
UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author's Full Name

Date of Birth

Title

Academic Session

Nur Afifah Binti Akbar

10 July 1999

Development of a Database and E-wallet System for GPS
Expressway Tolling System
2021/2022

I declare that this thesis is classified as:

D CONFIDENTIAL (Contains confidential information under the Official Secret
Act 1997)*

D RESTRICTED (Contains restricted information as specified by the
organization where research was done)*

D OPEN ACCESS I agree that my thesis to be published as online open access
(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies of the

thesis for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

ll'FI'FllH llKBllR
(Student's Signature)

990710-07-5062
Date: 14 FEBRUARY 2022

(Supervisor's Signature)

PROF. MADYA TS DR. HADI
BINMANAP
Date: 14 FEBRUARY 2022

NOTE:* If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration
letter.

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,
Perpustakaan Universiti Malaysia Pahang,
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for three (3) years
from the date of this letter. The reasons for this classification areas listed below.

Author's Name
Thesis Title

Reasons

Thank you.

Yours faithfully,

(i)

(ii)

(iii)

(Supervisor's Signature)

Date: 14 FEBRUARY 2022

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan
Universiti Malaysia Pahang with its copy attached to the thesis.

MAKLUMAT PANEL PEMERIKSA PEPERIKSAAN LISAN

(only for Faculty of Computer's student)

Thesis ini telah diperiksa dan diakui oleh

This thesis has been checked and verified by

Nama dan Alamat Pemeriksa Dalam

Name and Address Internal Examiner

Nama dan Alamat Pemeriksa Luar

Name and Address External Examiner

Nama dan Alamat Pemeriksa Luar

Name and Address External Examiner

Disahkan oleh Penolong Pendaftar IPS

Verified by Assistant Registrar JPS

Tandatangan
Signature

Nama
Name

Tarikh
Date

Universiti
Malaysia
PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Bachelor Technology in

Electronic Engineering (Computer System) with Honors.

(Supervisor's Signature)

Full Name

Position

Date

: PROF. MADY A TS DR. HADI BIN MANAP

: SUPERVISOR

: 14 FEBRUARY 2022

Universiti
Malaysia
PAHANG

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

ll'FI'F-!lH -!lKBllR
(Student's Signature)

Full Name : NUR AFIF AH BINTI AKBAR

ID Number : TG 18032

Date : 14 FEBRUARY 2022

DEVELOPMENT OF A DATABASE AND E-WALLET SYSTEM FOR GPS
EXPRESSWAY TOLLING SYSTEM

NUR AFIFAH BINTI AKBAR

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Electronics Engineering Technology with Honors

Faculty of Technology Electrical & Electronics Engineering

UNIVERSITI MALAYSIA PAHANG

r-------------·--.

UNIVET?;;:n1 Li:ALAY~~J/\ {~~,:JANG

FEBRUARY 2022
··---~""~"---·-··-,.r=" ~ ,~·······-·
No~ PeroL:h:n ~ N~.J. Pcnggl!an

T0-02769'
Tarikh

2 1 SEP 2023

ACKNOWLEDGEMENTS

First and foremost, thanks to the Almighty God, Allah S.W.T with his willingness, I had
accomplished my final year project in my fourth-year study at Universiti Malaysia
Pahang as it is compulsory and a requirement for graduation and award for Bachelor
Degree of Electronics Engineering Technology with Honors.

I want to express my sincerest appreciation to my supervisor Prof Madya Ts. Dr. Hadi
bin Manap. He deserves my heartfelt gratitude and thanks for his constant advice and
encouragement in making this study possible. Despite the numerous flaws I showed
throughout the study period, he always had faith in me and my abilities. He influenced
me greatly, not only in terms of improving my thesis but also in terms of caring for me
as a whole. His encouragement has given me the drive and motivation to keep pushing
towards completion, and I am grateful and humbled to be guided by him.

In addition, I'd want to express my gratitude to Universiti Malaysia Pahang for providing
us with the resources and equipment we required to successfully finish this senior design
project. I admire and appreciate my group members' dedication to making the vision a
reality. We spent the whole semester developing our skills and knowledge, working till
the wee hours of the morning to ensure that the project was finished and ready for the
final presentation.

I'd also like to express my gratitude to my family for their unwavering support, emotional
empathy, and affection. Without their help, I would not be where I am now. In their
persistent prayers and faith in me, they kept me strong, especially when I felt like giving
up. I'd also like to express my gratitude to my teammates for their support and assistance
throughout the semester.

11

ABSTRAK

Jalan tol telah menyediakan sebahagian besar pembiayaan rangkaian lebuh raya. Dengan
membina jalan bertol, adalah mungkin untuk menawarkan pelbagai perkhidmatan yang
dipertingkatkan kepada pengguna jalan raya, yang semuanya boleh dikira untuk
memastikan mereka mencapai hasil yang diinginkan. Pihak berkepentingan utama dalam
bidang jalan tol, bertanggungjawab untuk membangunkan projek tol dan menyediakan
perkhidmatan operasi menggunakan teknologi berkaitan sekali gus mencapai matlamat
utama membina tol, iaitu untuk memuaskan hati pelanggan. Setiap hari, tol di pusat
bandar dan kawasan perindustrian dijangka menyaksikan jumlah lalu lintas yang besar
yang terdiri daripada rangkaian kenderaan dari kenderaan peribadi hingga kenderaan
komersial ringan dan berat, trak pelbagai gandar, dan sebagainya. Selain itu, masalah lalu
lintas juga kritikal pada musim cuti terutamanya pada musim perayaan. Malah hakikat
bahawa lebuh raya baharu masih dibina di Malaysia masih tidak banyak berubah dan
peningkatan jumlah trafik secara beransur-ansur tidak lagi dapat dipenuhi semata-mata
dengan pembinaan lebuh raya baharu .. Membangunkan sistem tol lebuh raya GPS yang
mampu menggantikan sistem tol semasa dengan mengurangkan bilangan sumber
manusia yang bekerja di stesen tol dan menggunakan pengesanan GPS bagi semua
kenderaan yang masuk dan keluar tol. Untuk memudahkan pengguna, galakkan
penggunaan e-dompet dalam sistem tol. Mengelak kesesakan lalu lintas di pondok tol
membolehkan pemanduan lancar tanpa perlu risau untuk membayar tol. Tambahan pula,
dari permulaan dalam bab satu menerangkan pengenalan sistem Toi Lebuhraya GPS dan
sebab latar belakang projek itu memberi tumpuan kepada mengatasi sistem tol semasa.
Untuk memudahkan lagi pengguna, applikasi ini galakkan penggunaan e-dompet dalam
sistem tol. Anda boleh memandu tanpa risau membayar tol dengan mengelak kesesakan
lalu lintas di pondok tol. Kajian ini, menekankan perbezaan dengan sistem tol lain dan
bagaimana sistem Toi GPS berbeza dan mampu mengatasi banyak masalah yang sistem
Toi sebelum ini tidak dapat menyelesaikannya. Akhir sekali, dan sememangnya tidak
kurang pentingnya, gambaran keseluruhan utama Projek SDP itu sendiri (Sistem Toi
Lebuhraya GPS) dan cara ia berkerja dengan penekanan yang lebih mendalam tentang
cara ia berfungsi dan perkara yang mampu dicapai dalam jangka masa panjang ..

Ill

ABSTRACT

Toll roads have provided the majority of highway network funding. By constructing a
toll road, it is possible to offer a variety of enhanced services to road users, all of which
can be calculated to ensure that they achieve the desired results. The major stakeholders
in the toll road field, are responsible for developing the toll project and providing
operational services using associated technology thus achieving the primary goal of
constructing a toll, which is to satisfy customers. Every day, the toll in the city center and
industrial area is expected to see a large amount of traffic consisting of a range of vehicles
ranging from personal vehicles to light and heavy commercial vehicles, multi-axle trucks,
and so on. In addition, traffic problems are also critical during the holiday season,
especially during festive seasons. Even the fact that new highways are still being built in
Malaysia still can't change much and the·gradual rise in traffic volume can no longer be
met solely by the construction of new highways. Develop a GPS expressway tolling
system capable of replacing the current tolling system by reducing the number of human
resources working at toll stations and utilizing GPS tracking of all vehicles entering and
exiting the toll. To make it easier for end-users, encourage the use of e-wallets in tolling
systems. A voiding traffic jams at toll booths allows for smooth driving without having to
worry about paying the toll. Furthermore, from the start in chapter one explains the
introduction of the GPS Expressway Tolling system and the background reason why the
project is focusing on overcoming the current tolling system. To make it easier for end
users, encourage the usage of e-wallets in tolling systems. You can drive without
worrying about paying the toll by avoiding traffic congestion at toll booths. This study,
emphasizes the difference with other tolling systems and how the GPS Tolling system is
different and able to overcome many problems that the previous Tolling system wasn't
able to settle the score with. Finally, and certainly not least, the main overview of the
SDP Project itself (GPS Expressway Tolling System) and how it runs and functions with
more in-depth emphasis on how it works and what it's able to accomplish in the long run.

IV

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

LIST OF APPENDICES xi

CHAPTER 1 INTRODUCTION 12

1.1 Project Background 12

1.2 Problem Statement 13

1.3 Objective of Project 14

1.4 Significance Research 15

1.4.1 Software Design 15

CHAPTER 2 LITERATURE REVIEW 16

2.1 Comparison with Other Product 16

2.1.1 Open Toll System 16

2.1.2 Close Toll System 17

2.1.3 Short Toll System 17

2.1.4 Electronic Toll System 18

2.1.5 RFID Toll System 18

v

2.2 Critical Argues Findings and or Methods from Previous Work and Suggesting

2.3

2.4

Potential Solution.

Suggesting Potential Solution

Summarization of The GPS Expressway Tolling System

CHAPTER 3 METHODOLOGY

3.1 Component Description

3.1.1 Django

3.1.2 Vuetify

3.1.3 Google MAP

3.2 Method Description

3.2.1 Django

3.2.2 Vuetify

3.2.3 Google MAP

3.3 Flowchart

3.3.1 Project Process Flowchart

3.3.2 System Flowchart

3.3.3 E-Wallet System Flowchart

3.4 System Architecture

CHAPTER 4 RESULT AND DISCUSSION

4.1

4.2

4.3

Introduction

Application Behaviour

4.2.1 Application Behaviour for Toll User

4.2.2 Application Behaviour for Toll Admin

Database

4.3.1 Data Model

VI

19

20

21

22

22

22

23

24

25

25

25

26

28

28

29

30

31

32

32

32

33

34

35

35

4.3.2 Django Model

4.3 .3 Django Serializers

4.3.4 Django Viewsets

4.4 E-wallet System

CHAPTER 5 CONCLUSION AND RECOMENDATION

5. I Introduction

5.2 Conclusion

REFERENCES

APPENDICES

Vil

41

52

53

53

58

58

58

60

61

Table 4.3.1: Toll User Table

Table 4.3.2: Toll Table

Table 4.3.3: Vehicle Class Table

Table 4.3.4: Route Table (1)

Table 4.3.5: Route Table (2)

Table 4.3.6: Route History Table

Table 4.3.7: Wallet Table

Table 4.3.8: Top-up Table

Table 4.3.9:User Payment Table

Table 4.3.10: Debt Table

LIST OF TABLES

Vlll

36

36

37

38

39

40

40

41

41

41

LIST OF FIGURES

Figure 1.2: Example situation at Highway Toll

Figure 2.1: General operation of RFID Toll System

Figure 2.2: GPS Expressway Tolling System Block Diagram

Figure 3.1: Django

Figure 3.2: Vuetify

Figure 3.3: Google Maps

Figure 3.4: Project Process Flowchart

Figure 3.5: System Flowchart of the GPS Tolling System

Figure 3.6: E-Wallet Flowchart of the GPS Tolling System

Figure 3.7: System Architecture of the GPS Tolling System

Figure 4.1: Application behaviour for toll user

Figure 4.2: Application behaviour for toll admin

Figure 4.3: E-Wallet Page

Figure 4.4: Top-up Page

Figure 4.5: Top-up success notification

ix

13

19

20

22

23

25

28

29

30

31

33

34

54

55

56

SDP

PLUS

GPS

RM

LMR

UI/UX

RFID

LIST OF ABBREVIATIONS

Senior Design Project

Projek Lebuhraya Utara Selatan

Global Positioning System

Ringgit Malaysia

Limit of Maintenance Responsibility

User Interface/ User Experience

Radio Frequency Identification

x

LIST OF APPENDICES

Appendix A: Programming code for Toll model.py file to build database 62

Appendix B: Programming code for Wallet model.py file to build database 64

Appendix C: Programming code for Toll serializers.py file to build database 65

Appendix D: Programming code for Wallet serializers.py file to build database
66

Appendix E: Programming code for Toll viewset.py file to build database 67

Appendix F: Programming code for Wallet viewset.py file to build database 70

Xl

CHAPTERl

INTRODUCTION

I. I Project Background

Historically, toll roads have provided the majority of highway network funding.

By constructing a toll road, it is possible to offer a variety of enhanced services to road

users, all of which can be calculated to ensure that they achieve the desired results.

The major stakeholders in the toll road field, are responsible for developing the toll

project and providing operational services using associated technology thus achieving

the primary goal of constructing a toll, which is to satisfy customers.

The large majority of Malaysian Expressways and Highways are tolls roads. Each

day, roughly 1.5 million vehicles pass the plaza toll according to the PLUS statistics.

Toll fares are implemented on most vehicles using toll roads following government

policy guidelines. It is crucial to provide high-quality road infrastructure and other

necessary facilities to road users. Every day, the toll in the city center and industrial

area is expected to see a large amount of traffic consisting of a range of vehicles ranging

from personal vehicles to light and heavy commercial vehicles, multi-axle trucks, and

so on. In addition, traffic problems are also critical during the holiday season,

especially during festive seasons. Even the fact that new highways are still being built

in Malaysia still can't change much and the gradual rise in traffic volume can no longer

be met solely by the construction of new highways.

Therefore, we developed an application, GPS Expressway Tolling System which

can automatically track when the vehicles enter the tolling area based on GPS and

automatically deduct user money from user credit after the exit area, also saving the

12

cost from building the tolling gates. This should be very helpful because it can improve

the traffic flow and make it easier by using a cashless payment method. At the same

time, users do not have to worry about their money deduction because this application

will notify the users of the amount that has been deducted from their credit.

J ._ Problem Statement

In Malaysia, there is a toll system on every expressway and highway, which is

either closed or open. The Malaysian Ringgit is used in all transactions (RM). Users are

only required to pay a fixed sum at some toll plazas within the open system range. North­

South Expressway issues PLUS Transit cards, and other closed toll expressways such as

East Coast Expressway and South Klang Valley Expressway issue transit cards) Users

collect toll tickets or touch in with their touch n go card. When entering the expressway,

pay the toll or touch out with the same touch n go card at the exit toll plaza, plus the

distance from the plaza to the Limit of Maintenance Responsibility (LMR). In this

scheme, the toll rate is determined by the distance traveled.

The PLUS Transit reusable transit cards have been in use at all PLUS expressways

since June 18, 2013 , to replace the transit ticket. Due to the forthcoming complete

electronic toll collection at all PLUS locations, the PLUS Transit Card will no longer be

issued as of April 26, 2017. Closed system; customers must swipe the same card in and

out. Nowadays the number ofroad users is increasing, by still using the old tolling system

becomes the cause of traffic since users need to enter the toll gate pay using cash or 'touch

and go' and wait for the toll gate to open. It takes a lot of times for one vehicle to pass

the gate.

Figure 1.2: Example situation at Highway
Toll

Source: CHAN, J. A. D.E. (2017, April 27). PLUS highway Toll. The Star Malaysia.

By applying this GPS Expressway Tolling System for every toll in Malaysia it

will help improve the traffics and makes paying toll easier by the auto money deduction

from credit. As the result, it will save the cost from build the tolling gates and reduce the

potential of traffic during festival seasons.

1.3 Objective of Project

The main aim of this project is to develop an effective expressway tolling system for

road users. To accomplish this, the following objectives must be achieved.

1. To design and an effective e-credit system for GPS Expressway Tolling

system.

2. To develop applications that display the area user enter and the amount of

money that user needs to pay and notify users when the money is deducted

from user credit.

3. Develop a database for GPS Expressway Tolling system.

14

1.4 Significance Research

A few key points in developing more advanced technologies for expressway

tolling systems are proposed in this study. Indicates how the analysis contributes to the

refinement, revision, or extension of established expertise in the field of study. The aim

of the design is based on design software. The following are some of our significant

studies:

1.4.1 Software Design

1. The Arduino Integrated Development Environment (IDE) software is used to
program, code- editor, identify the commands and perform the appropriate
action.

2. The Blynk software is used to program, integrate computation,
visualization, and perform connections with google MAP.

3. Django is a high-level Python web framework used for building database
frames to bind with UI/UX for the application.

4. The Vuetify software is used for UI/UX design and visualization.

15

CHAPTER2

LITERATURE REVIEW

Several options must be considered based on our study and review of the new

expressway tolling scheme. Chapter 2 focuses on literature analysis of the previous toll

collection project's design and operation, which will be compared to our " GPS

Expressway Tolling System" project. Note, that GPS is used in many different types of

applications to track and trace the location of the vehicles. However, this project falls

somewhere within this area. This application will be a smart application that simplifies

the users with a GPS tracker and cashless method payment. The final methodology and

the rest of the system are shown in Chapter 3.

2.1 Comparison with Other Product

Based on our research and analysis about the Tolling System, decided to compare

it with various other tolling systems that are currently being used and get a rough idea on

what can be innovated/improved upon in our project. At the end of the day, the objective

of this project is to succumb to a more efficient tolling system.

2.1.1 Open Toll System

16

On an open toll system, all vehicles stop at various locations along the highway

to pay a toll. While this may save money from the lack of need to construct tolls at every

exit, it can cause traffic congestion, and drivers may be able to avoid tolls by exiting and

re-entering the highway.

2.1.2 Close Toll System

With a closed system, vehicles collect a ticket when entering the highway. In

some cases, the ticket displays the toll to be paid on exit. Upon exit, the driver must pay

the amount listed for the given exit. Should the ticket be lost, a driver must typically pay

the maximum amount possible for travel on that highway. In a variant of the closed toll

system, mainline barriers are present at the two endpoints of the toll road, and each

interchange has a ramp toll that is paid upon exit or entry. In this case, a motorist pays a

flat fee at the ramp toll and another flat fee at the end of the toll road; no ticket is

necessary.

2.1.3 Short Toll System

Short toll roads with no intermediate entries or exits may have only one toll plaza

at one end, with motorists traveling in either direction paying a flat fee either when they

enter or when they exit the toll road.

17

2.1.4 Electronic Toll System

In an all-electronic system, no cash toll collection takes place, tolls are usually

collected with the use of a transponder placed before the Gate as soon as the vehicle

reaches near the Transponder the amount is deducted and the gate will be opened

customer account which is debited for each use of the toll road. On some road's

automobiles and light trucks without transponders are permitted to use the road a bill for

the toll due is then sent to the registered owner of the vehicle by mail; by contrast, some

tollways require all vehicles to be equipped with a transponder.

2.1.5 RFID Toll System

A complete RFID system consists of a transponder (tag), reader/writer, antenna, and

computer host. The transponder, better known as the tag, is a microchip combined with

an antenna system in a compact package. The microchip contains memory and logic

circuits to receive and send data back to the reader. These tags are classified as either

active or passive tags. Active tags have internal batteries that allow a longer reading

range, while passive tags are powered by the signal from their reader and thus have a

shorter reading range. Passive RFID has no internal power source and uses external

power to operate. These tags are powered by the electromagnetic signal received from a

reader. The received electromagnetic signal charges an internal capacitor on the tags,

which in turn, acts as a power source and supplies the power to the chip.

18

Rf'ID
Tag

Figure 2.1: General operation of RFID Toll System

2.2 Critical Argues Findings and or Methods from Previous Work and

Suggesting Potential Solution.

The above-mentioned systems for collecting toll tax are time-consuming

methods. Chances of escaping the payment of toll tax are there. It leads to queuing up of

following vehicles. Suppose the manual toll collection system is very efficient than for

one vehicle to stop and pay taxes total time taken is 50 seconds and suppose 200 vehicles

cross the toll plaza. Then, the time taken by 1 vehicle with 60 second average stop in a

month is 50x30= 1500 seconds. Yearly total time taken= 1500x12 = 18000 seconds=

5.0 hours. On average each vehicle that passes through the toll plaza has to wait 5.0 hours

in engine start condition yearly. The figure is staggering if on average we take 200

vehicles to pass through the toll plaza each day, then yearly 72000 vehicles pass through

the toll plaza. And each year 72000 vehicles just stand still for 5.0 hours in engine start

condition thereby aiding pollution and wasting fuel and money. This study is if the system

is very efficient but what if the vehicle has to wait for 5 minutes? This is a figure

considering one toll plaza. If considering 50 toll systems the above figure will drastically

increase and the wastage of fuel, money will increase and pollution will also increase.

19

2.3 Suggesting Potential Solution

Each consumer will download the app, the GPS Expressway Toll app needs the

user to sign up to have a unique ID. This unique ID can be assigned to the vehicle user

used by the authorized body of the country like we can have this ID to check the user's

route toll history. Once the GPS on the consumer device is turned on, able to start tracking

the user via satellite using Google MAP. When the vehicle reaches the toll booth, the

receiver will detect these user IDs from the app, and deduct the money from that person's

e-wallet without the hassle of waiting for the barricade to open, but the consumer of the

new GPS Expressway Tolling System can drive without halting anymore. Moreover, the

app itself will display the deduction of e-money from that person's account once passing

the specific toll.

OJ AN GO

(DATABASE)

?
GOOGLE MAP

VUETIFY

VUETIFYUBRARIES

D
USER PHONE

SERVER

Figure 2.2: GPS Expressway Tolling System Block Diagram

20

2.4 Summarization of The GPS Expressway Tolling System

To implement a contemporary system of "GPS EXPRESSWAY TOLLING

SYSTEM" the embedded systems platform should be a test run on the field. For this

purpose, a new technology based on app-based implemented and will overcome the

previous predecessor of the tolling system. By executing through using an application,

able to have the best solution over money loss at toll plaza by reducing the manpower

required for the collection of money and also can reduce the traffic indirectly resulting in

a reduction of time at the toll plaza.

21

CHAPTER3

METHODOLOGY

3.1 Component Description

3.1.1 Django

Django is a high-level Python web framework for building secure and maintainable

websites quickly. Django is a web framework built by experienced developers that take

care of a lot of the heavy lifting so you can focus on developing your app instead of

reinventing the wheel. It's free and open-source, with a vibrant and active community,

and excellent documentation. A high-level Web framework is a piece of software that

makes creating dynamic Web sites easier. It abstracts typical Web development issues

and provides shortcuts for commonly performed programming operations.

,. python

django

Figure 3.1: Django

22

3.1.2 Vuetify

Vuetify is a full user interface framework based on Vue.js. The project's purpose is

to give developers the tools they need to create rich, compelling user experiences.

Vuetify, unlike other frameworks, is built from the ground up to be simple to learn and

rewarding to master, with hundreds of carefully developed Material Design components.

Vuetify uses a mobile-first design strategy, which means your app will run on any device

right out of the box, whether it's a phone, tablet, or desktop computer. Every component

of Vuetify has been deliberately created to be modular, responsive, and performance by

Material Design specifications. Customize your application with unique and dynamic

Layouts and SASS variables to change the styles of your components.

Figure 3.2: Vuetify

23

3.1.3 Google MAP

Google Maps is Google's web mapping platform and consumer application. It

provides satellite images, aerial photography, street maps, 360° interactive panoramic

views of streets (Street View), real-time traffic conditions, and route planning for

walking, driving, biking, flying (in beta), and taking public transit. Google Maps was

utilized by approximately 1 billion people per month throughout the world as of 2020.

Google Maps originated as a C++ desktop tool created at Where 2 Technologies by

brothers Lars and Jens Rasmussen. Google purchased the firm in October 2004, and it

was transformed into an online application. After successive purchases of a geographic

data visualization firm and a realtime traffic analyzer, Google Maps was introduced in

February 2005. The front end of the service makes use of JavaScript, XML, and Ajax.

Google Maps provides an API that allows maps to be integrated on third-party websites,

as well as a locator for companies and other organizations in a variety of nations

worldwide. Google Map Maker, which allowed users to collaborate to develop and

update the service's mapping globally, was discontinued in March 2017. However, the

business indicated that crowdsourced contributions to Google Maps will be moved to the Google

Local Guides initiative rather than being canceled.

24

••

• • •

• •
•

Google Maps

Figure 3.3: Google Maps

3 .2 Method Description

3.2.1 Django

To work with Django in the VS Code terminal, editor, and debugger, you

construct this Django in the context of Visual Studio Code. Django is use to working with

data models and building an administrative interface It provides a way to map requested

URLs to code that responds to them. It makes displaying, validating, and re-displaying

HTML forms simple. Because HTML forms are the most common means for Web users

to provide data, a Web framework should make it simple to show them and handle the

tiresome code of form display and re-display (with errors highlighted). It takes user input

and turns it into data structures that can be easily manipulated. It uses a template system

to help isolate information from the presentation. It easily interfaces with storage layers,

such as databases, but it isn't necessarily required to use one.

3.2.2 Vuetify

Vuetify was utilized for the user interface since it was a full UI framework

developed on top of Vue.js. Vuetify also allows unskilled users to construct or design

their interfaces without any prior knowledge. It can interpret the frontend developer

vscode to the user-pleasant interface by using yam to install node modules and establish

25

the libraries for each of the components within. The models within the vuetify were

defined by adding a node for each function utilised. It may be used to compile all of the

vscode that the developer wrote by running yarn serve. The program's body consists of

src, node modules, public, yarn.lock, vue.config.js, and package.json. The assets,

components, plugins, router, store, views, app. vue, and main.js are all stored under src.

All of the images used to display in the interface were stored in the assets. Then, all of

the component parts were saved in the components file and were linked to the views,

which were used to show all of the components. Following that, the plugins saved all of

the variables used to mount components. The router was used to hold all router-linked

particular components. The store served as a local storage location for data entered by the

user. The app. vue serves as the body, displaying all of the data stored in src. The main.js

file was used to contain all of the variables defined by the developer.

The node modules deployed within Vuetify then allow the developer to utilize

yarn as their package management. The yarn was utilised since it is faster in terms of

performance and can install several packages at once. After all of the vscode has been

saved to a file. The developer used the command prompt to execute yarn serve to create

addresses for the interface's local host and network. The interface may then be accessed

by the developer via the address link and onto the website browser for testing. The

generated interface has not yet been deployed to the server. To allow users to access the

interface, developers must publish the software to a server. Vultr.com was the server

utilized. The server will then produce an address for the user interface.

3.2.3 Google MAP

For starters, when it comes to the GPS side of things, the use of the Google Maps

API using javascript which is optimized with vuetify which can be seen within the

backend coding side of things. Moreover, most of the bases of the display Google Maps

is mostly the base standard of it. However, when determining the checkpoint is by making

26

a circle radius as the point which can be seen in the live side of the UI and at the balance

department. Furthermore, it will display the current location which can be seen in the

balance due to setting up the coding to display the current location within the UI in

vuetify. Vue.js applications can now use these APis thanks to vue-google-maps, which

has been updated for Vue.js 2. It includes a comprehensive set of components for

interacting with Google Maps, as well as data binding in both directions. Create a map

that uses autocomplete to display a location using the vue2-google-maps library. You can

install Node.js locally by following and Creating a Local Development Environment. It

may be beneficial to have some experience with setting up a Vue.js project and using

Vue.js components. A key for the Google Maps javascript APL This will necessitate the

use of a Google account. Using the Google Cloud Platform Console to log in. Making a

new project is the first step. Enabling the Google Maps JavaScript API and the Places

API for the project, as well as creating API Key credentials.

27

3 .3 Flowchart

3.3.1 Project Process Flowchart

(___ s_TA..,.---RT __)

IDENTIFY PROBLEM

LITERATURE REVIEW

DESIGN PHASE

DEVELOPED OF GPS
EXPRESSWAYTOUING SYSTEM

END

NO

Figure 3.4: Project Process Flowchart

28

3.3.2 System Flowchart

Siar!

open !he GPS
Expressway Tolt
~plication

Transmit through
Google GPS

(car move I car stop)

Display the location
in "latest location"

Can'! transmit !hrough
Google GPS

Display the location
1n "latest location

Calculate toll fee

Display
Route H1stor/'
& print toll fee

Deduct money from user
wallet

En<l

Figure 3.5: System Flowchart of the GPS Tolling System

The above flowchart shows the flow of the system. The GPS expressway

application turns on and connects to mobile data. Transmit to GPS in Google MAP. By

using the application, users may detect the location toll without the existence of toll gates.

As the user goes through the toll point, the GPS will transmit data through mobile data

and satellite as it is already connected by it. The data will be transmitted to a database of

The GPS expressway toll application. The application will display the user's current toll

location. Then, after the user passes the second point, The app will calculate the toll fee.

29

It will display the current toll location and the toll fee. The application will automatically

display the printout of the toll fee and deduct money from the user e-wallet.

3.3.3 E-Wallet System Flowchart

(it".pL.:r,·

"'UrHuc.ezfW

Dr,pt.r,·

~ E ;tJJlie t S....:t-l.:t'L ~ ~

Dr;phY>' Sut1'ln

'RMW' 'RM:lJ' "llM.lJ'
'RMS•Y 'RMIQIT

[lt\pl.1'1J'

~,il+1••••h~jjj .

Figure 3.6: E-Wallet Flowchart of the GPS Tolling System

30

.4 System Architecture

Users Whlf J<')f•r t"""'S

& trll'"Cr 1Cts wifl-i

Frontend

·--...

r • WebS..v.<

•
't \/ULTR

GPS 5erwf Databas.

Back end

GPS Tolltng System Architecture

Figure 3.7: System Architecture of the GPS Tolling System

The above diagrams show how the GPS tolling system works. Using the user's

phone, users may easily track their real-time location. The user's phone must be connected

to the internet to connect to the server. Using Google Maps, it can detect the current

position. The information will be saved in a Django database. The user's location will

then be sent straight to Vuetify as they pass through the toll coordinate using Google

Maps. It also allows the user to determine their speed of movement.

31

CHAPTER4

RESULT AND DISCUSSION

4. I Introduction

This chapter presents the study's findings and commentary. The interface as well

as the figures are described in full. The interface will be written in Visual Studio Code

and displayed using the Django localhost or network address. The visual studio code

contained in the Visual Studio Code program is used in every model and component

designed in this database. When the localhost and network addresses are received using

the command prompt, the database will be shown. In a text-based user interface screen

for a Windows operating system or software, a command prompt is an input area. Using

a preliminary data model sketch, all of the models for each of the database's functions

were obtained. Django is a database-building web framework. A model is present in a

database. A model is a data source that serves a single purpose. It contains the data's most

important fields and actions. Each model corresponds to a single database table, in most

cases.

4.2 Application Behaviour

A key role of information systems is to manage huge amounts of structured and

unstructured data. Data models explain the structure, manipulation, and integrity of data

contained in relational databases and other data management systems. Data models serve

as a foundation for the creation of information systems by defining and formatting data.

In a conclusion, specifying the application behavior is required when creating a data

model.

32

4.2.1 Application Behaviour for Toll User

/

Profile

" (users details, wallet balance)

'- ,/

/ '
E-wallet Home

Toll User -· (topup, latest out point)

Get Toll Informations

(toll point. live, fee)

GetToll Payment History

Figure 4.1: Application behaviour for toll user

The application behaviour for the user is to show what the user can access in the

GPS Expressway Tolling System application. From figure 11, its showed that in GPS

Expressway Tolling System application user can access their profile where it contain user

details such as full name, phone number, IC no, gender, and wallet balance. Second is the

E-wallet home where this part it's essential for the users since its use to reload E-wallet,

check wallet balance and know the latest out toll point. Third, is the user can get their toll

information that includes toll point, toll fees, and the live road. Lastly, is the toll payment

history to show the histories of payments that the user has made.

33

4.2.2 Application Behaviour for Toll Admin

Toll Admin

,

..

View users topup history and route

history

GetToll Payment History

View List of Toll users

Set Toll Location

Figure 4.2: Application behaviour for toll admin

The application behaviour for admin is to show what toll admin can access from

GPS Expressway Tolling System application. From figure 12, it showed that toll admin

can view users' top-up history, route history, toll payment history, list of toll users. This

part is for toll admin to monitor so if there is a report from a user toll admin can go

through this data. Toll admin also can set a toll location from the admin side.

34

4.3 Database

A database is a collection of data that has been organized to allow for easy access,

management, and updating. Data records or files containing information, such as sales

transactions, customer data, financials, and product information, are often stored in

computer databases. Databases are used to store, manage, and retrieve any type of data.

They gather data about people, locations, and things. That data is collected in one location

so that it can be viewed and analysed. Databases can be viewed as a logically structured

collection of data. Another equally important style is the caption. All captions for figures,

tables, and equations are formatted using their respective styles prepared in this template.

4.3.1 Data Model

The act of generating a visual representation of an entire information system or

parts of it in order to express linkages between data points and structures is known as data

modelling. The purpose is to show the many types of data that are used and stored in the

system, as well as the links between them, how the data can be categorised and arranged,

and its formats and features.

The Toll User data model depicts the link between database tables that

contain user information. Users' traits can be classified into one of three types of data: -

1. personal Information: Name, email address, phone number, IC number, Gender,

and other information.

2. Login information: Usemame, password, and any third-party authentication

tokens such as email address or phone number.

3. Foreign keys: One to an Accounts table, most likely, to link a user to an account.

35

ID

1

2

3

4

5

Table 4.3.1: Toll User Table

FULL PHONE IC NUMBER Gender Email Password Vehicle
NAME NUMBER id

MR. 0123445678 860101075342 Male Di lan@gmai I .com ***** 1
DILAN
MISS 0113425678 950202035421 Female Mira@gmail.com ***** 2

AMIRA
MRS. 0143328756 001212013216 Male Lui@gmail.com ***** 3
LUI
HEE
MR. 0134455622 991130075421 Male Muru@gmail.com **** 2
Muru
Miss 0112356489 740603036524 Female Alia@gmail.com **** 1
Alia

The tolls must have the entrance and exit point, since the GPS Expressway

Tolling System is tested in UMP so the point entrance is set in UMP area as shown in

Table 4.2.

Table 4.3.2: Toll Table

ID Point name
1 UMP Main Gate Entrance
2 UMP RP Gate Entrance

3 UMP Back Gate Entrance

The most common forms of personally driven vehicles are classified as

Class 1. Vehicles having a maximum of two axles and an overall3 to 4 wheels fall into

this category. Sedans, coupes, SUVs, MPVs, vans, and motorbikes (400cc and up) are all

classified as Class 1 vehicles. Vehicles classified as Class 2 have two axles and 5 to 6

36

wheels. These are the categories in which trucks the size of the Fuso Canter fall. Lastly

for vehicles classified in Class 3 are the vehicles with more than 2 axles by this the bus

and lorry fall in this class.

Table 4.3.3: Vehicle Class Table

ID Category name No of Wheels No Of Axles
1 Class 1 3 or4 2
2 Class 2 5 or 6 2
3 Class 3 5 and6 3 and more

The Toll Regulatory Board (TRB) assigns different toll costs to different vehicles
class, and this classification is also applied to the GPS Expressway Tolling System as
shown in Table 4.4.

37

Table 4.3.4: Route Table (1)

IN

Point

UMP
Main Gate
Entrance

UMP
Lake

UMP
Back Gate
Entrance

UMP
Main Gate
Entrance

1.20

1.40

2.00

2.20

2.40

OUT

UMP
Lake

1.00

1.20

1.40

1.20

1.40

38

UMP
Back Gate
Entrance

2.00

2.20

2.40

1.00

1.20

1.40

Vehicle
category

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

Table 4.3.5: Route Table (2)

ID In point id Out point id Vehicle id charge
1 1 RMl.00
2 2 2 RMl.20
3 3 RMI.40

4 1 RMI.00
5 2 1 2 RMl.20
6 3 RMl.40

5 1 RM2.00
7 1 3 2 RM2.20
8 3 RM2.40

9 1 RM2.00
10 3 1 2 RM2.20
11 3 RM2.40

12 1 RMl.00
13 2 3 2 RMI.20
14 3 RMI.40

15 1 RMI.00
16 3 2 2 RMI.20
17 3 RMI.40

39

ID

1

2
3
4
5

Route history table is to track the histories of tolls that user has pass through. By this toll

user will fully aware with the toll fees user has paid or need to pay. Route history data

also important for toll admin to trace users who didn't pay their toll fees.

Table 4.3.6: Route History Table

TollUser Vehicle Plate In Out Time In Time charge
ID ID Number point point Out

id id
2 GTR 1 2 4PM 6.05PM 1.20

2211
2 WX3344 3 2 2PM 4.lOPM 1.00
3 PT 3321 3 SAM 2.30PM 2.00
4 3 WU2187 2 1 6AM l.07PM 1.40
5 1 PTN 3 1 lPM l.15PM 2.00

9966

An e-wallet is a secure money management system or online platform that

enables you to make payments in the GPS Expressway Tolling System. Table 4.6 in the

database is required to distinguish each user's e-wallet so that users can transfer or send

money as in Table 4.7, follow their transactions as in Table 4.8 and track users debt as

in Table 4.9 .

Table 4.3.7: Wallet Table

ID TollUser Balance
ID

1 1 4.00
2 2 5.00
3 3 0
4 4 1.00
5 5 0.50

40

Table 4.3.8: Top-up Table

ID Wallet Created Created Amount Status Credited wallet
ID Time Date

1 3 4.50PM 2115/2021 5.00 Successful

2 4 4.58PM 22/5/2021 4.00 Successful

3 5 3PM 22/5/2021 3.00 Successful

Table 4.3.9: User Payment Table

ID Wallet ID Created Time Created Date
1 1 5PM 2115/2021

2 2 4PM 23/5/2021

3 3 4PM 2115/2021

4 4 3PM 22/5/2021

5 5 SPM 22/5/2021

Table 4.3.10: Debt Table

ID TollUser ID Debt Amount
1 1 RM4
2 2 RMS
3 3 RM4

4.3.2 Django Model

A model is the sole, authoritative source of data information. It includes all of the

fields and actions that the data you're storing requires. In most cases, each model

corresponds to a single database table. Each model is a subclass of django.db.models in

Python. Each model attribute corresponds to a database field. Django provides an

automatically built database-access API as a result of all of this; see Making queries. The

41

most important part of a model - and the only required part of a model - is the list of

database fields it defines. Fields are specified by class attributes. Field names should be

chosen with care to avoid conflicts with the models API, such as clean, save, and delete.

4.3.2.1 Toll User

This model defines a User, which has a full_ name, phone, ic_number, gender and

vehicle:

from django.db import models
from model_utils.models import TimeStampedModel

class TollUser(TimeStampedModel):

GENDER_CHOICES = (('M', 'Male'),
(' F' , 'Female'))

full name = models.CharField(max_length=64)
phone = models.CharField(max_length=64, unique=True)
ic_number = models.CharField(max_length=14)
gender = models.CharField(max_length=l, choices=GENDER_CHOICES,

default=' M ·)
vehicle= models.ForeignKey('Vehicle', related_name='toll_users',

on_delete=models.PROTECT)

full_ name, phone, ic_number, gender and vehicle are fields of the model. Each

field is specified as a class attribute, and each attribute maps to a database column:

"count" 1

"next" "http: //g3gts· api. student. rny/tol 1/tol l __ users)page~2",

''pre11ious" null

"results"

42

"id" 1

"wallet"

"i(i"

"balance" 354560

"to l 1 user'" 1

"cr'eated" '2021-ll-2lf16 42·29. 7742S2+-08.00".

"modified" "2021-11-21Tl6·42:29. 774252+08: 00"

"full_name" "Halima"

"phone" "01818181"

"ic number" "78781781" 1

"gender" "F"

"pin" "12345

"vehicle" 1

The above User model would create a database table like this:

43

4.3.2.2 Toll Point

This model defines a Toll Point, which has a name, lat, lng, and radius:

class TollPoint(models .Model) :
name = models . CharField(max_length=64)
lat = models.Decima1Field(max_digits=22 , decimal_places=16 ,

blank=True , null=True)
lng = models.Decima1Field(max_digits=22 , decimal_places=16,

blank=True , null=True)
radius = models.PositiveintegerField(default=50)

lat, lng and radius are fields of the model. Each field is specified as a class

attribute, and each attribute maps to a database column:

44

"count" . 3 .

"next" : null ,

"previous" null

"results" :

{

"id" 4

"name" : "UMP Back Gate Entrance" ,

},

{

},

{

"1 at" : "3. 5426700000000000" ,

"lng" : "103. 4277100000000000" ,

"radius" 30

"index" 3

"enabled" true

"id" 5 ,

"name" : "UMP RP Gate Entrance" ,

"lat" . "3.5345150000000000"

"lng" · "103. 4325040000000000"

"radius" 30 ,

"index" 2

"enabled" true

"id" . 6 ,

"name" "UMP Main Gate Entrance" ,

"lat" "3.5454670000000000"

45

"lng" : "103.4345450000000000" ,

"radius" . 30 ,

"index" . 1 ,

"enabled" · true

}

The above TollPoint model would create a database table like this:

From toll point model, we can relate it to Route model as shown below:

class Route(models .Model) :
in_point = models.ForeignKey('TollPoint ' , related_name= 'routes_in' ,

on_delete=models . CASCADE)
out_point = models . ForeignKey(' TollPoint ' , related_name= 'routes_out' ,

on_delete=models . CASCADE)
vehicle= models.ForeignKey('Vehicle' , related_name= 'routes' ,

on_delete=models.CASCADE)
charge = models . PositivelntegerField()

The above Route model would create a database table like this:

46

From data model of route in Table 4.4 there is 17 route object with different

in _point, out_point, vehicle class and charge.

4.3.2.3 Route History

This model defines a Route History, which has a toll_user, related_name,

plate_number, and charge:

class RouteHistory(TimeStampedModel):
toll_user = models . ForeignKey('TollUser' ,

related_name= 'route_histories' , on_delete=models .CASCADE)
plate_number = models . CharField(max_length=10)
charge = models . PositivelntegerField(default=0)
route= models . ForeignKey('route' , related_name= ' route_histories' ,

on_delete=models . PROTECT)

toll_ user, plate_ number, charge and route are fields of the model. Each field is

specified as a class attribute, and each attribute maps to a database column:

{

"id" 17

47

"route" . {

},

"id" . 7 ,

"in_point" : {

"id" : 2 ,

},

"name" : "Test UMP RP Gate Entrance" ,

"lat" "3.5400620000000000" ,

"lng" : "103.4300950000000000" ,

"radius" 10

"index" 2

"enabled" false

"out_point" : {

},

"id" 3 .

"name" . "Test UMP Back Gate Entrance"

"lat" "3.5394990000000000"

"lng" "103.4298839000000000"

"radius" 10 ,

"index" 3 ,

"enabled" false

"charge" 250

"vehicle" : 1

"created" : "2021-12-05T12:25:28.340592+08:00"

"modified" "2021-12-05T12:25 28 . 340592+08:00"

"plate_number" "ABO 123" ,

48

"charge" 100 ,

"toll_user" : 1

},

The above RouteHistory model would create a database table like this:

Route History model is use to trace the route user has by pass and the amount of

toll fee user paid for both toll user and toll admin.

4.3.2.4 E-wallet

This model defines a E-wallet, which has a toll_ user, and balance:

class Wallet(models.Model) :
toll_user = models.OneToOneField('toll.TollUser' ,

on_delete=models.CASCADE)

49

balance = models . PositivelntegerField(default=0)

toll_user and balance are fields of the model. Each field is specified as a class

attribute, and each attribute maps to a database column:

{

"id" : 1 ,

"balance" 354560

"toll_user" · 1

},

The above Wallet model would create a database table like this:

This database show how much balance user have in their E-wallet.

4.3.2.5 Topup

This model defines a T opup, which is related to Wall et model it has wallet,

amount and status:

class Topup(TimeStampedModel) :
wallet= models . ForeignKey('Wallet ' , related_name= ' topups ' ,
on_delete=models.CASCADE)
amount models.PositivelntegerField()
status= models.CharField(max_length=16, default=' success ')

50

wallet, amount and status are fields of the model. Each field is specified as a class

attribute, and each attribute maps to a database column:

"id" 1

"created" "2021-11-21T18:12:25.142167+08·00" ,

"modified" "2021-11-21T18:12:25.142167+08.00"

"amount" 1000

"status" "success"

"wallet" · 1

1,

The above Topup model would create a database table like this:

This database show how much amount that user has reload and a status of reload

either its "success" or "fail".

In topup viewset as shown below:

user_id = post_data . get('user_id ')
amount= post_data.get(' amou nt')

51

wallet_user = Wallet . objects .filter(toll_user_id=user_id).first()
wallet user . balance = wallet_user . balance + amount
wallet_user.save()

obj = Topup(wallet_id=wallet_user . id, amount=amount)
obj .save()

resp = {
"amount" : wallet_user.balance,

}

We define the equation:

Wallet = balance + amount

4.3.3 Django Serializers

Complex data, such as querysets and model instances, can be translated to native

Python datatypes and then rendered into JSON, XML, or other content types using

serializers. After validating the incoming data, serializers also enable deserialization,

which allows parsed data to be transformed back into complicated types.

The REST framework's serializers are extremely similar to Django's Form and

ModelForm classes. We include a Serializer class that provides a strong, generic

approach to manage the output of your replies, as well as a ModelSerializer class that

provides a convenient shortcut for serialising model instances and querysets.

defining a serializer for serialising and deserializing data corresponding to

Comment objects. Declaring a serializer resembles defining a form:

from rest_framework import serializers
from .models import TollUser, TollPoint, Route, RouteHistory
from wallet.serializers import WalletSerializer

52

4.3.4 Django Viewsets

The ViewSet class in the Django REST framework allows you to aggregate the

logic for a group of related views into a single class. Other frameworks may include

implementations called 'Resources' or 'Controllers' that are essentially similar. A ViewSet

class is a form of class-based View that doesn't have any method handlers like .get() or

.post(), but instead has actions like .list() and .create().

The ViewSet's method handlers are only tied to the correct actions when the view

is finalised with the.as_ view() method. Rather than registering the views in a viewset

explicitly in the urlconf, you'll usually register the viewset with a router class, which will

automatically generate the urlconf for you.

4.4 E-wallet System

E-wallet is a form of electronic card that may be used to make online payment

using a computer or smartphone. It functions similarly to a credit or debit card. To make

payments, an E-wallet must be linked to the user's bank account. An e-wallet is a form of

pre-paid account that allows a user to save money for future online transactions. A

password is used to secure an E-wallet. An E-wallet can be used to pay for groceries,

online purchases, and plane tickets, among other things.

E-wallet in GPS Expressway Tolling System application has two fundamental

components which is software and information of an e-wallet. Personal information is

stored in the software component, which also provides data security and encryption. The

information component is a database of the user's information, such as their name, phone

number, email, gender, payment method and payment amount. To make a payment toll

user need to go to E-wallet page as shown in Figure 4.4.1

53

E-wallet Home

RM 111 .00

IVldldYl>ld

Map Satellite iang

DEWAN SER BAGU NA 0
'MPPEKANY

.ck f KKS UMP~
,ek r1 C n1pus T

Block B KKS UMP

Ban I h
Mdlavs1a Berh

ft Institute + 1
11
c

T Stud1 sl

P •an Campus Bank I

Go 4-d shortcut.a Map dal• C2022 Googte Tenns of v..

Date & Time Out Point

Test UMP RP Gate Entrance

Figure 4.3: E-Wallet Page

Figure 4.4.1 display the amount of your balance in E-wallet. If user want to reload

their E-wallet user can press the reload button it will bring user to topup page as in Figure

4.4.2

54

~ Reload

M

RM10 RM20 RM30

RMSO RM100 OTHER

+RELOAD E-WALLET

2022 - Univoniti M•lavsill Pahang

Figure 4.4: Top-up Page

In Topup page as in Figure 4.4.2 user can choose the amount they want to reload

with the quick button or chose either button to enter the amount they want to reload. After

55

choose the amount user want to reload to their E-wallet and press reload E-wallet button,

user will get notification the current balance in their E-wallet as shown in figure-

~ Reload

40

RM

RM10 RM20 RM30

~Pah.:tng

Figure 4.5: Top-up success notification

56

By this user has success reload their E-wallet. The development of this app only

cost rm4 since only server that we need to pay the other software is an open source

software.

57

CHAPTERS

CONCLUSION AND RECOMENDATION

5. I Introduction

The overall findings and results of the research, as well as the study's findings,

will be concluded in this chapter. Other than the conclusion of the general data from the

previous chapter, provide some recommendations or propose actions for improving the

system. The constraints and obstacles encountered during the research process were also

discussed, as well as suggestions for future research.

5.2 Conclusion

In summary, the SDP project intends to improve Malaysia's tolling system by

implementing the GPS Expressway Tolling System, decreasing human resources,

reducing traffic congestion, and promoting a modem tolling system that outperforms

previous systems. Finally, be able to create and manufacture a simple and accurate GPS

Expressway Tolling system for road users. Then inside the application, the database has

construct to store and organize data for the GPS Expressway Tolling System application.

the database played a significant role since every page in the application was binding to

the database to pull and push the data from the API framework. Moreover, thee-wallet

system in GPS Expressway Tolling System application is crucial for alerting customers

to the amount of money they must pay, the level of money in their e-wallet, and when

money is removed from their credit. With the development of a GPS expressway tolling

system capable of replacing the current tolling system, limiting the number of human

resources working at toll stations, and using GPS tracking of every vehicle that enters

58

and exits the toll, the number of human resources working at toll stations will be reduced.

Encourage the use of e-wallets in tolling systems to make it easier for end users and

reduce congestion at toll stations, resulting in smooth driving without the stress of toll

payment. To ensure the system more secured, we can install camera sensor to detect

number plate of cars that go through the toll gate. If the cars did not turn on the apps, we

can detect the car's number plates through the database.

59

REFERENCES

J. Chou, L. Chen, H. Ding, J. Tu and B. Xu, "A Method of Optimizing Django Based on Greedy

Strategy," 2013 10th Web Information System and Application Conference, 2013, pp.
176-179, doi: 10.1109/WISA.2013.41

S. M. Alzahrani, "Sensing for the Internet of Things and Its Applications," in 5th International
Conference on Future Internet of Things and Cloud Workshops, 2017.

Me, G. 2003. Payment security in mobile environment. Proceedings of the ACS/IEEE
International Conference on Computer Systems and Applications, Tunis, Tunisia, July
14-18.

Hilavuo, S. 2005. Business evolution of mobile services. Managing mobile services­
technologies and business practices, Chichester. 17-45.

Misra, S.a.W., N .. 2004. Security of a mobile transaction: A trust model. Electronic Commerce
Research. 4, 4, 359-372.

Yusop, N., Kamalrudin, M., Yusof, M. M., & Sidek, S. (2016). Meeting Real Challenges in
Eliciting Security Attributes for Mobile Application Development. Journal oflnternet
Computing and Services, 17(5), 25-32. https://doi.org/J 0.7472/jksii.2016.17.5.25

Ahmad, A., Li, K., Feng, C., Asim, S. M., Yousif, A., & Ge, S. (2018). An Empirical Study of
Investigating Mobile Applications Development Challenges. IEEE Access, 6, 17711-
17728. https://doi.org/10.1109/ ACCESS.2018.2818724

CHAN, J. A. D. E. (2017, April 27). PLUS highway Toll. The Star Malaysia. Retrieved January

31, 2022, from https://www.pressreader.com/malaysia/the-star-
malaysia/20170427 /281663959899443

60

APPENDICES

61

Appendix A: Programming code for Toll model.py file to build database

from django.db import models
from model_utils.models import TimeStampedModel

Create your models here.

class TollUser(TimeStampedModel):

GENDER_CHOICES = (('M', 'Male'),
('F', 'Female'))

full_name = models.CharField(max_length=64)
phone = models.CharField(max_length=64, unique=True)
ic_number = models.CharField(max_length=14)
gender = models.CharField(max_length=l, choices=GENDER_CHOICES,

default='M')
vehicle = models. Foreign Key(' Vehicle', related_name=' toll_ users',

on_delete=models.PROTECT)
pin= models.CharField(max_length=6, default='123456')

location_lat = models.Decima1Field(max_digits=22, decimal_places=16,
blank=True, null=True)

location_lng = models.Decima1Field(max_digits=22, decimal_places=16,
blank=True, null=True)

location_updated_datetime = models.DateTimeField(null=True,
blank= True)

class TollPoint(models.Model):
name = models.CharField(max_length=64)
lat = models.Decima1Field(max_digits=22, decimal_places=16,

blank=True, null=True)
lng = models.Decima1Field(max_digits=22, decimal_places=16,

blank=True, null=True)

62

radius = models.PositiveintegerField(default=50) # metre

index = models.PositiveintegerField(default=0)
enabled = models.BooleanField(default=True)

def ~str~(self):
return self.name

class Vehicle(models.Model):
class_name = models.CharField(max_length=10)

def ~str~(self):
return self.class_name

class Route(models.Model):
in_point = models.ForeignKey('TollPoint', related_name='routes_in',

on_delete=models.CASCADE)
out_point = models.ForeignKey('TollPoint', related_name='routes_out',

on_delete=models.CASCADE)
vehicle= models.ForeignKey('Vehicle', related_name='routes',

on_delete=models.CASCADE)
charge = models.PositiveintegerField()

class Meta:
constraints = [

models.UniqueConstraint(fields = ['in_point_id',
'out_point_id','vehicle_id'], name='unique in_point, out_point, vehicle')

class RouteHistory(TimeStampedModel):
toll_user = models.ForeignKey('TollUser',

related_name='route_histories', on_delete=models.CASCADE)
plate_number = models.CharField(max_length=10)
charge = models.PositiveintegerField(default=0)
route= models.ForeignKey('route', related_name='route_histories',

on_delete=models.PROTECT)
in_date ..
...

class Meta:
verbose_name_plural "Route Histories"

63

Appendix B: Programming code for Wallet model.py file to build database

from django.db import models
from model_utils.models import TimeStampedModel

Create your models here.
class Wallet(models.Model):

toll_user = models.OneToOneField('toll.TollUser',
on_delete=models.CASCADE)

balance = models.Positive!ntegerField(default=0)

class Topup(TimeStampedModel):
#wallet_id = models.CharField('wallet.wallet_id',

on_delete=models.CASCADE)
wallet= models.ForeignKey('Wallet', related_name='topups',

on_delete=models.CASCADE)
amount = models.Positive!ntegerField()
status= models.CharField(max_length=16, default='success')

64

Appendix C: Programming code for Toll serializers.py file to build database

from rest_framework import serializers
from .models import TollUser, TollPoint, Route, RouteHistory
from wallet.serializers import WalletSerializer

class TollUserSerializer(serializers.ModelSerializer):
wallet = WalletSerializer(read_only=True)
class Meta:

model = TollUser
fields = ' all

class TollPointSerializer(serializers.ModelSerializer):
class Meta:

model = TollPoint
fields = ' all

class RouteSerializer(serializers.ModelSerializer):
in_point = TollPointSerializer()
out_point = TollPointSerializer()
class Meta:

model = Route
fields = ' all

class RouteHistorySerializer(serializers.ModelSerializer):
route = RouteSerializer()
class Meta:

model = RouteHistory
fields = ' a 11

class WalletSerializer(serializers.ModelSerializer):
class Meta:

model = Wallet
fields = all

class TopupSerializer(serializers.ModelSerializer):
class Meta:

model = Topup
fields = all

65

Appendix D: Programming code for Wallet serializers.py file to build database

from rest_framework import serializers
from .models import Wallet, Topup

class WalletSerializer(serializers.ModelSerializer):
class Meta:

model = Wallet
fields = all

class TopupSerializer(serializers.ModelSerializer):
class Meta:

model = Topup
fields = ' all

66

Appendix E: Programming code for Toll viewset.py file to build database

from datetime import date, datetime
from django.utils import timezone
from rest_framework import viewsets, response, status
from .models import TollUser, RouteHistory, Vehicle, Route, TollPoint
from wallet.models import Wallet
from .serializers import TollUserSerializer, RouteHistorySerializer,
TollPointSerializer

class TollUserViewSet(viewsets.ModelViewSet):

serializer_class = TollUserSerializer
queryset = TollUser.objects.all()

class TollPointViewSet(viewsets.ModelViewSet):

serializer_class = TollPointSerializer
queryset = TollPoint.objects.filter(enabled=True).all()

class LoginViewSet(viewsets.ViewSet):
def create(self, request):

post_data = request.data # Tarik data yang di POST

phone= post_data.get('phone')
pin= post_data.get('pin')

user= TollUser.objects.filter(pin=pin, phone=phone).first()

if user is None:
return response.Response({'error': 'invalid account'},

status=400)

serializer = TollUserSerializer(user)
return response.Response(serializer.data)

class RouteHistoryViewSet(viewsets.ModelViewSet):

67

serializer_class = RouteHistorySerializer
queryset = RouteHistory.objects.all()
filterset_fields = [· toll_user']

class PayTollViewSet(viewsets.ViewSet):
def create(self, request):

post_data = request.data # Tarik data yang di POST

user_id = post_data.get('user_id') # tarik user_id dari post_data
in_point_id = post_data.get('in_point_id')
out_point_id = post_data.get('out_point_id')
vehicle = Vehicle.objects.filter(toll_users=user_id).first()
#print(vehicle)
Tarik data dari model Route based on in/out point

route = Route.objects.filter(in_point=in_point_id,
out_point=out_point_id, vehicle=vehicle).first()

if route is None:
return response.Response(data="Route not exist",

status=status.HTTP_400_BAD_REQUEST)

Prevent duplicate
now= timezone.now().astimezone(timezone.get_default_timezone())
prev = RouteHistory.objects.filter(toll_user_id=user_id,

route=route).order_by('-created').first()

if prev and (now - prev.created).seconds < 10:
resp = {

"status": "KO",
"message": "Duplicate"

}
return response.Response(resp)

#print(route.charge)
charge = route.charge

check wallet balance
wallet_user = Wallet.objects.filter(toll_user_id=user_id).first()

68

#print(wallet_user)
print(wallet_user.balance)

if charge > wallet_user.balance:
return response.Response(data="Balance not enough",

status=status.HTTP_400_BAD_REQUEST)

wallet_user.balance = wallet_user.balance - charge
wallet_user.save()
obj = RouteHistory(

toll_user_id=user_id,
plate_number=' ',
charge=charge,
route= route)

obj .save()

resp = {
"status": "OK",
"message": f"Successfully paid RM {charge/100:. 2f}"

}
return response.Response(resp)

69

Appendix F: Programming code for Wallet viewset.py file to build database

from rest_framework import viewsets, response, status
from .models import Wallet, Topup
from .serializers import WalletSerializer, TopupSerializer

class WalletViewSet(viewsets.ModelViewSet):
serializer_class = WalletSerializer
queryset = Wallet.objects.all()
#search_fields =['code', 'description']

#class TopupViewSet(viewsets.ViewSet):
class TopupViewSet(viewsets.ModelViewSet):

serializer_class = TopupSerializer
queryset = Topup.objects.all()
filter_fields =['wallet']

def create(self, request):
post_data = request.data # Tarik data yang di POST

user_id = post_data.get('user_id') # tarik user id dari post_data
amount= post_data.get('amount')

wallet_user = Wallet.objects.filter(toll_user_id=user_id).first()
wallet_user.balance wallet_user.balance + amount
wallet_user.save()

obj = Topup(wallet_id=wallet_user.id, amount=amount)
obj.save()

resp = {
"amount": wallet_user.balance,

}

return response.Response(resp)

70

