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Accurately estimating the State of Charge (SOC) in Electric Vehicles (EVs) is critical for battery management and
operational efficiency. This paper presents a Deep Learning (DL) approach to address this challenge, utilizing
Feed-Forward Neural Networks (FFNN) to estimate SOC in real-world EV scenarios. The research used data from
70 driving sessions with a BMW i3 EV. Each session recorded key factors like voltage, current, and temperature,
providing inputs for the DL model. The recorded SOC values served as outputs. We divided the dataset into
training, validation, and testing subsets to develop and evaluate the FFNN model. The results demonstrate that
the FFNN model yields minimal errors and significantly improves SOC estimation accuracy. Our comparative
analysis with other machine learning techniques shows that FFNN outperforms them, with an approximately
2.87 % lower root mean square error (RMSE) compared to the second-best method, Extreme Learning Machine
(ELM). This work has significant implications for electric vehicle battery management, demonstrating that deep
learning methods can enhance SOC estimation, thereby improving the efficiency and reliability of EV operations.

1. Introduction

The rising popularity of lithium-ion batteries is attributed to their
increasing use in Electric Vehicles (EVs), driven by their high energy
density and minimal self-discharge rate (Boulakhbar et al., 2022).
Within these battery packs, accurately estimating the State of Charge
(SOQ) is pivotal for sustaining battery pack performance and ensuring
the safe operation of EVs (Pan et al., 2023). This task is particularly
challenging due to the inherent inconsistencies among cells within the
battery pack (He et al., 2017). Due to its high energy density and min-
imal environmental impact, lithium batteries are rapidly being
employed in EVs. EVs employ Battery Management Systems (BMS) for
battery monitoring and safety protection in order to monitor battery
state, anticipate remaining mileage, and optimize energy dispatch. One
of the most important features in BMS is SOC of the batteries, where the
estimation of the SOC is vital in determining the remaining range of EVs
and the runtime of battery-power equipment (Vidal et al., 2022).

Recent research has introduced innovative approaches to improve
battery management and SOC estimation. A hybrid modeling approach
that combines physics-based reduced-order models with deep neural
networks has been developed to forecast the Remaining Useful Life
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(RUL) of lithium-ion batteries, offering a promising method for long-
term battery performance evaluation (Nascimento et al., 2021). This
hybrid approach uses data-driven kernels to reduce the gap between
predictions and observations, achieving improved accuracy with
reduced-order modeling. Additionally, integrating domain knowledge
into deep neural networks has shown significant advancements in pre-
dicting RUL, with a physics-based model extracting aging-correlated
parameters from battery charging data to inform a deep neural
network (Ma et al., 2024). This innovative approach demonstrates a
high level of accuracy and efficiency compared to traditional
data-driven methods. Moreover, early prediction of battery RUL has
been enhanced with the use of Adaptive Dropout Long Short-term
Memory (ADLSTM) combined with Monte Carlo (MC) simulation
(Tong et al., 2021). This deep-learning-based algorithm offers precise
early prediction with significantly less data, showcasing improved pre-
diction accuracy and robustness.

Despite significant advances in SOC estimation, ongoing challenges
exist due to the dynamic and complex nature of lithium-ion batteries.
For instance, variations in temperature, current rates, and other envi-
ronmental factors can affect the accuracy of SOC estimation models.
Recent research has explored adaptive approaches to improve SOC
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prediction. An example is the improved Anti-Noise Adaptive-LSTM
neural network, which offers robust feature extraction and optimal
parameter characterization for more accurate SOC estimation (Wang
et al., 2023a). An innovative approach to capacity estimation is the
improved robust multi-time scale singular filtering-Gaussian process
regression-long short-term memory (SF-GPR-LSTM) modeling method
which has been proposed in (Wang et al., 2023b). This technique uses a
multi-task training strategy to evaluate battery performance, enabling
refined dynamic characterization of physical carrier transports.

Accurate SOC estimation is vital for the energy management system
of vehicles, ensuring the reliability and affordability of EVs. However,
SOC estimation poses challenges due to the intricate and nonlinear de-
pendencies on temperature, battery health, and other factors in Li-ion
batteries (Vidal et al., 2020). The data driven analysis have been dis-
cussed in (Hossain Lipu et al., 2020), where numerous algorithms,
implementation factors, limitations and future trends of SOC estimation
have been analyzed. Moreover, precise SOC estimation is essential for
the battery balancing system, particularly considering the erratic dy-
namics batteries experience during the frequent acceleration and
deceleration of electric vehicles (Chemali et al., 2018). In order to
address the limitations of low precision, effectiveness, and relatively low
robustness, the Internal Cascaded Neuromorphic Computing System
(ICNCS) (Dong et al., 2024) and the Nesterov Accelerated Gradient
(NAG) algorithm based Bidirectional Gated Recurrent Unit (Bi-GRU)
network (Zhang et al., 2021) have been proposed literature. These ap-
proaches capitalize on the significant advancements in graphics pro-
cessing units, which allow the networks to be trained at much higher
speeds than in the past.

The effort of precisely estimating the SOC in batteries has been
comprehensively studied in research, with an obvious focus on utilizing
advanced approaches such as Deep Learning (DL) and Machine Learning
(ML). Convolutional Neural Networks (CNNs), which are a subset of DL,
have become a popular option in this area of study. For example, (Fan
et al., 2022) utilized CNNs in the U-Net architecture to effectively tackle
the issues of SOC estimation. In a similar manner, (Yang et al., 2022a)
addressed the SOC by utilizing a temporal CNN that was trained on
actual operational data from EVs. This study demonstrated the practical
usefulness of the CNN in real-life situations. In addition, (Gu et al., 2023)
presented a CNN-Transformer architecture, demonstrating its effec-
tiveness in precisely evaluating the State of Health (SOH) of batteries.
(Pradyumna et al., 2022) combined CNNs with electrochemical
impedance spectroscopy (EIS) to accurately and reliably estimate bat-
tery capacity, while (Wang et al., 2023c) introduced a closed-loop CNN
method to improve the accuracy of SOC estimation under various
scenarios.

Meanwhile, researchers have explored the use of Recurrent Neural
Network (RNN) approaches, with a specific focus on LSTM. (Chemali
et al., 2018) proved the effectiveness of LSTM-RNNSs in capturing tem-
poral relationships to accurately estimate SOC without the need for
complex battery models or filters. (Chen et al., 2023) addressed the issue
of unstable SOC estimation in lithium-ion batteries by utilizing
LSTM-RNNs with enhanced input and restricted output. This approach
effectively captured long-term dependencies and non-linear battery
characteristics. (Chung et al., 2022) showed that LSTM-RNNs are
effective at properly forecasting SOC in different environmental condi-
tions, eliminating the necessity for complex lookup tables.

Moreover, the study of Extreme Learning Machine (ELM) has
attracted interest in the field of SOC estimation research. In their study,
(Dou et al., 2022) presented an improved version of the ELM model.
They utilized the rapid learning abilities and generalization skills of the
model, which were further strengthened by using the Salp Swarm Al-
gorithm (SSA) for optimizing the model’s parameters. (Zhang et al.,
2023) tackled the issue of non-Gaussian disturbances in battery man-
agement systems by using an Outlier Robust Extreme Learning Machine
(OR-ELM), taking use of ELM’s strong capacity to adapt to different
conditions. (Zhao et al., 2022) utilized a Multi-Input ELM (MI-ELM)
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method, together with online model parameter identification, to obtain
excellent SOC estimation performance in various operational scenarios.

Devaraj and Kottoor (2024) proposed the ML and DL approaches to
predict faults from battery features that considerably manage the energy
in hybrid EV. It is also worth to mention that the hybrid models have also
emerged one of the favorite approaches for solving the SOC estimation
such as Adaptive Aquila Optimization Algorithm (AAqOA) and Deep
Convolution Neural Network (DCNN) (Pisal and Vidyarthi, 2023),
nonlinear auto-regressive models with exogenous input neural network
(NARX) with LSTM (Wei et al., 2020), the Gaussian Process Regression
hybrid with the CNN (Y. Y. Li et al., 2022), combination of multichannel
convolutional and bidirectional recurrent neural networks
(MCNN-BRNN) (Bian et al., 2022), CNN with Random Forest algorithm
(Yang et al., 2022c), CNN-Bidirectional Weighted Gated Recurrent Unit
(CNN-BWGRU) (Cui et al., 2022), Fuzzy Logic Controller (FLC) and
Artificial Eco-system Algorithm (FLTAEO) for BMS (Justin Raj et al.,
2022) and Multiscale Distribution Adaptation (MDA) combined with
Deep Transfer Neural Network (DTNN) (Bian et al., 2021). These inte-
grative models leverage various algorithms and techniques, contributing
synergistically to bolster the accuracy and effectiveness of SOC estima-
tion. The ongoing exploration and hybridization of different method-
ologies underscore the dynamic landscape of SOC estimation in EVs.

SOC estimation has also been addressed through widely recognized
Kalman Filter (KF) methodologies, incorporating various adaptive and
variant forms documented in the literature, such as the Adaptive
Extended Kalman Filter (AEKF) (Jin et al., 2022), Improved Strong
Tracking Unscented KF (Ananthi, 2022), unscented KF (UKF) and the
H-infinity filter (HF) combination namely unscented H-infinity filter
(UHF) (Liu et al., 2020), improved Cubature KF(CKF)(Li et al., 2021; Li
et al., 2022), square root unscented KF (Liu and Yu, 2022), Modified
Extended KF (MEKF) (Yang et al., 2022b), dual fractional order KF (Liu
et al., 2022), joint algorithm of improved forgetting factor recursive
least squares-extended KF (Ge et al., 2022), cubature Kalman filter and
H-infinity (Ning et al., 2022) and Affine Iterative Adaptive Extended
Kalman Filter (AIAEKF) (Wu et al., 2022). However, it is worth noting
that distinctive advantages are offered by the FFNN approach employed
in this research compared to these filter-based methods. Unlike KF and
its variants, the FFNN excels in pattern recognition for estimation and
prediction without relying on any particular model definition of a pro-
cess and measurement model. One of the primary benefits of FFNN lies
in its ability to perform pattern recognition and capture complex re-
lationships within the data. By leveraging deep learning techniques and
multiple hidden layers, the FFNN model autonomously learns intricate
patterns and extracts relevant features from the input data. This
adaptability enables FFNN to effectively handle different battery sys-
tems, driving conditions, and nonlinear behaviors, making it well-suited
for SOC estimation in real-world scenarios.

In contrast, KF-based methods heavily depend on the formulation of
a process and measurement model, which can be challenging to accu-
rately define for complex battery systems. While these methods may be
effective in certain applications, their performance can be limited by
assumptions of linearity and the need for accurate model specifications.
The FFNN approach, on the other hand, leverages its pattern recognition
capabilities to learn directly from the data, bypassing the requirement of
a specific model and enabling it to capture nonlinear and complex bat-
tery behavior more effectively. The mentioned methods highlight that
DL, ML, and KF remain preferred options among researchers for SOC
estimation and basically can be further explored. Data scarcity and
confidentiality constraints imposed by manufacturers have hindered
extensive investigations in this area.

Hence, this paper fills the research gap by introducing a novel SOC
estimation approach derived from actual driving experiences with a
BMW i3 EV, making use of the only accessible real-world data at hand
(Trifonov, 2020). The main contribution of this research is the successful
implementation of a DL FFNN model using this real-world driving data.
The approach employed leverages voltage, current, and
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temperature—the established input features commonly used in SOC
estimation—and applies a meticulous trial-and-error approach to select
the most relevant features. By considering domain-specific information
and understanding the significance of these input features, improved
reliability and accuracy in SOC estimation have been achieved. How-
ever, it is important to note that according to the "No Free Lunch" the-
orem in artificial intelligence, each problem requires careful study
because a particular Al approach might work well with one dataset but
may not perform as effectively with another. This theorem underlines
the importance of thorough comparative analyses and model validation
to ensure the robustness of the approach (Moniz and Monteiro, 2021;
Wolpert and Macready, 1997). Keeping this in mind, this research
further explores the performance of different techniques through
comprehensive comparative analyses with other deep learning ap-
proaches. The outcomes of this research make a significant contribution
to the progression of SOC estimation techniques for electric vehicle
batteries. The subsequent sections are structured as follows: Section 2
provides a concise overview of DL FFNN, and Section 3 delves into the
application of DL FFNN for the SOC estimation model. Section 4 presents
the results and subsequent discussion, and finally, Section 5 outlines the
conclusion of the paper.

2. Deep learning (DL) approach: feed-forward neural networks

In this work, the training of the datasets under consideration is
conducted using a FFNN. The FFNN, characterized by its multi-layer
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perceptron structure, operates without employing recurrence; rather,
it executes a forward pass of data to capture the non-linearities dictated
by the dataset (Vidal et al., 2022). Fig. 1 depicts the FNN model
comprising three layers: the input layer, hidden layers, and output layer.
The selection of activation functions for each neuron is crucial. Based on
the model developed by (Vidal et al., 2020), the activation functions for
output, hidden and input are established in this paper. The expressions
employed for each layer of the FFNN are derived from this model are:

0, u<o0
Clipped ReLU at output layery =¢ u, 0 <u<1 1)
1, u>1
Hyperbolic tangent at hidden layer 1: y = e”;—i:“ )
Leaky ReLU at hidden layer 2 : y = max(0.3 *u,u) 3)
Linear function at input layer: y =u 4

In this context, y signifies the output from each neuron, while u in-
dicates the total input prior to entering the neurons. This input com-
prises the sum of the products of the respective weights and inputs,
along with the bias, and is formulated as follows:

u= Zwijxi + bj (5)

In this configuration, x; denotes the output emanating from the i th

R Input Hidden layers (—)utput Layc; o S
/ /ﬂulti-Laycr Pcrccptr@/ \ \
; [=2 .
’ |
! |
' |
! |
l |
| |
! |
l - |
! SOC, |
I
: :
! Single ,
: Perceptron [
: / :
! |
| |
l |
‘ I
' /

\\ j\ //,

T ——

Bias

Weight

Activation function

Fig. 1. The model of Feed-Forward Neural Networks.
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neuron or node in the preceding layer, w;; represents the weight inter-
connecting layers i and j, and b; stands for the bias in the current layer.
The optimization of weights at each layer is achieved using Adaptive
Moment Estimation (Adam) (Kingma and Ba, 2015). This formulation
involves the summation of the products of the respective weights and
inputs, complemented by the bias. The interplay of these elements plays
a crucial role in shaping the network’s ability to capture and represent
complex relationships within the data. The significance of these con-
nections is underscored by the optimization process, where the weights
at each layer are fine-tuned for enhanced predictive performance. The
chosen optimization algorithm, Adam, ensures the efficient adjustment
of weights, contributing to the overall efficacy of the FFNN in accurately
estimating the SOC in electric vehicle batteries.

3. Using the deep learning (FFNN) for SOC estimation problem

The data quality is assessed by examining the extent to which the
desired domain information is present in the dataset used to train the
FFNN, considering the presence of noise or irrelevant information.
Given that FFNN is a data-driven technique, it is crucial to acknowledge
that measurement noise and error, while undesirable, are often inherent
and cannot be entirely eliminated. Hence, these factors must be
considered when conducting the training and testing phases of a DL
network. This study utilizes a genuine dataset obtained from the mea-
surement of 70 journeys made by the BMW i3 EV (Trifonov, 2020),
furnished with a 60 Ah battery pack, for the simulation experiments.
Data is collected with mounted EV sensors, through the OBD port at 1 Hz
sampling rate. It is important to note that the acquired dataset contains
Not a Number (NaN) elements due to errors or missing values in the
actual measurements. Therefore, a data cleaning process is necessary for
the raw data obtained.

In this study, the dataset incorporates two critical SOC features: the
SOC estimated by the EV manufacturer and the displayed SOC presented
to the end user. This comprehensive dataset aims to capture the nuanced
dynamics of the battery’s charge status as perceived by the manufac-
turer and as communicated to the EV user. Consequently, the SOC
measured by the EV manufacturer is meticulously selected as the output
variable for the proposed model. This choice aligns with the industry’s
emphasis on leveraging the manufacturer’s estimation for precision and
reliability in SOC determination. Simultaneously, the input variables for
the FFNN model encompass essential parameters such as measured
voltage, current, and temperature of the battery pack. This multidi-
mensional input approach ensures that the FFNN model accounts for key
factors influencing SOC, offering a holistic perspective on the battery’s
state. To provide clarity on the SOC estimation process, Fig. 2 visually
represents the FFNN-based SOC estimation, depicting the intricate
interplay of input variables. Additionally, the detailed configuration of

Input:

Voltage

e (4B

Temperature '@

O O)oljgc »

* 50 trips for training
* 10 trips for validation
* 10 trips for testing

Fig. 2. SOC estimation using FFNN.
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data for training, validation, and testing is meticulously outlined in
Table 1, facilitating transparency in the experimental setup and aiding
reproducibility in subsequent studies. This robust dataset and configu-
ration lay the foundation for a comprehensive and insightful exploration
of SOC estimation in electric vehicles.

Fig. 3 illustrates the FFNN inputs, encompassing voltage, current,
and temperature data from 50 BMW i3 EV trips, with SOC as the output.
The dataset, comprising over 800 thousand instances used for training
(approximately 78 % of the total data), ensures robust learning. The
allocation of about 11 % for validation and 12 % for testing processes
contributes to a comprehensive evaluation of the FFNN model. It is
noteworthy that the maximum SOC values intentionally fall below 100
%. According to (Lucchetta, 2021), this cautious approach, ensuring a
driver-displayed SOC of 100 % at an estimated 86.9 % SOC, and vice
versa, is implemented for battery safety and lifespan considerations
within the optimal operational range.

To evaluate the efficacy of FFNN alongside other machine learning
methods, we utilized several metrics, including Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Maximum Error (MAX
ERROR), and Standard Deviation (STD DEV). The explanations for these
metrics are outlined below:

1¢ ~
MAE:EZD’i—}’i\ Q]
i=1
nos )2
RMSE — Z(}’n n}’z) )
i=1
where

y;- predicted data

y;- actual data

n-number of data points

RMSE quantifies the standard deviation of the residuals, providing
insight into the dispersion of prediction errors. On the other hand, MAE
gauges the average magnitude of errors in a set of predictions, irre-
spective of their direction. Additionally, STD DEV assesses the robust-
ness of the proposed FFNN, while MAX ERROR identifies the peak error
at a specific time.

Fig. 4 shows the process flow for our study on battery SOC estimation
in EVs. The flowchart outlines the key steps from data collection to
performance evaluation and results analysis, which have been discussed
previously. The process begins with data collection, where real-world
data from a BMW i3 EV is gathered. This data includes various param-
eters such as voltage, current and temperature, that serve as inputs for
the model. The collected data is then used to establish the input-output
configuration for the SOC estimation model. Next, the data is divided
into training, validation, and testing sets to prepare for model devel-
opment and evaluation, which has been discussed in Table 1. This di-
vision ensures that the model is properly trained and validated before
final testing. Overall, the flowchart serves as a guide through the various
stages of the study, illustrating the sequence of processes and their
interconnections.

4. Results and discussion

All simulations in this work were conducted using MATLAB on a
MacBook Pro Processor with a 2.40 GHz Quad-Core Intel Core i5 and 8
GB RAM. Evaluating the performance of FFNN in minimizing RMSE
involves experimental determination of hidden layers. For the training-
testing process, one hidden layer and two hidden layers were imple-
mented, and the best results were documented for comparative analysis.
Additionally, other machine learning techniques, including LSTM, GRU
networks, and ELM, will be employed for performance comparison.

To ascertain the optimal configuration of hidden layers and neurons
at each layer, the training and testing simulations were repeated ten
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Table 1
Characteristics of Training, Validation, and Testing Sets.
Battery Used Training Validation
Profiles

Testing

Input Hidden layer Output

Trips no. 1-no. 50
(830, 796 instances)

Trips no. 51- no. 60
(114, 230 instances)

Battery pack Real
of 60Ah driving

Trips no. 61- no. 70
(118, 974 instances)

2 : consists of 20  Real
neurons for each measurement of

Input #1: Voltage,
Input#2: Current; Input
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driving driving driving
400 Inputs for training process (Voltage, Current & Temperature)
>
S
8 350
o
>
300 \ \ \ w J \ \ \ J
0 1 2 3 4 5 6 7 8 9
Time(s) «10°
200
S
c
5 [
5 -200
o
-400 1 | | | 1 1 J
1 2 3 4 5 6 7 8 9
Time(s) «10°
o
® 40 —
o
&30
k=)
g20f
2
o —
;g- 10
£ o \ \ | | | \ \ | J
e o 1 2 3 4 5 6 7 8 9
Time(s) «10°
— Output (SOC
£ 100 : put (SOC) ‘
S 80 -
&
S 60— —
ol
o 40 s
i)
©
B ! \ \ w J ! \ \
0 1 2 3 4 5 6 7 8 9
Time(s) x10°

Fig. 3. Selected data for training the input-output of DL.

times. This approach accommodated the random initialization process
of optimizing weights and biases and allowed for an evaluation of the
developed FFNN model’s consistency. This study specifically chose a
single hidden layer and 2-hidden layers, with the number of neurons
varied at each hidden layer (5, 10, 20, and 25). Fig. 5 illustrates the
simulations, highlighting that the best results were achieved with a
single and 2-hidden layers using 20 neurons. However, the results
indicate that the FFNN model with 2-hidden layers consistently out-
performed others across all metrics. Consequently, 20 hidden neurons at
each hidden layer were selected for developing the FFNN model for the
SOC estimation problem.

The evaluation of the machine learning models for state-of-charge
(SOC) estimation involves key metrics, primarily RMSE (Root Mean
Square Error) and MAE (Mean Absolute Error). Among the models
considered — FFNN (Feed-Forward Neural Network) with 2 hidden
layers, FFNN with a single hidden layer, LSTM (Long Short-Term
Memory), GRU (Gated Recurrent Unit), and ELM (Extreme Learning
Machines) — FFNN with 2 hidden layers consistently outperforms others.
It attains the lowest RMSE (8.3460) and MAE (7.1662), indicating a
superior ability to predict SOC accurately. The FFNN with a single
hidden layer, although performing well, exhibits slightly higher error
rates. LSTM and GRU, being recurrent neural networks, struggle to

match the accuracy of FFNN, while ELM positions itself as a strong
competitor, securing the second-best performance.

Beyond accuracy, the standard deviation (STD DEV) metric provides
insights into the stability and consistency of predictions. Lower standard
deviation values suggest more consistent results across different in-
stances. FFNN with 2 hidden layers demonstrates not only accuracy but
also consistency, yielding a lower STD DEV (8.1000). In contrast, FFNN
with a single hidden layer, LSTM, and GRU show higher variability in
predictions. ELM, while not reaching the level of consistency displayed
by FFNN with 2 hidden layers, maintains a competitive standard devi-
ation (6.37912), positioning itself as a stable alternative to more com-
plex models.

In the comprehensive evaluation of machine learning models for
state-of-charge (SOC) estimation, the simulation process was conducted
rigorously, with FFNN and ELM undergoing ten iterations, while LSTM
and GRU, due to their computational demands, were executed only
once. The results, detailed in Table 2, encompass key metrics, including
RMSE, MAE, MAX ERROR, and STD DEV. Notably, FFNN with 2 hidden
layers, featuring 20 neurons, consistently outperformed all other models
across these metrics, affirming its accuracy and reliability in predicting
SOC. ELM secured the second-best performance, showcasing competi-
tive results, especially considering its remarkable speed during the
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Table 2

Optimal outcomes achieved by various machine Learning approaches.
Performance FFNN FFNN single LSTM GRU ELM
Evaluation (%) hidden layer
RMSE 8.3460 11.5271 11.8127 18.5928 11.2176
MAE 7.1662 8.8024 10.8469 13.4434 10.3032
MAX 29.8497 39.5179 60.7218 53.4680 34.0408
STD. DEV. 8.1000 10.9645 6.82071 14.1475 6.37912

training process. This efficiency stems from ELM’s unique approach,
where input layer weights are randomly allocated, and output layer
weights are calculated using the generalized inverse of the hidden layer
output matrix (Bai et al., 2016). This distinctive feature accelerates ELM
training significantly, making it a noteworthy model for those priori-
tizing computational efficiency without compromising on accuracy.

An exhaustive evaluation of the FFNN model’s performance is pre-
sented in Fig. 6, encapsulating a comprehensive analysis across ten
simulation runs. The figure provides a detailed visual representation of
the variations in Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Maximum Error (MAX ERROR). This in-depth performance
analysis offers a nuanced understanding of how the FFNN model re-
sponds to different simulation instances, shedding light on its robustness
and reliability in diverse scenarios. Notably, the optimal outcomes were
observed during simulation #3, aligning with the detailed results

Test - Esti
T T

» ion RMSE (%) using FFNN
T T T T

RMSE (%)

1 2 3 4 5 6 7 8 9 10
# Repeats

Test - Estimation MAE (%) using FFNN
T T T T T T

MAE (%)

1 2 3 4 5 6 7 8 9 10
#Repeats

Test - Estimation MAX (%) using FFNN
T T T T T T

MAX (%)

# Repeats

Fig. 6. Assessment of performance during the testing process across ten
simulation runs.

outlined in Table 2.

The results of SOC estimation by FFNN, FFNN (1 hidden layer),
LSTM, GRU, and ELM are presented in Figs. 7, 8, 9, 10, 11, respectively.
It is evident from these figures that FFNN with 2-hidden layers exhibits
the most accurate predictions, closely aligning with the testing data
pattern. The maximum error recorded by FFNN is below 30 %, occurring
at time 2303 s as illustrated in Fig. 7. Conversely, GRU demonstrates the
least favorable performance, as depicted in Fig. 10. Despite its slightly
lower maximum error compared to LSTM, the overall predictions by
GRU deviate more substantially from the actual testing process. These
nuanced observations contribute to a thorough understanding of how
each model responds to the complexities of real-world SOC estimation
scenarios.

From all the simulations conducted for all machine learning tech-
niques, it can be noticed that even though FFNN able to track the pattern
of the output of SOC from the real data testing, the performances are still
can be improved. From the training data shown in Fig. 3, it can be noted
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Fig. 7. SOC estimation obtained by FFNN from simulation #3 (the best).
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Fig. 8. SOC estimation obtained by FFNN for single hidden layer.

that the temperature distributions are ranging from 5 °C to 35 °C. Given
that this temperature range may cover the requirements of numerous EV
use cases, it would have been advantageous to record data from signif-
icantly higher or lower temperature ranges. This could enhance SOC
estimation accuracy, particularly in more extreme operating conditions
for EVs (Lucchetta, 2021). In addition, in this driven data of a BMW i3
EV, there are numerous parameters have been recorded such as eleva-
tion, regenerative breaking charge, speed throttle, ambient temperature,
distance, duration and traffic conditions apart from the parameters used
in this study. Thus, the impact of these parameters can be explored in the
future that can give direct or indirect effects to the performances of SOC
as well as State of Health (SOH) of the battery packed. This holistic
exploration promises to provide a richer understanding and could lead
to advancements in SOC estimation models and the overall optimization
of electric vehicle battery management systems.

Moreover, the diversity in modeling approaches also could enhance
the robustness and generalizability of SOC estimation models. Lastly,
addressing real-world challenges related to EV usage, such as dynamic
charging scenarios, varying driving patterns, and diverse geographic
locations, could further enrich the scope of research. Conducting ex-
periments under these specific conditions and incorporating their
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Fig. 9. SOC estimation obtained by LSTM.
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Fig. 10. SOC estimation obtained by GRU.

complexities into the SOC estimation models may yield more accurate
and adaptable solutions for electric vehicle battery management.

For future endeavor, the focus on hardware-based solutions and
innovative approaches to in-memory computing could significantly
enhance SOC estimation and battery management systems. Recent
research has presented interesting possibilities in these areas, with ap-
plications that may contribute to the advancement of SOC estimation
technology. A promising approach is the brain-inspired hierarchical
interactive In-Memory Computing (IMC) system (Ji et al., 2023), which
addresses the 'von Neumann bottleneck’ through cost-effective, eco--
friendly carbon-based synapse arrays. This system facilitates high-speed
analog multiply-accumulate operations and enables cross-modal in-
teractions, pointing to new opportunities for efficient hardware imple-
mentation in battery management.

Another avenue for exploration is the multimodal neuromorphic
sensory-processing system with memristor circuits designed for smart
home applications (Dong et al., 2023). This approach utilizes low-cost,
reliable materials to build an environmentally friendly
sensory-processing system. Its emphasis on low-energy consumption
and parallel processing could inspire similar innovations in battery
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Fig. 11. SOC estimation obtained by ELM.

management systems, focusing on energy efficiency and streamlined
hardware designs. The third potential area for future research involves a
memristor-based Pavlov associative memory circuit (Zhou et al., 2022),
demonstrating an evolution from battery-like capacitance to resistive
switching memory. This novel approach, with its simple hardware
implementation and biophysical mechanism exploration, offers a
glimpse into how associative memory circuits could be adapted for SOC
estimation, allowing for robust and adaptable solutions.

These directions, based on advanced hardware technologies, could
offer improved accuracy and efficiency in SOC estimation, ultimately
contributing to more reliable and robust battery management systems in
electric vehicles and beyond. Further research in these areas could un-
lock new methods for handling the complex challenges of SOC estima-
tion, with the goal of achieving enhanced performance and reliability in
battery systems.

5. Conclusion

This study pioneered the application of a deep learning methodol-
ogy, specifically the FFNN, to achieve precise estimation of the battery’s
SOC by leveraging real driving data obtained from a BMW i3 EV. The
optimization process for FFNN involved critical design parameters,
including the number of hidden layers, neurons, and input-output con-
figurations. It was imperative to fine-tune these parameters, recognizing
their substantial impact on the accuracy of SOC predictions. Through
extensive comparative analyses with other machine learning techniques,
such as LSTM, GRU, and ELM, utilizing identical input-output configu-
rations, the simulations yielded compelling results. The findings affirm
that FFNN consistently outperformed the selected techniques, show-
casing superior SOC estimation capabilities. Importantly, the detailed
discussions today provided deeper insights into the nuances of these
results, elucidating the strengths of FFNN with 2 hidden layers, the
comparative performance of ELM, and the challenges posed by GRU. In
light of these discussions, it is evident that FFNN stands as the optimal
choice for accurate SOC estimation, providing a solid foundation for
future research endeavors. Recommendations for future studies involve
exploring additional parameters or features to enhance the complexity
of SOC modeling in real EV scenarios. Additionally, investigating
various input-output configurations for driving trips will further enrich
the evaluation of the developed deep learning approach as well as
hardware-based solutions and innovative approaches to enhance SOC
estimation and battery management systems.
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