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Abstract— Convolutional Neural Networks (CNNs) are used 
for tasks such as object recognition. Once a CNN model is 
used in a radiative environment, reliability of the system 
against soft errors is a crucial issue, especially in safety- 
critical and high-performance applications that bound with 
real-time response. Selectively-hardening techniques do 
improve the reliability of these systems. However, the hard 
question in selective techniques is "how to exclusively select 
code portions to harden, to safe the performance from being 
degraded". In this paper, we propose a comprehensive 
analysis methodology for CNN-based classification models to 
confidently determine the only vulnerable parts of the source 
code. To achieve this, we propose a technique, Layer 
Vulnerability Factor (LVF) and adopt another technique, 
Kernel Vulnerability Factor (KVF). We apply these 
techniques to GoogLeNet, which is a famous image 
classification model, to validate our methodology. We 
precisely identify the parts of the GoogLeNet model that need 
to be hardened instead of using expensive duplication 
solutions.
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I. INTRODUCTION
Convolutional Neural Networks (CNNs are the new 
revolution that dominating the Artificial Intelligence (AI), 
and they are the most efficient technique to perform 
computer vison tasks, such as image classification [1] and 
object detection [2]. Due to the computational requirements, 
CNNs are often run on heterogeneous systems that 
composed of CPUs and accelerators, such as Graphics 
Processing Unit (GPUs). In fact, GPUs nowadays are the 
dominated hardware to accelerate CNN models [3].

CNN models are widely used in safety-critical systems, 
such as self-driving cars [4] and space applications [5]. 
Therefore, analyzing the reliability of such systems is 
critical. One way to address reliability issues is utilizing 
software redundancy. A bunch of techniques have been 
proposed for soft errors mitigation in GPUs based on 
software solutions, including Double Modular Redundancy 
(DMR), Triple Modular Redundancy (TMR), and 
Algorithm-Based Fault Tolerance (ABFT). However, the 
major challenging of using these techniques is the runtime 
overheads that associated with these solutions.

In this study, “which portion of the source code to harden” 
is the question we try to answer, and implement it on 
GoogLeNet algorithm as a case study. To answer this 
question, we propose a systematic analysis methodology for 
classification models to identify code portions that worth 
protecting. As a first objective, we propose a technique, 
Layer Vulnerability Factor (LVF) and adopt an exist

978-1-7281-2680-7/20/S31.00 ©2020 IEEE

technique, Kernel Vulnerability Factor (KVF). We 
implement these techniques on a CNN model that is used in 
image classification tasks, GoogLeNet. Using our 
methodology, we are able identify different vulnerable parts 
of the GoogLeNet model that need to be hardened.

The main contributions of this work are: (1) a methodology 
to evaluate the likelihood of faults in specific parts of the 
source code that likely to cause errors at the output; (2) the 
LVF concept and implementing it to a realistic case-study; 
and (3) an extensive analysis of GoogLeNet characteristics 
under SASSIFI fault injection.

The remainder of the paper is organized as follows. Section
II shows the background and reviews related work. Section
III presents the proposed methodology. Section IV analyzes 
and discusses the results. Section V concludes the paper.

II. BACKGROUD AND RELATED WORK 
In this section, we present a brief background on 
Convolutional neural networks and especially GoogLeNet. 
We then, summarize previous findings on CNNs reliability.

a. Convolutional Neural Networks
Due to their outstanding performance that bypassed even 
the human ability in object recognition benchmarks (i.e., 
classification), CNNs are arguably the most popular type of 
the Deep Learning architectures [6]. The convolutional 
operation is the key component in CNNs. They use filters 
to extract features of the image, by sliding a filter over the 
input image, multiplying and accumulating products at 
every position of the input (i.e., receptive field) with this 
filter [7]. The well-known CNN architectures include 
AlexNet, VGGNet, GoogLeNet, ResNet, and DenseNet.

b. GoogLeNet
GoogLeNet developed by Google, is the winner of the 
ILSVRC (ImageNet Large Scale Visual Recognition 
Challenge) in 2014. It is the first CNN architecture replaced 
the expensive Fully-connected layers at the end of the model 
with a simple global average-pooling layer, which averages 
out the given values of each feature map. This change has 
dramatically reduced the number of parameters used in the 
model, which made it a faster in the training phase, lighter 
in size, and higher in performance, compared to its 
predecessor architectures, such VGGNet and AlexNet [8]. 
For these reasons, GoogLeNet has been widely adopted in 
many applications, including self-driving cars [9]. 
GoogLeNet handles our input data (i.e., images) in a fixed 
stack of operations to give the desired predictions. The 
image begins from the first layer (input layer) passes across

Volume: 01, Issue: ICCIT- 1441, Page No.: 368 -  373, 9th & 10th Sep. 2020.

Authorized licensed use limited to: Universiti Malaysia Pahang Al Sultan Abdullah (UMPSA).. Downloaded on August 20,2024 at 00:50:37 UTC from IEEE Xplore.  Restrictions apply. 


