ELSEVIER

Desalination

journal homepage: www.elsevier.com/locate/desal

Waste-derived thermal storage solutions for sustainable solar desalination using discarded engine oil and paraffin wax: A techno-environmental feasibility evaluation

Subbarama Kousik Suraparaju^{a,b,c,*}, Mahendran Samykano^{a,b,*}, Sendhil Kumar Natarajan^d, Reji Kumar Rajamony^{e,f}, Adarsh Kumar Pandey^{g,h}

^a Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia

^c Solar Energy Laboratory, Department of Mechanical Engineering, Sri Vasavi Engineering College (A), Tadepalligudem, Andhra Pradesh 534101, India

- ^e Institute of Sustainable Energy, Universiti Tenaga Nasional (National Energy University), Jalan IKRAM-UNITEN, Kajang, Selangor, Malaysia
- ^f Division of Research and Development, Lovely Professional University, Phagwara 144411, Punjab, India

^h Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India

HIGHLIGHTS

- Composite energy storage (CES) is developed with discarded engine oil and paraffin wax.
- The thermal conductivity and specific heat storage of CES are enhanced by 26.54% and 44.66% relative to pure paraffin wax.
- Basin and Water temperatures of CES-based desalination systems are improved by 14% and 11% compared to conventional systems.
- Compared to conventional systems, the distillate production of CES-based desalination systems is augmented by 52.72%
- CES-based desalination systems reduced production costs and environmental footprint more effectively than conventional systems.

ARTICLE INFO	A B S T R A C T
Keywords: Energy storage Solar desalination Phase change materials Waste to energy Engine oil	The valorization and repurposing of waste materials for sustainable outcomes and environmental mitigation are gaining prominence. This investigation explores the feasibility of repurposing discarded automotive engine oil as a viable means of energy storage in solar thermal desalination applications. A novel approach combining discarded engine oil with Paraffin wax in equal parts by volume is proposed as a composite energy storage (CES) to enhance nocturnal production and efficiency. The experimental findings show that the composite energy storage system has 26.54 % higher thermal conductivity and 44.66 % greater specific heat energy storage capacity compared to pure paraffin wax. Comparing the Desalination System with Engine Oil-based Energy Storage (DSEES) to a Traditional Solar Desalination System (TSDS) without energy storage, considering water and absorber temperatures and distillate production, reveals compelling advantages. DSEES exhibits remarkable temperature increases of 14 % in the basin and 11 % in water, alongside a significant 52.72 % rise in distillate production rates, yielding 3.36 and 3.16 l/sq.mt compared to TSDS's 2.2 and 2.1 l/sq.mt over two testing days. Cost analysis indicates DSEES's 33.7 % lower cost per liter and 33.8 % shorter payback period relative to TSDS. Furthermore, environmental assessment highlights DSEES's 60.8 % greater net carbon credit, indicating reduced ecological impact.

https://doi.org/10.1016/j.desal.2024.117318

Received 6 September 2023; Received in revised form 2 January 2024; Accepted 6 January 2024 Available online 17 January 2024 0011-9164/© 2024 Elsevier B.V. All rights reserved.

b Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia

^d Solar Energy Laboratory, Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal, Puducherry 609609, India

^g Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia

^{*} Corresponding authors at: Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia.

E-mail addresses: kousik@umpsa.edu.my (S.K. Suraparaju), mahendran@umpsa.edu.my (M. Samykano).