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SUMMARY

In this paper, a numerical method was applied to solve two dimensional, incompressible, thermal
fluid flow problem. This study presents numerical prediction of free convection heat transfer inside an
inclined square cavity with perfectly conducting boundary conditions for the top and bottom walls.
The mesoscale lattice Boltzmann scheme with uniform mesh resolution was applied as a numerical
research tool. The inclination angels were varied from 20° to 160° with 20° intervals. The results were
presented in terms of streamlines, isotherms plots and average Nusselt number in the system. We
found that the flow structure together with the heat transfer mechanism are significantly dependence
on the magnitude of the inclination angles. Good agreements were obtained when compared with the
results published by other researchers in previous studies. Copyright © 2000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Flow in an enclosure driven by buoyancy force is a fundamental problem in fluid mechanics.
This type of flow is encountered in certain engineering applications within electronic cooling
technologies, in everyday situation such as roof ventilation or in academic research where
it may be used as a benchmark problem for testing newly developed numerical methods. A
classic example is the case where the flow is induced by differentially heated walls of the cavity
boundaries. Two vertical walls with constant hot and cold temperature is the most well defined
geometry and was studied extensively in the literature. A comprehensive review was presented
by Davis[1]. Other examples are the work by Azwadi and Tanahashi[2] and Tric[3].
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The analysis of flow and heat transfer in a differentially heated side walls was extended
to the inclusion of the inclination of the enclosure to the direction of gravity by Rasoul and
Prinos|[4]. This study performed numerical investigations in two dimensional thermal fluid flows
which are induced by the buoyancy force when the two facing sides of the cavity are heated to
different temperatures. The cavity was inclined at angles from 20° to 160°, Rayleigh numbers
from 103 to 10° and Prandtl numbers from 0.02 to 4000. Their results indicated that the mean
and local heat flux at the hot wall were significantly depend on the inclination angle. They
also found that this dependence becomes stronger for the inclination angle greater than 90°.

Hart[5) performed a theoretical and experimental study of thermal fluid flow in a rectangular
cavity at small aspect ratio and investigated the stability of the flow inside the system. Ozoe
et al.[6] conducted numerical analysis using finite different method of two-dimensional natural
circulation in four types of rectangular cavity at inclination angles from 0° to 180". Kuyper
et al.[7] provided a wide range of numerical predictions of flow in an inclined square cavity,
covered from laminar to turbulent regions of the flow behavior. They applied k-¢ turbulence
model and performed detailed analysis for Rayleigh numbers of 10% to 10%°.

A thorough search of the literature has revealed that no work has been reported for free
convection in an inclined square cavity with Neumann typed of boundary conditions. The
type of boundary condition applied on the bottom and top boundaries of the cavity strongly
affects the heat transfer mechanism in the system[8]. Therefore, it is the purpose of present
study to investigate the fluid flow behavior and heat transfer mechanism in an inclined square
cavity, differentially heated sidewalls and perfectly conducting boundary condition for top and
bottom walls.

The current study is summarized as follow: two dimensional fluid flow and heat transter
in an inclined square cavity is investigated numerically. The two sidewalls are maintained
at different temperatures while the top and bottom walls are set as a perfectly conducting
wall. In current study, we fix the aspect ratio to unity. The flow structures and heat transfer
mechanism are highly dependent upon the inclination angle of the cavity. By also adopting the
Rayleigh number as a continuation parameter, the flow structure and heat transfers mechanism
represented by the streamlines and isotherms lines can be identified as function of inclination
angle. The computed average Nusselt number is also plotted to demonstrate the effect of
inclination angle on the thermal behaviour in the system. Section two of this paper presents
the governing equations for the case study in hand and introduces the numerical method which
will be adopted for its solution. Meanwhile section three presents the computed results and
provides a detailed discussion. The final section of this paper concludes the current study.

2. NUMERICAL FORMULATION

In present research, the incompressible viscous fluid flow and heat transfer are studied in
a differentially heated side walls and perfectly conducting boundary conditions for top and
bottom walls. Then the square enclosure is inclined from 20° to 160° to investigate the effect
of inclination angles on thermal and fluid flow characteristics in the system. The governing
equations are solve indirectly: i. e. using the lattice Boltzmann mesoscale method (LBM) with
second order accuracy in space and time.

Our literature study found that there were several investigations have been conducted
using the LBM to understand the phenomenon of free convection in an enclosure[9][10][11].
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However, most of them considered an enclosure at 90° inclination angle and adiabatic boundary
conditions at top and bottom walls. To the best of authors’ knowledge, only Lallemand et al.[12]
predicted the natural convection in an inclined enclosure at two Rayleigh numbers and two
aspect ratios. In their study, they investigated the fluid flow and heat transfer when an inclined
partition is attached to the hot wall enclosure and assumed adiabatic boundary condition at
the top and bottom walls. Due to lack of knowledge on the problem in hand, therefore, the
objective of present paper is to gain better understanding for the current case study by using
the lattice Boltzmann numerical method. To see this, we start with the evolution equations of
the density and temperature distribution functions, given as[13]
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where the density distribution function f = f (x,t) is used to calculate the density and velocity
fields and the temperature distribution function g = g (x, t) is used to calculate the macroscopic
temperature field. Note that Bhatnagar-Gross-Krook (BGK) collision model[14] with a single
relaxation time is used for the collision term. For the D2Q9 model (two-dimension nine-lattice
velocity model), the discrete lattice velocities are defined by
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Here, ¢ is the lattice spacing. In LBM, the magnitude of c; is set up so that in each time
step At, the distribution function propagates in a distance of lattice nodes spacing Az. This
will ensure that the distribution function arrives exactly at the lattice nodes after At. The
equilibrium function for the density distribution function f7* for the D2Q9 model is given by

[ = pw; [1+3c;-u+ (4)
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where the weights are wg = %, Wy = fl, fori=1-4and w; = -31(—) for i =5 — 8.
According to Azwadi and Tanahashi[8] and Hou et al.[13], the expression for equilibrium
function of temperature distribution can be written as
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Regroup Eq. (5) to avoid higher order quadrature gives
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It has been proved by Guo[15] that the zeroth through second order moments in the last square
bracket and the zeroth and first order moments in the second square bracket in the right hand
side of Eq. (6) vanish. The exclusion of the second order moments in the second square bracket
in Eq. (6) only related to the constant parameter in the thermal conductivity which can be

absorbed by manipulating the parameter 7. in the computation. Therefore, by dropping the
terms in the last two square brackets on the right hand side of Eq. (6) gives
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After some modifications in order to satisfy the macroscopic energy equation via
the Chapmann-Enskog expansion procedure, the discretised equilibrium function for the
temperature distribution can be expressed as

g = pT
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where the weights are wy = %, Wi = % fori =1—4 and w; = % for ¢« = 5 — 8. The macroscopic

variables, density p, and temperature 7" can thus be evaluated as the moment to the equilibrium

distribution functions as
- E : req E : eq
P = : .fi L= : g; (9)

Through a multiscaling expansion, the mass and momentum equations can be derived for
D2Q9 model. The detail derivation of this is given by Luo et al[16] and will not be shown
here. The kinematic viscosity of fluid is given by

27, — 1
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The energy equation at the macroscopic level can be expressed as follow
d
—pT + V- puT = xV2 (pT). (11)
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where y is the thermal diffusivity. Thermal diffusivity and the relaxation time of temperature
distribution function is related as
27, — 1

X=—%—" (12)
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3. PROBLEM PHYSICS AND NUMERICAL RESULTS

The physical domain of the problem is represented in Fig. 1. The conventional no-slip boundary
conditions[17] are imposed on all the walls of the cavity. The thermal conditions applied on
the left and right walls are T'(x = 0,y) = Ty and T(xz = L,y) = T¢. The top and bottom
walls being perfectly conducted, T'= Ty — (—f—) (Ty — T¢), where Ty and T¢ are hot and cold
temperature, and L is the width of the enclosure. The temperature difference between the
left and right walls introduces a temperature gradient in a fluid, and the consequent density
difference induces a fluid motion, that is, convection.

Figure 1. Physical domain of the problem.

The Boussinesq approximation is applied to the buoyancy force term. With this
approximation, it is assumed that all fluid properties can be considered as constant in the
body force term except for the temperature dependence of the density in the gravity term. So
the external force in Eq. (1) is

F;,=3G(c—u) f! (13)

(2
where G is the contribution from buoyancy force.
The dynamical similarity depends on two dimensionless parameters: the Prandtl number Pr
and the Rayleigh number Ra,

3
P = Z,Ra = g————O‘BATL :
X VX

(14)
We carefully choose the characteristic speed v, = /golLT so that the low-Mach-number
approximation is hold. Nusselt number, Nu is one of the most important dimensionless

numbers in describing the convective transport. The average Nusselt number in the system is
defined by

H 1 (" H
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where ¢, (z,y) = uT (x,y) — x (0/0x) T (x,y) is the local heat flux in x—direction.
In all simulations, Pr is set to be 7.0 to represent the circulation of water in the system.
Through the grid dependence study, the grid sizes of 251 x 251 is suitable for Rayleigh numbers
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from 10° to 10%. The convergence criterion for all the tested cases is

1
2

Max ((uz + vz)nH) = ((u2 + vz)n) %’ <1077 (16)

Max [T — T < 1077 (17)

where the calculation is carried out over the entire system.

Streamlines and isotherms predicted for flows at Ra = 10° and different inclination angles
are shown in Figures 2 and 3. As can be seen from the figures of streamline plots, the liquid
near the hot wall is heated and goes up due to the buoyancy effect before it hits the corner
with the perfectly conducting walls and spread to a wide top wall. Then as it is cooled by the
cold wall, the liquid gets heavier and goes downwards to complete the cycle.

At low value of inclination angle (0 = 200), two small vortices are formed at the upper corner
and lower corner of the enclosure indicates high magnitude of fow velocity near these regions.
The presence of these two corner vortices compressed the central cell to form an elongated
vortex. The isotherms show a good mixing occurring in the center and relatively small gradient
indicating small value of the local Nusselt number along the differentially heated walls.

Further increment of inclination angle (9 = 400) leads to the size reduction of small corner
vortices. At = 60Y, the small corner vortices completely disappear and the central cell
pointing towards the corners because high magnitude of gravity vector drag the outer vortex
along the vertical walls of the enclosure. Denser isotherms lines can be seen from the figure
indicates higher value of local and average Nusselt number compared to previous inclination
angles. Further inclination of enclosure separates the main central vortex into two smaller
vortices. As we increase the inclination angle, these two vortices grow in size indicates that
some fluid from the hot or cold wall returns back to the same wall. For inclination angles of
g = 80" to & = 120, the isotherms line are parallel to the perfectly conducting walls indicates
that the main heat transfer mechanism is by convection. Denser isotherms lines can be seen
near the bottom left and top right corners demonstrates high local Nusselt number near these
regions. However, at high inclination angles (9 > 1400), the isotherms lines are equally spaced
indicates low averages Nusselt number in the system.

For Rayleigh number equals to 5 x 10° and low inclination angles, the central vortex is
more rounded indicates equal magnitude of flow velocity near all four enclosure walls. At
angle equals to 607, the central cells splits into two before the corner vortices disappear.
The velocity boundary layer can be clearly seen for inclination angles of 80° and above. The
isotherm patterns are similar to those for Ra = 10° at all angles. However, the thermal
boundary layer are thicker indicating higher local and average Nusselt number along the cold
and hot walls.

For the simulation at the highest Rayleigh number in the present study (R(L = 106), the
formation of corner vortices can be clearly seen at low value of inclination angles. At angle
equals to 209, the complex structure of upper corner vortices indicates the instability of the
flow in the system. This flow instability is confirmed when we were unable to obtain a steady
solution even for a very high iteration number. The isotherms plots also display a complex
thermal behavior and good mixing of temperature in the system. The flow becomes steady
again when we increase the inclination angle to 60°. The central vortex is separated into two
smaller vortices and vertically elongated shaped indicates relatively high value of flow velocity
near the differentially heated walls. Most of the isotherms lines becomes parallel to the perfectly
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Figure 2. Streamlines plots at Ra
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Figure 3. Isotherms plots at Ra = 10°
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Figure 4. Streamlines plots at Ra = 5 x 10°.



12

C. 8. N. AZWADI AND N. I. N. IBRAHIM

Figure 7. Isotherms plots at Ra = 10°
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Figure 8. Effect of inclination angle on average Nusselt number.

conducting walls indicates the convection type dominates the heat transfer mechanism in the
system.

For # > 80Y, the central vortex is stretched from corner to corner of the enclosure and
perpendicular to the gravitational vector, developed denser streamlines near these corners,
indicating the position of maximum flow velocity for the current condition. On the other
hand, similar features of isotherms to those at lower Ra are observed.

The effect of the inclination angle on the average Nusselt number is shown in Figure 8 for all
values of Rayleigh numbers. One common characteristic which can be drawn from the figure;
the Nusselt number increases with increasing the Rayleigh number. However, the computed
Nusselt numbers are lower than those for the case of adiabatic types of boundary condition[4]
because the heat is allowed to pass through the top and bottom walls. Interestingly, the
minimum value of average Nusselt number is found converging to the same value and when
the inclination angle approaching 180" for every Rayleigh number. On the other hand, the
maximum value of average Nusselt number is determined at inclination angle between 60° to
80°. These can be explained by analyzing the isotherms plots which demonstrating relatively
denser lines near hot and cold walls leading to high temperature gradient near these regions.
Lower value of average Nusselt number at lower inclination angle was due to the presence of
small corner vortices which contributes smaller local heat transfer along the hot and cold walls.

For the computation at higher inclination angles, where the hot wall is close to the top
position, the magnitude of the gravity vector is reduced results in low magnitude of flow
velocity along the hot wall. Due to this reason, the heat transfer rates are small resulted fromn
the reduction in the driving potential for free convection.



14 C. S. N. AZWADI AND N. I. N. IBRAHIM

4. CONCLUSION

The free convection in an inclined cavity has been simulated using the mesoscale numerical
scheme where the Navier Stokes equation was solved indirectly using the lattice Boltzmann
method. The result of streamlines plots clearly depicting the flow pattern and vortex structure
in the cavity. The primary vortex is transformed from a single cellular to a double cellular as
the inclination angle increases. These demonstrate the lattice Boltzmann numerical scheme of
passive-scalar thermal lattice Boltzmann model is a very efficient numerical method to study
flow and heat transfer in a differentially heated inclined enclosure.
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Figure 6. Streamlines plots at Ra = 10°
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