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Preface

As the global community grapples with the pressing issue of climate change, under-
standing and mitigating the effects of greenhouse gases have become paramount. This
seven-volume collection titled “Advances and Technology Development in
Greenhouse Gases: Emission, Capture and Conversion,” aims to provide an in-depth
exploration of the latest advancements and technological developments in this field
and delves into the multifaceted realm of greenhouse gases, addressing crucial aspects
of their formation, challenges, emissions, climate change impacts, storage, transporta-
tion, carbon capture technologies, and conversion processes. From fundamental con-
cepts to cutting-edge methodologies, each volume is meticulously curated to offer a
holistic perspective on the diverse challenges and opportunities associated with green-
house gases. Whether you are a seasoned researcher, industry professional, or student,
this series endeavors to be an invaluable resource, fostering a deeper understanding of
the critical issues surrounding greenhouse gases and contributing to the ongoing global
efforts toward a sustainable and resilient future.

This volume titled “Carbon Dioxide Conversion to Chemicals and Energy,”
immerses readers in the innovative realm of converting carbon dioxide into high-value
chemicals and energy. As the global community grapples with the imperative of miti-
gating greenhouse gas effects, this volume serves as a beacon, offering insights into the
transformative potential of harnessing carbon dioxide for productive applications.

Section 1, “Carbon Dioxide Conversion and Applications,” initiates the explora-
tion with a fundamental introduction to the production of high-value chemicals and
energy from CO2. Economic assessments and cost analyses delve into the financial
landscape of CO2 capture and utilization, addressing the economic viability of these
technologies. Simultaneously, environmental impacts and challenges associated with
CO2 usage for synthesizing products and energy are scrutinized, emphasizing the
importance of sustainable practices. The section culminates with an overview of the
largest operating plants and pilots for carbon conversion, showcasing the practical
applications of these cutting-edge technologies.

Section 2, “Carbon Dioxide to Products,” extends the journey into the transfor-
mative realm of specific products derived from carbon dioxide. From CO2 conversion
to urea, methanol, and methane, the section explores diverse applications, offering a
nuanced understanding of the intricate processes involved. Synthesis of carbon mon-
oxide, salicylic acid, hydrocarbons, oxygenated hydrocarbons, and the sonochemical
conversion of hydrocarbons expand the horizon of possibilities. Fuel production, oxa-
late and oxalic acid synthesis, carboxylic acid production, direct conversion to

xvii



dimethyl ether, and the synthesis of ethylene, ethanol, polymers, and carbon nano-
tubes underscore the versatility of CO2 conversion technologies.

Throughout this volume, recent advances and new concepts in CO2 conversion
and applications emerge as a common thread, highlighting the dynamic nature of
research and innovation in this field. The exploration is not just theoretical; it extends
to the practical realm with insights into the operational challenges, economic consid-
erations, and environmental impacts associated with large-scale carbon conversion.

As readers traverse the rich tapestry of “Carbon Dioxide Conversion to Chemicals
and Energy,” they are invited to engage with a wealth of knowledge. The volume
aims to be a comprehensive resource for seasoned researchers, industry professionals,
and students alike, fostering a deeper understanding of the transformative potential
within carbon dioxide. By presenting an in-depth examination of carbon conversion
technologies, their economic feasibility, and environmental implications, this volume
contributes to the ongoing discourse on sustainable environmental practices.

We invite readers to immerse themselves in this exploration, unlocking the com-
plexities of carbon dioxide conversion and its profound impact on reshaping our
approach to greenhouse gas management. As we embark on this intellectual journey,
may the insights gained from this volume pave the way for innovative solutions and
strategies, playing a pivotal role in our collective efforts toward a sustainable and resil-
ient future.

Mohammad Reza Rahimpour
Mohammad Amin Makarem

Maryam Meshksar
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