
2020 International Conference on Computing and Information Technology, University o f Tabuk, Kingdom o f Saudi Arabia.

Volume: 01, Issue: ICCIT- 1441, Page No.: 368 - 373, 9th & 10th Sep. 2020.

Analyzing the Reliability of Convolutional Neural
Networks on GPUs: GoogLeNet as a Case Study

Younis Ibrahim
College o f IoT Engineering

Hohai University
Changzhou, China

Younis@hhu.edu.cn

Haibin Wang
College o f IoT Engineering

Hohai University
Changzhou, China

wanghaibin@hhuc. edu. cn

Khalid Adam
Faculty o f Electrical & Electronic Eng.

University Malaysia Pahang
Pahang, Malaysia

khalidwsn 15 @gmail. com

Abstract— Convolutional Neural Networks (CNNs) are used
for tasks such as object recognition. Once a CNN model is
used in a radiative environment, reliability of the system
against soft errors is a crucial issue, especially in safety-
critical and high-performance applications that bound with
real-time response. Selectively-hardening techniques do
improve the reliability of these systems. However, the hard
question in selective techniques is "how to exclusively select
code portions to harden, to safe the performance from being
degraded". In this paper, we propose a comprehensive
analysis methodology for CNN-based classification models to
confidently determine the only vulnerable parts of the source
code. To achieve this, we propose a technique, Layer
Vulnerability Factor (LVF) and adopt another technique,
Kernel Vulnerability Factor (KVF). We apply these
techniques to GoogLeNet, which is a famous image
classification model, to validate our methodology. We
precisely identify the parts of the GoogLeNet model that need
to be hardened instead of using expensive duplication
solutions.

Keywords— convolutional neural networks, GoogLeNet,
reliability, soft errors, GPUs

I. INTRODUCTION
Convolutional Neural Networks (CNNs are the new
revolution that dominating the Artificial Intelligence (AI),
and they are the most efficient technique to perform
computer vison tasks, such as image classification [1] and
object detection [2]. Due to the computational requirements,
CNNs are often run on heterogeneous systems that
composed of CPUs and accelerators, such as Graphics
Processing Unit (GPUs). In fact, GPUs nowadays are the
dominated hardware to accelerate CNN models [3].

CNN models are widely used in safety-critical systems,
such as self-driving cars [4] and space applications [5].
Therefore, analyzing the reliability of such systems is
critical. One way to address reliability issues is utilizing
software redundancy. A bunch of techniques have been
proposed for soft errors mitigation in GPUs based on
software solutions, including Double Modular Redundancy
(DMR), Triple Modular Redundancy (TMR), and
Algorithm-Based Fault Tolerance (ABFT). However, the
major challenging of using these techniques is the runtime
overheads that associated with these solutions.

In this study, “which portion of the source code to harden”
is the question we try to answer, and implement it on
GoogLeNet algorithm as a case study. To answer this
question, we propose a systematic analysis methodology for
classification models to identify code portions that worth
protecting. As a first objective, we propose a technique,
Layer Vulnerability Factor (LVF) and adopt an exist

978-1-7281-2680-7/20/S31.00 ©2020 IEEE

technique, Kernel Vulnerability Factor (KVF). We
implement these techniques on a CNN model that is used in
image classification tasks, GoogLeNet. Using our
methodology, we are able identify different vulnerable parts
of the GoogLeNet model that need to be hardened.

The main contributions of this work are: (1) a methodology
to evaluate the likelihood of faults in specific parts of the
source code that likely to cause errors at the output; (2) the
LVF concept and implementing it to a realistic case-study;
and (3) an extensive analysis of GoogLeNet characteristics
under SASSIFI fault injection.

The remainder of the paper is organized as follows. Section
II shows the background and reviews related work. Section
III presents the proposed methodology. Section IV analyzes
and discusses the results. Section V concludes the paper.

II. BACKGROUD AND RELATED WORK
In this section, we present a brief background on
Convolutional neural networks and especially GoogLeNet.
We then, summarize previous findings on CNNs reliability.

a. Convolutional Neural Networks
Due to their outstanding performance that bypassed even
the human ability in object recognition benchmarks (i.e.,
classification), CNNs are arguably the most popular type of
the Deep Learning architectures [6]. The convolutional
operation is the key component in CNNs. They use filters
to extract features of the image, by sliding a filter over the
input image, multiplying and accumulating products at
every position of the input (i.e., receptive field) with this
filter [7]. The well-known CNN architectures include
AlexNet, VGGNet, GoogLeNet, ResNet, and DenseNet.

b. GoogLeNet
GoogLeNet developed by Google, is the winner of the
ILSVRC (ImageNet Large Scale Visual Recognition
Challenge) in 2014. It is the first CNN architecture replaced
the expensive Fully-connected layers at the end of the model
with a simple global average-pooling layer, which averages
out the given values of each feature map. This change has
dramatically reduced the number of parameters used in the
model, which made it a faster in the training phase, lighter
in size, and higher in performance, compared to its
predecessor architectures, such VGGNet and AlexNet [8].
For these reasons, GoogLeNet has been widely adopted in
many applications, including self-driving cars [9].
GoogLeNet handles our input data (i.e., images) in a fixed
stack of operations to give the desired predictions. The
image begins from the first layer (input layer) passes across

Volume: 01, Issue: ICCIT- 1441, Page No.: 368 - 373, 9th & 10th Sep. 2020.

Authorized licensed use limited to: Universiti Malaysia Pahang Al Sultan Abdullah (UMPSA).. Downloaded on August 20,2024 at 00:50:37 UTC from IEEE Xplore. Restrictions apply.

