Co-Pyrolysis of Empty Fruit Bunch and High-Density Polyethylene Over HZSM-5: Thermogravimetric, Kinetic and Thermodynamic Analysis

Nadhilah Aqilah Shahdan¹, Vekes Balasundram^{1*}, Kamyar Shameli¹, Roshafima Rasit Ali¹, Norazana Ibrahim², Ruzinah Isha³

1 Chemical Energy Conversions and Applications (ChECA), Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia.

2 Energy Research Group, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

3 College of Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.

ABSTRACT

This study conducted non-catalytic and catalytic copyrolysis of empty fruit bunch (EFB) and high-density polyethylene (HDPE) with HDPE-to-EFB mass ratios of 1:0, 0:1, and 1:1 via thermogravimetric analyser (TGA) and the application of Coats-Redfern method for kinetic and thermodynamic analysis. Hydrogen-exchanged zeolite socony mobil-5 (HZSM-5) catalyst was used with a catalyst-to-feedstock mass ratio of 1:1 for all the catalytic samples. From TGA results, the highest amount of volatilized matter in Phase II was obtained from noncatalytic pyrolysis of HDPE (NCP: 98.6 wt%) while the lowest amount of volatilized matter in Phase II was obtained from non-catalytic pyrolysis of EFB (NCB: 67.3 wt%). The activation energy for the pyrolysis of HDPE was highest followed by the co-pyrolysis of EFB and HDPE and pyrolysis of EFB, for both non-catalytic and catalytic runs. The activation energy based on the HDPE-to-EFB mass ratio was obtained in the following order: NCP (353.6 kJ/mol) > CP (214.3 kJ/mol) > NCPB (109.6 kJ/mol) > CPB (64.7 kJ/mol) > NCB (25.8 kJ/mol) > CB (24.4 kJ/mol). For thermodynamic analysis, ΔH and ΔG were positive for all the runs while ΔS , was negative for the non-catalytic and catalytic pyrolysis of EFB and co-pyrolysis of HDPE and EFB (NCB, NCPB, CB and CPB) and positive for the non-catalytic and catalytic pyrolysis of HDPE (NCP and CP).

Keywords: pyrolysis kinetics, pyrolysis thermodynamics, co-pyrolysis, biomass, plastic, HZSM-5

NONMENCLATURE

Abbreviations	
СВ	Catalytic pyrolysis of EFB over HZSM-5
СР	Catalytic pyrolysis of HDPE over HZSM-5
СРВ	Catalytic co-pyrolysis of EFB and HDPE
	over HZSM-5
CR	Coats-Redfern
EFB	Empty fruit bunch
HDPE	High-density polyethylene
HZSM-5	Hydrogen-exchanged zeolite socony mobil-5
NCB	Non-catalytic pyrolysis of EFB
NCP	Non-catalytic pyrolysis of HDPE
NCPB	Non-catalytic co-pyrolysis of EFB and
	HDPE
TGA	Thermogravimetric analyser
Symbols	
E _A	Activation energy
K _B	Boltzmann constant
ΔH	Change of enthalpy
ΔS	Change of entropy
ΔG	Change of Gibbs free energy
α	Fractional conversion
β	Heating rate
h	Planck's constant
А	Pre-exponential factor
Т	Temperature
R	Universal gas constant

Selection and peer-review under responsibility of the scientific committee of the 13_{th} Int. Conf. on Applied Energy (ICAE2021). Copyright © 2021 ICAE