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A B S T R A C T

Time series forecasting is crucial across various sectors, aiding stakeholders in making informed decisions,
planning for the short and long term, managing risks, optimizing profits, and ensuring safety. One significant
application of time series forecasting is predicting Earth surface temperatures, which is vital for civil and
environmental sectors such as agriculture, energy, and meteorology. This study proposes a hybrid forecasting
model for Earth surface temperature using Deep Learning (DL). To improve the DL model’s performance, an
optimization algorithm called Barnacles Mating Optimizer (BMO) is integrated to optimize both weights and
biases. The forecasting model is trained on a global temperature dataset with seven inputs and compared with DL
models optimized by Particle Swarm Optimization (PSO), Harmony Search Algorithm (HSA), and Ant Colony
Optimization (ACO). Additionally, a comparison is made with the Autoregressive Moving Average (ARIMA)
method. Evaluation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the coefficient of
determination (R2) demonstrates the superior performance of DL optimized by BMO, showing minimal errors.

1. Introduction

Time series forecasting is vital and serves various purposes across
different domains, including climate monitoring [1,2], irrigation man-
agement [3], urban planning [4–6], agriculture [7–12], infrastructure
management [13,14], energy [15–18], and meteorology [19]. Reliable
time series forecasting is of paramount importance as it empowers
various stakeholders in different sectors. For example, in the context of
climate monitoring, accurate forecasts enable governments and envi-
ronmental agencies to anticipate extreme weather events, formulate
disaster preparedness strategies, and implement climate change miti-
gation measures effectively. In urban planning, dependable forecasting
aids city officials and urban designers in making informed decisions
about infrastructure development, traffic management and other related
tasks. Meanwhile, in the agriculture sectors, it helps optimize resource
allocation, reduce waste, and enhance productivity. In meteorology,
reliable forecasting not only ensures public safety by providing early
warnings of severe weather conditions but also aids in aviation, mari-
time navigation, and tourism planning.

Time series forecasting of Earth surface temperature is critical in all
these stated areas. It plays a pivotal role in tracking and responding to

shifts in global climate patterns. Additionally, it ensures that cities can
adapt to changing climate conditions and prioritize sustainable growth.
Farmers can plan planting and harvesting schedules based on weather
forecasts, leading to more efficient and sustainable agricultural prac-
tices. Accurate temperatures forecasts play a crucial role in these in-
dustries, contributing to safe and efficient operations.

Previously, statistical techniques like Autoregressive Integrated
Moving Average (ARIMA) and Exponential Smoothing were commonly
used for time series forecasting. However, these techniques have limi-
tations in capturing non-linear features that are present in many real-
time situations [20,21]. As a result, their performance has diminished.
The rise of machine learning methods, including Artificial Neural Net-
works (ANN), Support Vector Machines (SVM) [22], and Deep Learning
(DL), has demonstrated encouraging outcomes in overcoming these
challenges [23,24]. Machine learning models have demonstrated
exceptional predictive accuracy in forecasting including Earth’s tem-
perature by effectively capturing intricate nonlinear relationships be-
tween air pollutant levels and various predictors, including
meteorological conditions, and land use patterns [25]. This is substan-
tiated by a multitude of published studies showcasing successful results.

Study in [26] demonstrated an efficient approach utilizing DL. The
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proposed approach, namely Propagated HIerarchical Learning Network
(PHILNet), aiming to enhance the efficiency of neural networks in uni-
variate multi-step time series forecasting, particularly focusing on
reducing execution time. The presented approach yielded favorable
outcomes, demonstrating a 35 % enhancement in mean squared error
and a 2.6-fold reduction in training time when compared to the
top-performing models across various time series. In [27], a hybrid of
Twin Support Vector Regressor (TSVR), Singular Spectrum Analysis
(SSA) and Grey Wolf Optimizer (GWO) was demonstrated for time series
prediction of streamflow of hydropower reservoir. In the suggested
investigation, the Grey Wolf Optimizer (GWO) was employed to opti-
mize Time Series Vector Regression (TSVR), and the Singular Spectrum
Analysis (SSA) was utilized as a data preprocessing tool for data iden-
tification. The superiority of SSA-GWO-TSVR over other methods was
evident in the comparison. Another employment of TSVR in time series
prediction also can be seen in [28].

The study referenced in [29] demonstrates the effectiveness of DL in
improving the prediction of water quality parameters across various
aquatic systems. Analysis of real-world data collected from Swan Can-
ning Estuary sites reveals that the model is capable of predicting an
increased number of hours with high scores, even when confronted with
varying sizes of training and testing sets. Meanwhile, the surface water
temperature of a lake was analyzed using a combination of Stacking
Multilayer Perceptron and Random Forest (MLP-RF)) [30]. Hyper-
parameter tuning was conducted using Bayesian Optimization (BO)
[31]. The related works on hybrid metaheuristic-deep learning also has
been proposed in [32] for state of charge estimation problem. In com-
parison to other models, including a shallow multilayer perceptron
neural network, a model integrating wavelet transform and multilayer
perceptron neural network, as well as non-linear regression and air2-
water models, the stacked MLP-RF model exhibited excellent forecasting
capabilities across all lakes and forecast horizons.

Study in [33] proposed a hybrid Genetic Algorithm (GA) with DL to
predict the PM2.5 dataset, including air pollutants and meteorological
features in Istanbul metropolitan. GA is employed to find the best
parameter combination for learning and dropout rate, the number of
hidden layers and units in each hidden layer, activation function, loss
function, and optimizer. Compared against DL with default hyper-
parameters and random search algorithms, the yielded results were in
favor to DL optimized by GA. to confirm the efficacy of the genetic al-
gorithm approach. Meanwhile, another hybrid GA is reported in [34]
where in the study, an automated Hyperparameter Optimization (HPO)
method based on a Parallel Genetic Algorithm (PGA) is proposed. The
HPO process is divided into stages aligned with PGA: population
initialization, fitness function, tournament selection, crossover opera-
tors, mutation operators, subgroup exchange, and termination criteria.
The proposed PGA-based HPO method is implemented for Long
Short-Term Memory Neural Networks models and evaluated on two
real-world Internet of Things (IoT) sensor time-series datasets.
Comparative results demonstrate that the proposed method outperforms
other mainstream HPO techniques in terms of time efficiency and pre-
diction accuracy across different datasets. Another hyper-parameters
tuning of LSTM also can be found in [35,36] which applied for time
series prediction.

Above all the presented prediction models, be it single or hybrid
models, this area is still wide open for improvement, particularly for
such important data such as Earth surface temperature. In this study, the
DL will be hybridized with Barnacles Mating Optimizer (BMO-DL). The
goal of the hybridization is to address the limitation of DL, where,
despite the impressive success of DL techniques, the performance of
these models heavily depends on the optimization of their internal pa-
rameters, namely weights and biases. Any inappropriate values set to the
parameters will directly affect the overall performance of the DL model.
Therefore, here, the BMO will be served as an optimization tool for the
DL parameters. BMO is chosen due to its superiority in addressing
various optimization issues which includes in telecommunication

networks [37], information security [38], power system [39,40],
finance [41], information retrieval [42], and many more.

The key contribution of the proposed method is as follow:

i. Through the integration of DL and the optimization method, BMO,
the proposed approach effectively resolves challenges associated
with hyperparameter optimization in conventional methods and
mitigates the risk of overfitting minor differences in deep learning
approaches.

ii. The proposed BMO-DL surpasses recognized hybrid methods, as
evidenced by experimental results on specified datasets, which
demonstrate markedly lower error rates in comparison to DL opti-
mized by Particle Swarm Optimization (PSO-DL), Harmony Search
Algorithm (HSA-DL) and Ant Colony Optimization (ACO-DL).

The subsequent sections of this paper are organized as follows: In
Section 2. A concise the development of BMO mathematical model is
presented, followed by a description on Deep Learning in Section 3.
Section 4 outlines the methodology adopted, encompassing data
collection, training and testing, the hybrid BMO-DL model and evalua-
tion. The acquired results are examined in Sections 5, and 6 offers the
concluding remarks.

2. Barnacles Mating Optimizer

The BMO [43] is developed based on Evolutionary Algorithm (EA).
Just like other EA based algorithms, it incorporates three phases:
initialization, selection, and reproduction.

2.1. Initialization

During initialization phase, a population of potential solutions
(barnacles) is created. The population vector can be represented in the
following manner:

x =

⎡

⎢
⎢
⎣

x11 … xN1
… … …
x1n … xNn

⎤

⎥
⎥
⎦ (1)

In the context of the problem at hand, N represents the count of
control variables, while n denotes the population size or, equivalently,
the number of barnacles. The control variables in (1) are constrained
within the upper and lower bounds defined for the problem as follows:

ub = [ub1, …, ubi] (2)

lb = [lb1, …, lbi] (3)

Where ub and lb refer to the upper and lower bounds of the i th
variable. The vector x is initially evaluated, and subsequently, a sorting
process is conducted to identify the best solution found thus far, posi-
tioning it at the top of the vector x.

2.2. Selection process

The BMO adopts a distinctive mating selection approach in contrast
to traditional evolutionary algorithms like Genetic Algorithm (GA) [44]
and Differential Evolution (DE) [45]. In this approach, the selection of
two barnacles is based on the length of their penises, pl. The selection
process mimics the behavior of barnacles which are based on the
following assumptions:

(i) The selection process is carried out randomly, but it is
constrainedly by the pl.

(ii) Each barnacles can both contribute and receive sperm from other
barnacles, with the restriction that each barnacles can be fertil-
ized by only one other barnacle at a given time, despite the
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possibility of multiple fertilizations by different males in real-life
situations [46].

(iii) In the event that the selection process happens to choose the same
barnacle, implying the potential for self-mating or self-
fertilization, it’s worth noting that, based on [47], self-mating
is an infrequent occurrence, even though barnacles possess both
male and female reproductive capabilities. Therefore, this paper
does not consider self-mating, and at this point, no new offspring
will be generated.

(iv) If the selection in a specific iteration exceeds the designated pl,
the sperm-casting process is initiated.

It is worth mentioning that based on the aforementioned assump-
tions, the BMO algorithm inherently incorporates both exploitation (in
points no. 1 and 2) and exploration (in point no. 4) processes.

The process of selecting ten barnacles for mating can be depicted in
Fig. 1. The figure illustrates that the current best solution is positioned at
the top among the candidate solutions in vector X. Let’s assume that the
maximum penis length of barnacles is seven time greater than their size
(pl=7). Therefore, in a given iteration, barnacle #1 can only mate with
one of the barnacles #2-#7. If barnacle #1 selects barnacle #8, it ex-
ceeds the limit, and the standard mating process does not occur.
Consequently, the offspring generation proceeds through the sperm-
casting process (exploration), which will be explained in more detail
later. It’; s important to note that this operation is based on virtual
distances and is not directly related to the real physical distances be-
tween barnacles. The following straightforward selection criteria are
expressed in mathematical notation:

barnacled = randperm(n) (4)

barnaclem = randperm(n) (5)

In this context, barnacle_d and barnacle_m represent the parent bar-
nacles to be mated, with n denoting the population size.

2.3. Reproduction

The reproductive mechanism in BMO differs slightly from conven-
tional EA. Given the absence of precise equations or formulas for bar-
nacle reproduction, BMO primarily focuses on the inheritance traits and
genotype frequencies of the parent barnacles to generate offspring,
drawing inspiration from the Hardy-Weinberg principle. To illustrate
the straightforward nature of the proposed BMO, the following expres-
sions are put forth for the creation of new offspring variables derived
from the genetic makeup of barnacle parents:

xN new
i = pxNbarnacled + qxNbarnacle m (6)

In this context, p represents pseudo-random numbers following a
normal distribution within the range of [0, 1]. On the other hand, q=(1-
p), xNbarnacled and xNbarnaclemcorrespond to the variables of the father (Dad)
and mother (Mum) barnacles, respectively, which have been selected in
(4) and (5). Essentially, p and q serve as indicators of the proportion of
characteristics inherited from Dad and Mum that are incorporated into
the generation of new offspring. In this manner, the offspring’s traits are
determined by the probabilities defined by the random numbers ranging
from 0 to 1. For illustrative purposes, assuming p is 0.6 (randomly

Fig. 1. Selection of mating process in BMO [43].
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generated), this indicates that 60 % of Dad’s traits and 40 % of Mum’s
traits are incorporated into the new offspring generation.

It’s important to emphasize that the value of pl (penis length) plays a
pivotal role in determining both exploitation and exploration processes
within the algorithm. When the selection of barnacles for mating falls
within the range of the father barnacle’s penis length (as specified in
(6)), it triggers the exploitation process, as mentioned in the selection
phase. As detailed earlier, the sperm-casting mechanism is considered
the exploration process in BMO. The sperm-casting process comes into
play when the selection of barnacles for mating exceeds the initially set
pl value (refer to Section 2.2). The description of the sperm-casting
process is presented as follows:

xn new
i = rand() × xNbarnacle m (7)

Where, rand() is the random number between [0,1]. Fig. 2 shows the
BMO pseudo-code.

3. Deep learning

Deep learning (DL) models excel in capturing complex nonlinear
relationships, showcasing outstanding predictive accuracy, and proving
especially beneficial for analyzing large building energy datasets. They
adeptly capture long-term dependencies and temporal dynamics,
resulting in enhanced prediction performance for time-series-related
forecasts. Prominent DL models encompass Artificial Neural Networks
(ANN), Recurrent Neural Networks (RNN), Long Short-Term Memory
Neural Networks (LSTM), and Gate Recurrent Units (GRU) [48].

To predict Earth’s surface temperature, a DL model, namely fixed
forward neural networks (FFNN) is applied in this study. The DL ar-
chitecture consists of an input layer, two hidden layers with 7 hidden
neurons each, and an output layer. Details regarding the input and
output are provided in Section 4.1. Given the significant dependence of
DL on specific values of weights and biases, this research shifts away
from using the Back Propagation (BP) algorithm for network training.
Instead, the study adopts the BMO approach, as detailed in Sections 2
and 4.3.

4. Methodology

This section outlines the application of BMO-DL for predicting Earth
surface temperature. It encompasses data collection, data normalization,
the optimization of network weights using BMO, benchmarking the
prediction model, and the subsequent evaluation. Fig. 3 illustrates the
model of the proposed prediction model based on BMO-DL, which was
implemented for the time series prediction of global surface
temperature.

4.1. Dataset description

This dataset is gathered on a monthly basis, spanning from in
January 1750 to December 2015, comprising 3192 data rows and 0 at-
tributes variables. For the experiment conducted, 1992 data rows from
January 1850 to December 2015 were utilized for time-series predic-
tion. The target variable selected was the average temperature of land
and ocean surfaces (Earth surface temperature). The date attribute and
the last column of attribute variables were excluded, and the remaining
seven attributes were employed as independent variables. The selected
1992 data rows were divided into two parts, with the initial 80 % used as
the training set, and the remaining 20 % allocated as the test set. The
time-series dataset is publicly accessible in [49]. Table 1 shows the
sample of raw dataset:

4.2. Data normalization

Prior to inputting the datasets into the prediction algorithm,
normalization was applied using Min-Max Normalization. The objective
was to prevent smaller values from being overshadowed by larger input
values.

MinMax = (v − mina)/(maxa − mina) (8)

Where v is the respective value of the attribute, while mina and max
are the minimum and maximum of the given attribute, respectively.
Data tabulated in Table 2 shows the normalized values of Table 1.

Fig. 2. Pseudo code of BMO.

Z. Mustaffa et al.



Franklin Open 8 (2024) 100137

5

4.3. Optimization of network weights using BMO algorithm

For the task of prediction, a Deep learning (DL) model is applied. This
DL model is a feedforward (FFNN), supervised learning network,
comprising an input layer, two hidden layers each with 5 hidden neu-
rons, and an output layer. The input layer incorporates variables such as
LO_Avg_Temp_Uncert, L_Avg_Temp, L_Avg_Temp_Uncert, L_Max_Temp,
L_Max_Temp_Uncert, and L_Min_Temp_Uncert, while the output is
L_O_Avg_Temp, as described in Sections 4.1 and 4.2. Given the significant
impact of specific weights (initial weights of the neural network) and

biases (the biases associated with each neuron in the network) on DL
outcomes, this study diverges from employing the Back Propagation
(BP) algorithm for network training. Instead, it opts for the BMO
approach, as detailed in Section 2. The initial settings of weights and
biases had an impact on the model’s convergence speed and final ac-
curacy. Proper initialization led to more stable and faster convergence.
By using BMO to optimize these specific hyperparameters, the model
achieved enhanced performance in terms of accuracy, convergence
speed, and generalization. The sensitivity analysis highlighted the
importance of each hyperparameter and demonstrated how BMO

Fig. 3. Earth surface temperature using BMO-DL.

Table 1
Sample of raw datasets.

LO_Avg_Temp_Uncert L_Avg_Temp L_Avg-Temp_Uncert L_MaxTemp L_Max_Temp_Uncert L_Min_Temp L_Min_Temp_Uncert L_O_Avg_Temp

0.367 0.749 1.105 8.242 1.738 − 3.206 2.822 12.833
0.414 3.071 1.275 9.97 3.007 − 2.291 1.623 13.588
0.341 4.954 0.955 10.347 2.401 − 1.905 1.41 14.043
0.267 7.217 0.665 12.934 1.004 1.018 1.329 14.667
0.249 10.004 0.617 15.655 2.406 3.811 1.347 15.507
0.245 13.15 0.614 18.946 2.817 7.106 0.857 16.353
0.238 14.492 0.614 19.233 2.84 8.014 0.786 16.783
0.28 14.039 0.802 18.477 2.079 7.406 1.086 16.718
0.254 11.505 0.675 15.846 2.692 4.533 1.798 15.886
0.297 8.091 0.863 13.189 2.338 2.013 2.133 14.831

*LandAndOceanAverageTemperatureUncertainty=LO_Avg_Temp_Uncert, Land AverageTemperature= L_Avg_Temp, LandAverageTemperatureUncertainty
= L_Avg_Temp_Uncert,
LandMaxTemprature= L_Max_Temp, LandMaxTemperatureUncertainty=L_Max_Temp_Uncert, LandMinTemperature= L_Min_Temp_Uncert,
LandAndOceanAverageTemperature= L_O_Avg_Temp.

Table 2
Sample of normalized datasets.

LO_Avg_Temp_Uncert L_Avg_Temp L_Avg-Temp_Uncert L_MaxTemp L_Max_Temp_Uncert L_Min_Temp L_Min_Temp_Uncert L_O_Avg_Temp

0.7831 0.0229 0.7346 0.1519 0.3913 0.1455 0.8042 0.0697
0.8964 0.1769 0.8512 0.2639 0.6845 0.2061 0.457 0.2167
0.7205 0.3018 0.6317 0.2884 0.5445 0.2316 0.3953 0.3053
0.5422 0.4519 0.4328 0.4562 0.2218 0.4249 0.3719 0.4268
0.4988 0.6367 0.3999 0.6326 0.5456 0.6096 0.3771 0.5903
0.4892 0.8453 0.3978 0.846 0.6406 0.8275 0.2352 0.7551
0.4723 0.9343 0.3978 0.8647 0.6459 0.8875 0.2146 0.8388
0.5735 0.9043 0.5267 0.8156 0.4701 0.8473 0.3015 0.8261
0.5108 0.7362 0.4396 0.645 0.6117 0.6573 0.5077 0.6641
0.6145 0.0229 0.7346 0.1519 0.3913 0.1455 0.8042 0.0697

*LandAndOceanAverageTemperatureUncertainty=LO_Avg_Temp_Uncert, Land AverageTemperature= L_Avg_Temp, LandAverageTemperatureUncertainty= L_Avg_
Temp_Uncert,
LandMaxTemprature= L_Max_Temp, LandMaxTemperatureUncertainty=L_Max_Temp_Uncert, LandMinTemperature= L_Min_Temp_Uncert,
LandAndOceanAverageTemperature= L_O_Avg_Temp.
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effectively balanced them to improve the forecasting capability of the
deep learning model.

The architecture of the DL model for predicting Earth surface tem-
perature is visually depicted in Fig. 4.

The determination of the number of iterations was based on an
iterative trial-and-error approach. In this study, the number of iterations
was established as 1000. This decision was informed by observations
indicating that beyond this threshold, there was no significant
improvement observed through BMO-DL.

Regarding the optimization of network weights and biases, the
search space was defined within the [-1, 1] range during finding the
optimal solution. Subsequently, the optimizer systematically explored
this space to identify the combination of weights and biases that would
optimize the neural network’s performance relative to a specified
objective function. This methodology also implicitly includes a
constraint within the study.

4.4. Benchmark prediction model

To assess the efficacy of the proposed BMO-DL, two hybrid models
were selected namely DL optimized by Particle Swarm optimization [50]
(PSO-DL), Harmony Search Algorithm [51] (HSA-DL) and Ant Colony
Optimization (ACO-DL). Besides, a statistical model was selected too,
namely Autoregressive Integrated Moving Average (ARIMA). PSO is
based on the concept of swarm, where a population of a potential so-
lutions (called particles) moves through the search space to find the
optimal solution. Each particle represents a potential solution to the
optimization problem. On the other hand, the HSA is a nature inspired
optimization algorithm that draws its inspiration from the process of
musicians harmonizing their instruments to find the best melody. ACO,
inspired by the foraging behavior of ants, is a population-based opti-
mization technique that uses pheromone trails to find optimal paths
through graphs. In ACO, artificial ants build solutions by traversing
paths and depositing pheromones, which guide subsequent ants towards
promising solutions, effectively finding optimal or near-optimal solu-
tions to complex problems. Meanwhile, ARIMA is a widely used

Fig. 4. BMO-DL.
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forecasting technique that models time series data by accounting for its
autocorrelations and differencing to make it stationary.

4.5. Model performance evaluation metrics

In this study, the Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and coefficient of determination (R2) were applied as
metrics to evaluate the predictive performance of the proposed method
on the respective dataset. The calculation formulas of these metrics are
presented below:

MAE =
1
N

∑N

i=1
(yi − ỹi)2 (9)

RMSE =

̅̅̅̅
1
N

√
∑N

i=1
(yi − ỹi)2 (10)

R2 = 1-
∑N

1=1(yi − ỹi)2
∑N

1=1(yi − y)2
(11)

Here, yi denotes the true value of the Earth surface temperature, ỹi
signifies the ultimate predicted value within the dataset, ỹi is the mean
of observed data, and N stands for the total number of samples in the test
set. It is widely accepted that smaller values for MAE and RMSE per-
formance evaluation indicators are associated with greater predictive
accuracy of the model, while for R2, a value to 1 indicates that the
regression predictions better fit the data.

5. Results and discussion

The experimental evaluation of the proposed BMO-DL approach was
carried out on a computational system running Windows 11 operating
system, equipped with an AMD Ryzen 5 5500H processor, 16 GB of
RAM, and integrated Radeon Graphics.

Determining the optimal number of hidden neurons is crucial for
achieving accurate prediction values in DL. To address this, the present
study conducted experiments with three different hidden neuron values:
5, 7, and 9. After completing the experiments, it was observed that the
BMO-DL with 7 hidden neurons yielded the lowest MAE and RMSE.
Notably, the maximum error value appears to align well with the errors
generated.

Based on the information provided in Table 3, BMO-DL produced a
denormalized Mean Absolute Error (MAE) of 0.2019 and a Root Mean
Squared Error (RMSE) of 0.2374 when configured with 7 hidden neu-
rons. Conversely, the utilization of 5 hidden neurons yielded the
maximum MAE and RMSE, recording values of 0.2227 and 0.2640,
respectively. The corresponding results for normalized values can be
found in Table 4.

By employing the configuration with 7 hidden neurons, the experi-
ment proceeded to compare the outcomes with DL optimized by PSO
(PSO-DL), HSA (HSA-DL), ACO-DL and ARIMA. The denormalized re-
sults obtained are organized in Table 5. As depicted in the table, BMO-
DL exhibited superior performance compared to the four identified al-
gorithms, as all other methods yielded higher error rates in terms of MAE
and RMSE, with ARIMA ranking the lowest. The outcomes for normal-
ized values are presented in Table 6.

The predictions generated by BMO-DL seem to closely match the
target values, resulting in relatively small residuals. As illustrated in
Table 7, predictions from all methods are presented covering days 1638
to 1651, constituting 3.5 % of the entire testing phase. During this
period, an exception arises on days 1643 and 1644, where BMO-DL
shows notably larger residuals of 0.1118 and 0.0929, respectively,
indicating a more substantial prediction error for those specific days.
Meanwhile, for PSO-DL, HSA-DL, ACO-DL and ARIMA consistently yield
significantly larger residuals compared to BMO-DL throughout most of
the testing phase.

Besides the obtained results in MAE and RMSE, the R2 results were
also recorded, where for both normalized and denormalized data, the
higher R2 value of BMO-DL is consistent with its lower MAE and RMSE
values compared to the other models, further confirming its better
performance. BMO-DL has the highest R2 of 0.9628, indicating that this
model has the best fit to the data compared to PSO-DL, HSA-DL, ACO-DL
and ARIMA.

In general, a higher R2 value that closer to 1 indicates a better fit of
the model to the data, which is typically associated with lower MAE and
RMSE values (better accuracy). The results align with this expectation,
as BMO-DL, with the highest R2, also has the lowest MAE and RMSE for
both denormalized and normalized data.

The BMO-DL model exhibits robust performance on unseen data,
with accuracy rates comparable to those achieved during training and
testing phases. Evaluation metrics, including MAE, RMSE, and R2,
consistently demonstrate strong performance on previously unseen
samples. Moreover, the model demonstrates promising generalization
capabilities beyond the dataset used for training and testing. It effec-
tively captures underlying patterns and relationships in diverse data
distributions, as evidenced by extensive experimentation and validation.
These findings suggest the model’s potential applicability to real-world
scenarios, highlighting its versatility and effectiveness across varied
contexts.

Fig. 5 depicts the comparison between BMO-DL, PSO-DL, HSA-DL,
ARIMA and ACO-DL throughout the entire testing phase. The illustra-
tion highlights that BMO-DL, indicated by a cross mark, consistently
generated prediction values that closely aligned with the actual values,
particularly in the period from day 1600 to 1650.

Table 8 presents the results of t-tests comparing different methods in

Table 3
Comparison of different hidden neurons configuration using BMO-DL for
denormalized data.

5-hidden neurons 7-hidden neurons 9-hidden neurons

MAE 0.2227 0.2019 0.2024
RMSE 0.2640 0.2374 0.2369
Maximum Error 0.6367 0.5308 0.5690
R2 0.9540 0.9628 0.9629

Table 4
Comparison of different hidden neurons configuration using BMO-DL for
normalized data.

5-hidden neurons 7-hidden neurons 9-hidden neurons

MAE 0.0434 0.0393 0.0394
RMSE 0.0514 0.0462 0.0461
Maximum Error 0.1240 0.1033 0.1108
R2 0.9540 0.9628 0.9629

Table 5
BMO-DL vs. PSO-DL vs. HSA-DL using denormalized data.

BMO-DL PSO-DL HSA-DL ARIMA ACO-DL

MAE 0.2019 0.2629 0.2828 0.5248 0.2432
RMSE 0.2374 0.2972 0.3246 0.6073 0.2765
Maximum Error 0.5308 0.6402 0.7167 1.3069 0.5946
R2 0.9628 0.9417 0.9304 0.7564 0.9495

Table 6
BMO-Dl vs. PSO-DL vs. HSA-DL using normalized data.

BMO-DL PSO-DL HSA-DL ARIMA ACO-DL

MAE 0.0393 0.0512 0.0551 0.1022 0.0473
RMSE 0.0462 0.0579 0.0632 0.1183 0.0538
Maximum Error 0.1033 0.1247 0.1395 0.2544 0.1157
R2 0.9628 0.9417 0.9304 0.7564 0.9495
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terms of the probability (P) that the observed t-statistic is less than or
equal to the calculated t-value in a two-tailed test. The methods
compared are BMO-DL against four other methods: PSO-DL, HSA-DL,
ACO-DL and ARIMA. The obtained p-values for both comparisons are
extremely small, specifically 0.0000, indicating a statistically significant
difference between the performance of BMO-DL and each of the other
methods.

In terms of computational time, for the dataset comprising 3192 data
points with seven input features and one output, the BMO-DL approach
required a computational time of 32.9171 s for 1000 iterations. While
this computational time may seem reasonable for the given dataset size,
it is important to note that the complexity of the BMO optimization

process scales with the number of data points, features, and iterations
required for convergence. Therefore, for larger datasets or more com-
plex problems, the computational requirements may increase signifi-
cantly. However, potential optimizations such as parallelization, GPU
acceleration, or distributed computing could be explored to improve the
computational efficiency of the BMO-DL approach, making it more
feasible for deployment in real-world scenarios with stringent compu-
tational constraints.

6. Conclusion

In this research, the BMO in combination with DL (BMO-DL) is
employed as a predictive model for Earth’s surface temperature. For
experimental purposes, this study incorporated seven input variables
that exerted an influence on the Earth’s surface temperature. An
exploration into the optimal number of hidden neurons is conducted
through a series of experiments, encompassing configurations with 5, 7,
and 9 hidden neurons. Subsequently, the effectiveness of the proposed
BMO-DL is assessed by comparing it with two analogous hybrid
methods, namely PSO-DL and HSA-DL. The evaluation is based on two
performance indices, specifically MAE and RMSE. The results obtained

Table 7
Prediction vs. target values, and residuals of BMO-DL, PSO-DL, HAS-DL, ACO-DL and ARIMA.

Residual

Days Target BMO-DL PSO-DL HSA-DL ARIMA ACO-DL BMO-DL PSO-DL HSA-DL ARIMA ACO-DL

1638 16.696 16.7311 16.5949 16.4110 16.7732 16.6063 0.0351 0.1011 0.2850 0.0772 0.0897
1639 16.991 16.9739 16.8059 16.8702 17.0205 16.8728 0.0171 0.1851 0.1208 0.0295 0.1182
1640 16.938 16.9082 16.7505 16.7268 16.8130 16.8081 0.0298 0.1875 0.2112 0.1250 0.1299
1641 16.285 16.2584 16.1807 15.9761 16.2075 16.1910 0.0266 0.1043 0.3089 0.0775 0.0940
1642 15.455 15.4382 15.4362 15.4748 15.3661 15.4988 0.0168 0.0188 0.0198 0.0889 0.0438
1643 14.407 14.5188 14.4452 14.5502 14.5117 14.4912 0.1118 0.0382 0.1432 0.1047 0.0842
1644 13.805 13.8979 13.8356 13.8835 13.8756 13.7555 0.0929 0.0306 0.0785 0.0706 0.0495
1645 13.758 13.6626 13.6413 13.6256 13.6270 13.5418 0.0954 0.1167 0.1324 0.1310 0.2162
1646 14.161 13.9751 13.9460 13.9320 13.8312 13.9223 0.1859 0.2150 0.2290 0.3298 0.2387
1647 14.538 14.2978 14.2953 14.2665 14.4343 14.3121 0.2402 0.2427 0.2715 0.1037 0.2259
1648 15.447 15.2947 15.2911 15.2516 15.2748 15.3374 0.1523 0.1559 0.1954 0.1722 0.1096
1649 16.252 16.1656 16.0773 15.9484 16.1252 16.1147 0.0864 0.1747 0.3036 0.1268 0.1373
1650 16.9 16.8582 16.7101 16.6305 16.7593 16.7454 0.0418 0.1899 0.2695 0.1407 0.1546
1651 17.296 17.1548 16.9716 17.0028 17.0065 17.0128 0.1412 0.3244 0.2932 0.2895 0.2832

Fig. 5. Performance of BMO-DL compared to target and identified algorithms for testing phase.

Table 8
Paired sample t-Test.

Methods P (T<=t) two-tail

BMO-DL vs. PSO-DL 0.0000
BMO-DL vs. HAS-DL 0.0000
BMO-DL vs. ARIMA 0.0000
BMO-DL vs. ACO-DL 0.0000
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demonstrate the superiority of BMO-DL, which exhibits significantly
lower error rates. This superiority is substantiated by the outcomes of a t-
test conducted for validation purposes. The findings highlight that the
BMO is able to effectively optimize DL models, resulting in superior
predictive accuracy, lower prediction errors, and a better fit to the data
compared to the PSO and HSA algorithms used for the same task. This
underscores the capability of BMO-DL as a proficient method for accu-
rately predicting Earth’s surface temperature, offering substantial ben-
efits to the concerned parties.

Despite its promising performance, is not without limitations. Like
other metaheuristic optimization techniques, BMO may suffer from
premature convergence or getting trapped in local optima, especially
when dealing with high-dimensional search spaces or complex problem
landscapes. Additionally, the performance of BMO can be sensitive to its
parameter settings, and finding the optimal parameter values may
require additional tuning efforts, which can be time-consuming and
computationally expensive. Furthermore, BMO, being a population-
based algorithm, can be computationally demanding for problems
with large search spaces or high-dimensional solutions, as it requires
evaluating multiple candidate solutions simultaneously. These limita-
tions will be considered when applying BMO to real-world optimization
problems and interpreting the results obtained from the algorithm.

The dataset used for training and testing the proposed approach may
also have inherent biases or limitations that could impact the general-
izability of the results. The dataset may not adequately represent certain
geographic regions, terrain types, or environmental conditions, leading
to biased or skewed predictions for underrepresented areas or condi-
tions. Additionally, the dataset itself may contain noise, outliers, or
missing values, which could influence the training process and the ac-
curacy of the predictions made by the model. Furthermore, the dataset
may be skewed or imbalanced, with an overrepresentation or under-
representation of certain classes or regions, potentially leading to biased
predictions for the underrepresented classes or areas.

In conclusion, the hybrid BMO-DL approach represents a notable
advancement, demonstrated by its improved performance compared to
established hybrid algorithms. As research continues to evolve, this
study lays a foundation for future endeavors, promoting ongoing inno-
vation and progress in the relevant domain.
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Predicting climate change impact on hospitalizations of cardiovascular patients in
Tabriz, Urban Clim. 44 (2022) 101184, https://doi.org/10.1016/j.
uclim.2022.101184, 2022/07/01/.

[3] A. Singh, A. Haghverdi, Development and evaluation of temperature-based deep
learning models to estimate reference evapotranspiration, Artif. Intell. Agric. 9
(2023) 61–75, https://doi.org/10.1016/j.aiia.2023.08.003, 2023/09/01/.

[4] S. Chen, et al., Occupant-centric dynamic heating and cooling loads simplified
prediction model for urban community at energy planning stage, Sustain. Cities
Soc. 90 (2023) 104406, https://doi.org/10.1016/j.scs.2023.104406, 2023/03/01/
.

[5] M. Koc, A. Acar, Investigation of urban climates and built environment relations by
using machine learning, Urban Clim. 37 (2021) 100820, https://doi.org/10.1016/
j.uclim.2021.100820, 2021/05/01/.

[6] J. Siqi, W. Yuhong, C. Ling, B. Xiaowen, A novel approach to estimating urban land
surface temperature by the combination of geographically weighted regression and
deep neural network models, Urban Clim. 47 (2023) 101390, https://doi.org/
10.1016/j.uclim.2022.101390, 2023/01/01/.

[7] X. Zhou, J. Wang, Y. Liu, Q. Duan, Deep learning with PID residual elimination
network for time-series prediction of water quality in aquaculture industry,
Comput. Electron. Agric. 212 (2023) 108125, https://doi.org/10.1016/j.
compag.2023.108125, 2023/09/01/.

[8] G. Liu, K. Zhong, H. Li, T. Chen, Y. Wang, A state of art review on time series
forecasting with machine learning for environmental parameters in agricultural
greenhouses, Inf. Process. Agric. (2022), https://doi.org/10.1016/j.
inpa.2022.10.005, 2022/10/28/.

[9] Q.C. Li, S.W. Xu, J.Y. Zhuang, J.J. Liu, Y. Zhou, Z.X. Zhang, Ensemble learning
prediction of soybean yields in China based on meteorological data, J. Integr.
Agric. 22 (6) (2023) 1909–1927, https://doi.org/10.1016/j.jia.2023.02.011,
2023/06/01/.

[10] S.C.A. Houetohossou, V.R. Houndji, C.G. Hounmenou, R. Sikirou, R.L.G. Kakaï,
Deep learning methods for biotic and abiotic stresses detection and classification in
fruits and vegetables: state of the art and perspectives, Artif. Intell. Agric. 9 (2023)
46–60, https://doi.org/10.1016/j.aiia.2023.08.001, 2023/09/01/.

[11] M.T. Ahad, Y. Li, B. Song, T. Bhuiyan, Comparison of CNN-based deep learning
architectures for rice diseases classification, Artif. Intell. Agric. 9 (2023) 22–35,
https://doi.org/10.1016/j.aiia.2023.07.001, 2023/09/01/.

[12] P.I. Ritharson, K. Raimond, X.A. Mary, J.E. Robert, A. J, DeepRice: a deep learning
and deep feature based classification of Rice leaf disease subtypes, Artif. Intell.
Agric. 11 (2024) 34–49, https://doi.org/10.1016/j.aiia.2023.11.001, 2024/03/
01/.

[13] S. MirhoseiniNejad, G. Badawy, D.G. Down, Holistic thermal-aware workload
management and infrastructure control for heterogeneous data centers using
machine learning, Future Gener. Comput. Syst. 118 (2021) 208–218, https://doi.
org/10.1016/j.future.2021.01.007, 2021/05/01/.

[14] B.A. Alkhaleel, Machine learning applications in the resilience of interdependent
critical infrastructure systems—A systematic literature review, Int. J. Crit.
Infrastruct. Prot. 44 (2024) 100646, https://doi.org/10.1016/j.ijcip.2023.100646,
2024/03/01/.

[15] M.H. Sulaiman, Z. Mustaffa, N.F. Zakaria, M.M. Saari, Using the evolutionary
mating algorithm for optimizing deep learning parameters for battery state of
charge estimation of electric vehicle, Energy 279 (2023) 128094, https://doi.org/
10.1016/j.energy.2023.128094, 2023/09/15/.

[16] E. Gulay, M. Sen, O.B. Akgun, Forecasting electricity production from various
energy sources in Türkiye: a predictive analysis of time series, deep learning, and
hybrid models, Energy 286 (2024) 129566, https://doi.org/10.1016/j.
energy.2023.129566, 2024/01/01/.

[17] C. van Zyl, X. Ye, R. Naidoo, Harnessing eXplainable artificial intelligence for
feature selection in time series energy forecasting: a comparative analysis of Grad-
CAM and SHAP, Appl. Energy 353 (2024) 122079, https://doi.org/10.1016/j.
apenergy.2023.122079, 2024/01/01/.

[18] S. Çakır, Renewable energy generation forecasting in Turkey via intuitionistic
fuzzy time series approach, Renew. Energy 214 (2023) 194–200, https://doi.org/
10.1016/j.renene.2023.05.132, 2023/09/01/.

[19] Y. Zhang, S. Ragettli, P. Molnar, O. Fink, N. Peleg, Generalization of an encoder-
decoder LSTM model for flood prediction in ungauged catchments, J. Hydrol. 614
(2022) 128577, https://doi.org/10.1016/j.jhydrol.2022.128577, 2022/11/01/.

[20] S. Bhardwaj, E. Chandrasekhar, P. Padiyar, V.M. Gadre, A comparative study of
wavelet-based ANN and classical techniques for geophysical time-series
forecasting, Comput. Geosci. 138 (2020) 104461, https://doi.org/10.1016/j.
cageo.2020.104461, 2020/05/01/.
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