numerical and Exact values with corresponding error values 
𝑥 Approximated values Exact values Absolute Error 

0 0.0000000000 0.0000000000 0.0000000000 
0.1 0.203016756069411 0.771724092658820 0.568707336589408 
0.2 0.335123184303920 0.743102046403511 0.407978862099592 
0.3 0.404989242637741 0.696182361551451 0.291193118913710 
0.4 0.425801671283474 0.632120356461202 0.206318685177728 
0.5 0.407980688824566 0.552493450307692 0.144512761483126 

0.6 0.360035210798434 0.459262321786972 0.0992271109885374 

0.7 0.289174020478991 0.354722630699596 0.0655486102206052 
0.8 0.201741302655282 0.241448491187480 0.0397071885321980 
0.9 0.103528158961270 0.122229088500728 0.0187009295394575 
1 0.0000000000 0.0000000000 0.0000000000 

 

  
Fig. 4. Exact Solution of Heat Equation at h =
 0.1; ∆t = 0.1, γ = 2 

Fig. 5. Numerical Solution of Heat Equation 
at h =  0.1; ∆t = 0.1, γ = 2 
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6. Conclusions 
 

In this paper, the Modification of Cubic B-Spline Basis function using a free parameter together 
with collocation technique is utilized for the solution of the one-dimensional heat equation. A 
generalized method is developed to incorporate the usage of free parameter 𝛾. For the results, 
MATLAB was employed to present results and graphs, facilitating a comparison between numerical 
and exact solutions. A numerical experiment was carried out to showcase the computational viability 
and efficiency of the proposed method. The numerical results show that the proposed method is 
capable in solving the PDE of the heat equation. 
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