CHAPTER ELEVEN

CO₂ photoreduction to hydrocarbons and oxygenated hydrocarbons

Lan Ching Sim¹, Pey Li Yee¹, Kah Hon Leong², Azrina Abd Aziz³ and Md. Arif Hossen⁴

¹Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia

²Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia

³Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

⁴Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

11.1 Introduction

The increasing emissions of greenhouse gases (GHG) such as carbon dioxide (CO_2) in the atmosphere have caused global warming and climate change. Carbon capture and storage (CCS) such as precombustion capture, oxy-fuel process, and postcombustion capture are the methods used to reduce the effect of GHG. These strategies are usually coupled with compression and geological sequestration which are expensive and energy consuming. The reduction of CO_2 to valuable fuels or chemicals using solar energy and photocatalysts is considered as one of the promising alternatives to solve energy shortage and global warming. This artificial photosynthesis process converts CO_2 to hydrocarbons and oxygenated hydrocarbons (CH₄, CO, CH₃OH, HCOOH and others) by using photocatalyst in the presence of reductant (H₂ or H₂O) and sunlight [1]. During the CO₂ photoreduction process, multielectrons are involved, forming different products and selectivity. Photoreduction of CO₂ has drawn great attention from researchers since the foremost discovery of photoelectrocatalytic reduction of CO₂ in aqueous semiconductor suspension by Inoue et al. [2].

Photoreduction of CO₂ can be realized using different techniques including TiO₂ suspended in CO₂-saturated aqueous solution [3], TiO₂ suspended in isopropyl alcohol for high pressure CO₂ system [4], and CO₂ and H₂O in gas phase [5]. Among these methods, the gas phase conversion of CO₂ and H₂O is more favorable due to its viability, such as zero recovery of catalyst from aqueous phase and overcoming the low solubility of CO₂. In the past decades, various photocatalysts especially TiO₂ and g-C₃N₄ have been developed in different forms, such as composite [6], amorphous [7], metal-doped [8], nonmetal doped [9], morphology control [10,11], carbon-based