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A B S T R A C T

The traditional cubic B-spline method offers limited local control over the curve solution. Adjusting the position
of a control point affects the entire curve, making it challenging to make localized changes, e.g., smoothness.
Moreover, the basis functions vanish on one side by the cubic B-spline method near the end conditions where the
initial and boundary conditions are applied. To address these limitations, this research proposes a new basis by
including a free parameter γ with the purpose of modifying the weights of nearby control points. This free
parameter γ can influence the curve’s behavior in specific regions as well as the entire curve. This modification of
the cubic B-spline method was used to approximate the second-order derivative at each collocation point. The
convergence test showed that the proposed method was second-order convergent. Numerical examples of or-
dinary differential equations were used with different step values to evaluate the accuracy of the proposed
method. The findings persistently indicated that the proposed technique provided better error estimates as
compared to the other methods discussed in the literatures.

1. Introduction

There is much research that have been done on boundary value
problems (BVPs) among the domains of chemistry, physics, and engi-
neering. The standard form of second-order ODEs (Agarwal, 1986) is:

yʹ́ = f(x, y, yʹ) (1)

with boundary conditions as y(a) = α, y(b) = β and the function y(x) is
the solution of ODE on the finite closed interval [a,b].

To apply an exact solution to solve physical problems is sometimes
very challenging and requires extensive effort. Therefore, it is recom-
mended to use numerical solutions for solving real-life application
problems. Several numerical techniques, including the variational
approach, finite difference method (FDM), finite element method (FEM),
finite volume method (FVM), and the shooting method (LSM) (Fang

et al., 2002; Shafie & Majid, 2012; Wang, 2009), have been applied to
the two-point BVP solutions. The cubic B-spline interpolation method
(CBSI) has been developed by Caglar et al. (H. Caglar et al., 2006) for
two-point BVP solutions in place of the simple spline. Numerous nu-
merical techniques based on the cubic B-splines method (CBSM) have
been extensively used since then to solve both linear and nonlinear BVPs
(Heilat & Hailat, 2020; Khalid et al., 2021; Tassaddiq et al., 2019). (Abd
Hamid et al., 2010, 2011) investigated the cubic trigonometric B-spline
and extended CBS as solutions to linear two-point BVPs. In comparison
with CBSI, the trigonometric CBS produced better results. A hybrid
version of the CBSM and TCBSM schemes has been created by (Heilat &
Ismail, 2016) to address nonlinear two-point BVPs.

(Wasim et al., 2019) constructed an improved method to solve sin-
gular BVPs of second order by leveraging an extended cubic B-spline
basis. (M. K. Iqbal et al., 2018) also have solved a variety of third-order
Emden-Flower type problems with a new Cubic B-Spline approximation
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(NCBSA). For the solutions of non-linear higher-order Korteweg-de Vries
equations, (Abbas et al., 2019) provided a new CBS approximation using
the Taylor series method. (Nazir et al., 2020) investigated a novel
quintic B-spline approximation and applied it to solve Boussinesq
equations. (Ghaffar et al., 2019; M. Iqbal et al., 2021b; M. Iqbal et al.,
2024) have also developed septic and nine-tic order splines and applied
them to surfaces as tensor product schemesand have discussed the
convexity of the closed shapes as 2q and ternary subdivision schemes
(M. Iqbal et al., 2021a). Many authors and researchers have used higher-
order numerical schemes to solve ODEs and PDEs, but these schemes
have shown computationally higher costs in building the large subse-
quent matrix system for the solution of unknown constants (Nazir et al.,
2020; Saka et al., 2022; Singh et al., 2022). Many other authors and
researchers (İlhan & Şahin, 2024; Javeed & Hincal, 2024; Mulimani &
Srinivasa, 2024; Nasir et al., 2023; Atta Ullah et al., 2024) have
numerically solved different models of differential equations using
higher-order numerical schemes. Some linear and nonlinear partial
differential equations have been solved by (Khater, 2023; Atta. Ullah
et al., 2023a) using the analytical and numerical schemes. (Sabir et al.,
2022) discussed problems in mathematical modelling using artificial
neural networks. Trigonometric and Hermite cubic splines have been
used to solve the latest applications based on their ability to accurately
model and interpolate complex functions, particularly in numerical so-
lutions of differential equations (Kutluay et al., 2024; Nuri Murat and Ali
Sercan, 2022; Atta. Ullah et al., 2023b; Yağmurlu & Karakaş, 2020).

Research Objective: The primary objective of this research is to
enhance the smoothness of the curve solution using the modified cubic
B-spline method (MCBSM) for solving linear second-order ODEs.

Problem Statement: Literatures have shown that traditional CBSM
has many drawbacks when it is incorporating with the initial and
boundary values (end conditions or points). This is due to the local
control properties of CBSM, that affect the smoothness at near-end
conditions. To address this issue, this paper proposes a modification of
the basis by using a free parameter to globally control the curve solution,
hence enhancing smoothness. This modification involves altering the
basis of CBSM using a free parameter called γ, in conjunction with the
collocation method. The free parameter γ gives more control over the
approximation curve and consequently increases the smoothness of the
curve at endpoints.

Research Advantage: The advantage of MCBSM equipped with a
free parameter is that it offers a high degree of smoothness and flexi-
bility in representing curves or surfaces, making it suitable for approx-
imating complex functions or data sets. The modified basis can be used
to approximate derivatives of ODEs.

Main Contribution and Motivation: Extensive reviews from the
literatures have indicated that modifications of the basis using an extra-
free parameter while maintaining the cubic order of splines have not
been used to solve differential equations. This has motivated authors of
this paper to explore the MCBSM as a potential solution for solving BVPs.
Furthermore, convergence and error analysis of the proposed method
are also investigated.

The paper is organized as follows: The definitions are discussed in
Section 2. The implementation of the MCBSM and its convergence are
derived in Section 3. Sections 4 and section 5 present the numerical
results and the discussion, respectively. Lastly, Section 6 summarizes
with a conclusion about the numerical results.

2. Derivation of MCBSM

Computer graphics, computer-aided design (CAD), and many other
fields commonly use a cubic B-spline as a type of piecewise-defined
curve or function when they require smooth and flexible curves. B-
spline stands for “Basis spline,” and cubic B-splines are a specific type of
B-spline where the basis functions are cubic polynomials. Combining
these basis functions creates a continuous curve that smoothly connects
a series of control points.

Consider a finite interval [a, b], where a series of equidistant parti-
tions have been defined by breaking it down into points: a = x0 < x1 <

... < xN = b. These points are evenly spaced and can express each point
xi as xi = x0 + ih, where i = 0, 1, 2,⋯N. The step size h used for this
partitioning is calculated as h =

(b− a)
N , where N is a positive integer.

Suppose that the proposed spline solution (Mittal & Arora, 2011) to
the problem (1) is:

y(x) ≅ Y(xi) = Yn
i = S(x) =

∑N+1

i=− 1
viBi(xi) (2)

The definition of cubic B-spline (CBS) given by (N. Caglar & Caglar,
2009) for i = 0,1, 2,⋯N,N ∈ Z+ is:

Bi(x)=
1
6

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xi− 2

h

)3
, if x∈ [xi− 2,xi− 1]

1+3
(x − xi− 1

h

)
+3

(x − xi− 1

h

)2
−
(x − xi− 1

h

)3
, if x∈ [xi− 1,xi]

1+3
(xi+1 − x

h

)
+3

(xi+1 − x
h

)2
−
(xi+1 − x

h

)3
, if x∈ [xi,xi+1]

(xi+2 − x
h

)3
, if x∈ [xi+1,xi+2]

0, Otherwise,
(3)

h = xi+1 − xi, i = − 1,0,⋯,N+ 1, N ∈ Z.

According to Khabir& Farah (2017), equation (3) can be summarized as
follows:

Bi
(
xj
)
=

⎧
⎪⎨

⎪⎩

4, if i = j,
1, if i − j = ±1,
0, if i − j = ±2

(4)

and here Bi(x) = 0 for x ≥ xi+2 and x ≤ xi− 2.
The first and second derivatives of equation (4) are calculated as

follows:

Bi
’( xj

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if i = j,

±
3
h
, if i − j = ±1,

0, if i − j = ±2

(5)

and

Bi
’’( xj

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
12
h2 , if i = j,

6
h2, if i − j = ±1,

0, if i − j = ±2

(6)

Each Bi(x) is a piece-wise cubic with knots at specific points φ, where
behavior of the cubic function changes and Bi(x) ∈ X. From equations
(3–5), the corresponding knot values are computed as shown in Table 1
below, which will be used in the solution process of ODEs.

Let ℵ = {B− 1,B0,B1,⋯,BN+1} is a set of cubic b-spline basis and let
σ3(φ) = spanℵ. The set ℵ on [0,1] are linearly independent, thus σ3(φ)

Table 1
Corresponding knot values of Cubic B-spline and their derivatives (N. Caglar &
Caglar, 2009).

x xi− 2 xi− 1 xi xi+1 xi+2

6Bi(x) 0 1 4 1 0
hBiʹ(x) 0 − 3 0 3 0

h2Bi
ʹ́
(x) 0 6 − 12 6 0

M. Iqbal et al.



Journal of King Saud University - Science 36 (2024) 103397

3

has (N+3) dimensions. Also, that σ3(φ)⊆supx.
By using equation (3), CBSM can be defined as,

S(x) =
∑N+1

i=− 1
viBi(x) (7)

whereas vi = {v− 1, v0, v1,⋯, vN+1} are number of unknown constants
and Bi(x) are a set of basis functions. The curve between control points is
approximated by using these basis functions, which are defined across a
specific interval of the knot vector.

Let S(x) be the approximate solution of the differential equation.
Then corresponding knot values for the initial and boundary conditions
(endpoints) are extracted from Table 1 as shown below.

B0(x0) =
4
6
= BN(x0),

B− 1(x0) =
1
6
= BN− 1(x0)

Fig. 1 shows the plot of the CBSM (N. Caglar& Caglar, 2009) using these
knot values from the dataset taken from (M. Iqbal et al., 2021a). It can be
seen, the smoothness of the endpoints is compromised because the
approximated curve is not close to the original curve near to the
endpoints.

When given boundary conditions in the collocation technique, the
basis functions should disappear at the curve’s boundary. However, in
the case of cubic B-splines the basis functions B− 1,B0,B1, ...,BN− 1,BN,
BN+1 are not disappearing on one of the boundary locations (Mittal &
Jain, 2012). Consequently, the basis functions need to be adjusted to
form a new set that vanishes on the boundaries when the boundary
conditions are applied. In order to solve this limitation, the modified
term is introduced into equation (3) using a free parameter γ, given by
the equation below:

Bi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B0(x) + γB− 1(x) for i = 0
B1(x) − B− 1(x) for i = 1
Bi(x) for i = 2,⋯,N − 2
BN− 1(x) − BN+1(x) for i = N − 1
BN(x) + γBN+1(x) for i = N

(8)

The free parameter γ is used to modify the endpoints.
Notice that if γ = − 4, the modifying basis scheme becomes zero at

the boundary point (Ito, 1975):

Bi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B0(x) − 4B− 1(x) for i = 0
B1(x) − B− 1(x) for i = 1
Bi(x) for i = 2,⋯,N − 2
BN− 1(x) − BN+1(x) for i = N − 1
BN(x) − 4BN+1(x) for i = N

(9)

For computations of the endpoints of the curve solution, use Table 1 and
simplify the first and last parts of the equation (8) as:

B0(x) = B0(x) − 4B− 1(x) = 4 − 4(1) = 0

similarly,

BN(x) = BN(x) − 4BN+1(x) = 4 − 4(1) = 0

and if γ = 2, the modifying scheme becomes nonzero at the boundary
point given in (Mittal & Jain, 2012).

Bi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B0(x) + 2B− 1(x) for i = 0
B1(x) − B− 1(x) for i = 1
Bi(x) for i = 2,⋯,N − 2
BN− 1(x) − BN+1(x) for i = N − 1
BN(x) + 2BN+1(x) for i = N

(10)

Fig. 1. Smoothness from CBSM shows the end control points.

M. Iqbal et al.
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For computations of endpoints of curve solution, use Table 1 and
simplify first and last parts of the equation (9) as:

B0(x) = B0(x)+2B− 1(x) = 4+ 2(1) = 6

similarly,

BN(x) = BN(x)+ 2BN+1(x) = 4+ 2(1) = 6

In this study, the γ values are tested for − 4,-3,…, 2. Based on our find-
ings, using γ = 1 has better smoothness as compared to γ = − 4,2. For
other values of γ > 3 the modification system no longer remains stable,
and knot value calculation becomes complex. Subsequently equation (8)
for γ = 1, is equivalent to,

Bi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B0(x) + 1B− 1(x) for i = 0
B1(x) − B− 1(x) for i = 1
Bi(x) for i = 2,⋯,N − 2
BN− 1(x) − BN+1(x) for i = N − 1
BN(x) + 1BN+1(x) for i = N

(11)

For computations of the endpoints of curve solution, parameters in
Table 1 are used and need to be simplified, the first and last parts of the
equation (11) and will be as shown below:

B0(x) = B0(x)+2B− 1(x) = 4+ 1(1) = 5

similarly,

BN(x) = BN(x)+ 2BN+1(x) = 4+ 1(1) = 5

Then rewrite equation (2) using the modified basis from equation (11)
as,

S(x) = SN(xi) =
∑N

i=0
viBi(x) (12)

vi represents the constant coefficients that need to be computed and
Bi(x) are the modified basis cubic B-splines using free parameter γ = 1.

Equation (12) is subsequently used to provide an approximation
solution for ODEs by employing a diagonally dominant system. This
linear equation system is obtained to control the solution of ODEs while
considering the initial and boundary conditions.

The system is solved using the known Thomas method.

3. Implementation of modified basis method

In this section, the generalized process for the solution of ODEs is
derived.

For this purpose, let’s examine the second-order linear BVP
expressed in the following form:

a1yʹ́ + a2yʹ+ a3y = f , y(a) = α, y(b) = β (13)

where a1 ∕= 0, a2, a3 and f are continuous real-valued functions.
Solving equation (13) by using equation (12), will give equation (14)

below,

a1
∑N+1

i=− 1
viBi

ʹ́
(x)+ a2

∑N+1

i=− 1
viBi

ʹ
(x)+ a3

∑N+1

i=− 1
viBi(x) = f(xi) (14)

The expanded form of the equation (14) is:

Using equation (12) and derivatives from Table 1, equation (15) is ob-
tained as follows,
(
6a1 +3ha2 + h2a3

)
vi− 1 +

(
− 12a1 +4h2a3

)
vi +

(
6a1 − 3ha2 + h2a3

)
vi+1

= h2fi,∀i = 0, 1, 2,⋯,N.
(15)

f(xi) = fi

The given boundary conditions become:

y(xi) = y(x0) = α

v− 1B− 1(x0)+ v0B0(x0)+ v1B1(x0)+⋯+ vNBN(x0)+ vN+1BN+1(x0) = α

v− 1 +4v0 + v1 = 6α (16)

and

y(xi) = y(xN) = β

v− 1B− 1(xN)+ v0B0(xN)+ v1B1(xN)+⋯+ vNBN(xN)+ vN+1BN+1(xN) = β

vN− 1 +4vN + vN+1 = 6β (17)

The above equations generate a (N+3) × (N+3) trigonal system with
(N+3) unknowns:

vN = (v− 1, v0,⋯, vN+1)
t

Eliminating v− 1 from equation (15),

v− 1 = 6α − 4v0 − v1 (18)

From equation (16),

vN+1 = 6β − 4vN − vN− 1 (19)

These equations make the system of (N+1) linear equations in the
(N+1) unknowns xN = (v0, v1,⋯, vN)t of the form,

AxN = CN

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s1

δ

0

s2

ω

δ

0 0 0 0

γ 0 0 0

ω γ 0 0

0 0 ⋱ ⋱ ⋱ 0

0

0

0

0

0

0

δ

0

ω γ

s3 s4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v0

v1

v2

⋮

vN− 1

vN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 6

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0h2 − αδ

f1h2

f2h2

⋮

fN− 1h2

fNh2 − βδ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)

a1[vi− 1Bi− 1
ʹ́
(xi)+ viBi

ʹ́
(xi)+ vi+1Bi+1

ʹ́
(xi) ]+ a2[vi− 1Bi− 1

ʹ
(xi)+ viBi

ʹ
(xi)+ vi+1Bi+1

ʹ
(xi) ] + a3[vi− 1Bi− 1(xi)+ viBi(xi)+ vi+1Bi+1(xi) ] = f(xi), ∀i = 0,1, 2,⋯,N.

vi− 1[a1Bi− 1
ʹ́
(xi)+ a2Bi− 1

ʹ
(xi)+ a3Bi− 1(xi) ]+ vi[a1Bi

ʹ́
(xi)+ a2Bi

ʹ
(xi)+ a3Bi(xi)] + vi+1[a1Bi+1

ʹ́
(xi)+ a2Bi+1

ʹ
(xi)+ a3Bi+1(xi) ] = f(xi),∀i = 0,1, 2,⋯,N.

M. Iqbal et al.
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δ = 6a1 +3ha2 + h2a3,ω = − 12a1 +4h2a3, γ = 6a1 − 3ha2 + h2a3, s1

= ω0 − 4δ0, s2 = γ0 − δ0, s3 = ωN − 4δN, s4 = γN − δN

Matrix A, being strictly dominant, is therefore nonsingular. Since
det(A) ∕= 0, A can be solved from the system AxN = CN for v0, v1,⋯, vN by
any matrix solver and substitute it into the boundary equations (18) and
(19) to get the v− 1 and vN+1.

3.1. Convergence analysis

In this section, the convergence (Zhang et al., 2022) of the modified
scheme is investigated.

Lemma 1. (If L∞ = ‖yexact − yN‖∞ ≤ Ch2 then the method is second order
convergent.) Proof: Let y(x) is the precise exact solution of equation (1):

yʹ́ = f(x, y, yʹ)

and S(x) be the proposed spline approximation to y(x). Then,

y(x) = S(x) =
∑N

i=0
viBi(x) (21)

and similarly, S(x) be the proposed spline approximation to y(x) and

y(x) = S(x) =
∑N

i=0
viBi(x) (22)

Let vi = {v0, v1,⋯, vN}T and vi = {v0, v1,⋯, vN}T.
Then

Av = F (23)

and

Av = F (24)

where,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s1

δ

0

s2

ω

δ

0 0 0 0

γ 0 0 0

ω γ 0 0

0 0 ⋱ ⋱ ⋱ 0

0

0

0

0

0

0

δ

0

ω γ

s3 s4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0h2 − αδ

f1h2

f2h2

⋮

fN− 1h2

fNh2 − βδ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0 h2 − αδf1h2f2h2

⋮

fN− 1
h2

fN

h2 − βδ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now subtracting equations (21) from equation (22),

A(v − v) = F − F

then compute,

(v − v) = A− 1(F − F) (25)

Taking the infinity norm of above equation as:

‖v − v‖∞ = ‖A− 1‖∞‖(F − F)‖∞

Since A is invertible, suppose that,

‖A− 1‖∞‖(F − F)‖∞ ≤ 1

Then,
⃒
⃒
⃒
⃒
⃒

∑N

i=0
viBi(x)

⃒
⃒
⃒
⃒
⃒
≤ 1.

Now consider,

‖A− 1‖∞‖(F − F)‖∞ ≤ ch2

and ‖v − v‖∞ ≤ ch2.

S(x) − S(x) = (v − v)
∑N

i=0
Bi(x)

Applying infinity norm,

‖S(x) − S(x)‖∞ = ‖(v − v)
∑N

i=0
Bi(x)‖∞

‖S(x) − S(x)‖∞ ≤ ‖v − v‖∞

⃒
⃒
⃒
⃒
⃒

∑N

i=0
viBi(x)

⃒
⃒
⃒
⃒
⃒
≤ ch2

Let

‖y(x)− S(x)‖ ≤ dh4

Using the above two equations,

‖y(x) − S(x)‖ ≤ ‖y(x) − S(x)‖+‖S(x) − S(x)‖∞

‖y(x) − S(x)‖ ≤ dh4 + ch2 = kh2

which demonstrates that the method exhibits second-order convergence
and ‖y(x) − S(x)‖ = kh2. This explains as the number of control points or
knots increases, then h becomes sufficiently small, and the approximated
curve (proposed spline solution) converges to the exact solution.

4. Numerical results

In this section, the performance of MCBSM on boundary value
problems of the second order ODEs is examined, and the comparisons
are made with exact solutions and other existing methods. The test
problems considered here are second order linear nonhomogeneous,
constant coefficients BVPs. The testing is based on the different number
of N values for MCBSM for the second order ODEs. The maximum error
L∞ norm is used to calculate the accuracy, which can be determined
from the following formula,

L∞ = max‖yexact − yN‖∞ (26)

The numerical calculations are performed using MATLAB R2023a on a
computer equipped with an Intel(R) CORE(TM) i7 CPU 1.30 GHz pro-
cessor, and 8.00 GB RAM.

Problem 1 (Latif et al., 2021):

yʹ́ − y = 2exp(x − 1), y(0) = 0, y(1) = 1

With exact solution

y = (x)exp(x − 1).

Problem 2 (Latif et al., 2021):

yʹ́ − yʹ = − exp(x − 1) − 1, y(0) = 0, y(1) = 0

With exact solution y = (x).(1 − exp(x − 1)).

M. Iqbal et al.
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Problem 3 (Latif et al., 2021):

yʹ́ + yʹ − 6y = x, y(0) = 0, y(1) = 1

With exact solution as:

y =
(43 − e2)e− 3x − (43 − e− 3)e2x

36(e− 3 − e− 2)
−
x
6
−

1
36

Problem 4 (Latif et al., 2021):

yʹ́ +2yʹ+5y = 6cos(2x) − 7sin(2x), y(0) = 4, y
(π

4

)
= 1

With exact solution as:

y = 2(1+ e− x)cos(2x)+ sin(2x)

Problem 5 (Basbuk et al., 2016):
Application to the Mass-spring Vibration.
Consider a free undamped motion, yʹ́ + 3y = 0,y(0) = 0,y(1) = 2.
With exact solution as:

y =
2sin

( ̅̅̅
3

√
t
)

sin
( ̅̅̅

3
√ )

According to the absolute errors, the solution values are found to be
closely related to the exact solution with the help of MATLAB. In Table 2,
the proposed method is applied to problems (1 – 4) and results are
compared with different values of N = 10,100 and with the New Cubic
B-spline Approximation (NCBSA) (Latif et al., 2021), Cu-B-Spline
Interpolation Method (CBSIM) (Shafie & Majid, 2012; Ware and
Ashine, 2021) and trigonometric Cu-B-spline (TCBSM) (Abd Hamid
et al., 2010) in terms of error norms and the norms value. The generated
values by the proposed method show the more closeness to the exact
values. The method is applied to problem 2, and its results are compared
with those of NCBSA and CBSIM at N = 10,100,1000 in terms of error
norms. The norm values generated by proposed method at N = 10, show
the closeness to the exact value in comparison to norms values generated
for N = 100, and N = 1000. For problems 3 and 4, the proposed method
is then compared with NCBSA in terms of error norms at N=100 only.
The norm values, given in Table 2 show better approximation data
produced by the proposed method and are closer to actual solution data.

Table 2
Errors norms for Problem 1 − 4 and comparison with the existing schemes.

No. N h Error Norm for
proposed method
MCBSM

Error Norm for NCBSA (Latif et al.,
2021)

Error Norm for CBSIM (Shafie & Majid,
2012) and (Ware, 2021)

Error Norm for CTBIM (Abd Hamid
et al., 2010)

Problem
1

10 0.1 6.725E( − 10) 1.050E( − 07) 2.66E( − 04) 6.8895E( − 04)
100 0.001 6.676E( − 13) 1.280E( − 11) 2.68E( − 06) − ——————————————

Problem
2

10 0.1 4.5316E( − 09) 3.50E( − 07) 2.486E( − 03) − ——————————————
100 0.01 4.3896E( − 11) 3.74E( − 11) 2.89E( − 03) − ——————————————
1000 0.0001 6.532E( − 15) 6.76E( − 14) − —————————————— − ——————————————

Problem
3

10 0.1 6.82513E( − 10) − —————————————— − —————————————— − ——————————————
100 0.01 6.6263E( − 12) 1.02E( − 10) − —————————————— − ——————————————

Problem
4

10 0.0785 5.6285E( − 10) − —————————————— − —————————————— − ——————————————
100 0.00785 5.4963E( − 12) 1.50E( − 10) − —————————————— − ——————————————

Fig. 2. Comparison of exact and numerical solutions at N=10 for problem 1.
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Figs. 2-5 show comparisons of numerical and exact solutions to the
problems (1–4). Fig. 6 shows the plotting of MCBSM when solving the
problem of mass-spring vibration applications that are commonly used
in many physical systems related to engineering. Notice that the MCBSM

provides good convergence in comparison to the exact solutions. In
conclusion, the MCBSM outperforms the competing methods which are
the NCBSA (Latif et al., 2021), CBSI (Shafie & Majid, 2012; Ware and
Ashine, 2021) and TCBSM (Abd Hamid et al., 2010) in terms of error

Fig. 3. Comparison of exact and numerical solutions at N=10 for problem 2.

Fig. 4. Comparison of exact and numerical solutions at N=10 for problem 3.
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norms.

5. Discussions

In NCBSA (Latif et al., 2021) the author attempted to approximate
the second derivative and find a truncation error using Taylor series
expansion at cubic B-spline basis knots. However, this method faced
challenges, particularly when dealing with boundary conditions, as it
did not provide satisfactory results in terms of shape preservation and
smoothness of the curve solution. Similarly to TCBSM (Abd Hamid et al.,
2010), it only applied trigonometric basis functions to problems

involving trigonometric function curves. On the other hand, CBSI
(Shafie & Majid, 2012; Ware and Ashine, 2021) focused solely on
interpolating given data points, excluding end control points from
consideration. These methods had their own limitations, which
restricted their applicability in scenarios requiring comprehensive con-
trol over the shape and behavior of the resulting curves. In contrast, the
MCBSM stands out by offering substantial advantages. It excels in terms
of shape preservation, ensuring smoothness in the generated curves, and
reducing approximation errors when compared to traditional cubic B-
splines. The key to these benefits lies in MCBSM’s implementation,
which employs a modified basis scheme that includes a free parameter.

Fig. 5. Comparison of exact and numerical solutions at N=10 for problem 4.

Fig. 6. Approximate displacement of mass at different time steps N=10 with error norm 2.76463E-09.
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This parameter allows for fine-tuning the influence of control points,
resulting in improved control over the shape of the curve. While other
higher-order methods, including traditional cubic B-splines, suffer from
issues like shape distortion and computationally intensive calculations,
MCBSM addresses these concerns effectively. A comparison of smooth-
ness and shape preservation is given in Figs. 2-6. As a result, MCBSM
becomes a preferred choice in applications where precise, visually
pleasing curve generation is essential and preservation of the original
shape is a priority.

6. Conclusion

This study presents the numerical solution of linear two-point BVPs.
The proposed method consists of a modification of the CBS basis func-
tion using a linear combination formula with a free parameter γ together
with a collocation method. MCBSM has demonstrated several favorable
characteristics. Referring to Table 2, the MCBSM shows excellent ap-
proximations in terms of the second derivative as shown by the error
norm when compared with other variations of CBS methods. MCBSM
also allows for flexible knot placement, as shown in equations (8) and
(12), which allows the authors to focus on computational efforts in the
areas of interest while minimizing the computational costs.

From the convergence test computed in Section 3, the MCBSM is a
second-order convergent, indicating better accuracy in approximations.
It performs well for second-order BVPs and has the lowest absolute error.
The accuracy of the proposed method is verified by applying it to five
test problems and comparison is made corresponding to exact solutions.
The numerical results of the first four test problems show that the
MCBSM gives more precise and better results when compared to
NCBSM, TCBSM, and CBSI in terms of error norms. It is worth to high-
light that, in general, the errors decreased as the N increased with a
decreased in the step size, and the method achieved higher accuracy.
Hence, it can be concluded that the MCBSM is effective in solving linear
two-point BVPs.
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