WOODHEAD PUBLISHING SERIES IN CIVIL AND STRUCTURAL ENGINEERING

ADVANCE UPCYCLING OF BY-PRODUCTS IN BINDER AND BINDER-BASED MATERIALS

Edited by MEHMET SERKAN KIRGIZ

Contraction of the local division of the loc

Advance Upcycling of By-products in Binder and Binder-based Materials

Woodhead Publishing Series in Civil and Structural Engineering

Advance Upcycling of By-products in Binder and Binder-based Materials

Edited by

Mehmet Serkan Kırgız Northwestern University, Chicago, IL, United States

Woodhead Publishing is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2024 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-90791-0 (print)

ISBN: 978-0-323-99804-8 (online)

For information on all Woodhead Publishing publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Gwen Jones Editorial Project Manager: Toni Louise Jackson Production Project Manager: Prem Kumar Kaliamoorthi Cover Designer: Mark Rogers

Typeset by MPS Limited, Chennai, India

Introduction

Upcycling can be described as transforming a by-product into a useful material which will be used in mainstream. In other words, it is also known as creative reuse, which is the process of transforming byproducts, remnants, and wastes into novel materials or products with a greater quality.

For constructional purposes, the meaning of the term upcycling is restricted to the bonding materials used with stone, steel, sand, brick, building blocks, and so on. The principal content of the book includes binders, byproducts, testing, and conclusions at the same time. Upcycling is used in many applications - art, music, industry, clothes, foods, design processes, and so on. The built environment is an indicator for overcoming climate change and transforming CO₂ emission in manufacturing to a net-zero emission in near future. The promotion of management of upcycling for sustainable purposes should use the pressure in demand for the adoption of proper methods to make cement more durable. Since construction by nature is not an ecofriendly activity and even if construction provides life for human generation, construction generates demolition waste whenever any development environment activity takes place, for example, building roads, bridges, flyover, subway, and remodeling. It includes mostly inert and nonbiodegradable materials such as concrete, plaster, metal, wood, plastics, and so on. Apart from industrial byproducts, some of this waste comes to the municipal stream. These wastes are heavy, having a grand unit volume weight, are often massive, and have considerable storage space either on the road/agricultural land or in common waste. Considering all information mentioned above, this book presents efficient upcycling examples for wheat straw ash; fuel ash, both class C and class F; oil shale ash; household waste; calcined clay; ground granulated blast furnace slag; natural rubber latex; recycled asphalt pavement aggregate; recycled concrete aggregate; silica fume; limestone; brick kiln dust; and crumb waste rubber tire in either cementbased systems or bitumen-based systems.

Mehmet Serkan Kırgız

Northwestern University, Chicago, IL, United States

List of contributors

Yousef S. Al Rjoub Department of Civil Engineering, Jordan University of Science and Technology, Amman, Jordan

Ahmed M. Ashteyat Department of Civil Engineering, University of Jordan, Amman, Jordan

Paul Awoyera Department of Civil Engineering, Covenant University, Ota, Nigeria

Johannes A.M. Awudza Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

B. Benabed Civil Engineering Department, University of Laghouat, Laghouat, Algeria

Abdul Qadir Bhatti Department of Civil Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia

Naraindas Bheel Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh, Perak, Malaysia

Hasan Biricik Department of Civil Engineering, Construction Materials Laboratory, Yıldız Teknik University, Bakırköy, İstanbul, Turkey

Ahmed Mokhtar Albshir Budiea Faculty of Industrial Management, University Malaysia Pahang, Pahang, Malaysia

Antonella D'Alessandro Department of Civil and Environmental Engineering, University of Perugia, Perugia, PG, Italy

A. Elkordi Faculty of Engineering, Department of Civil and Environmental Engineering, Beirut Arab University, Beirut, Lebanon; Faculty of Engineering, Department of Civil Engineering, Alexandria University, Alexandria, Egypt

M. Ghrici Civil Engineering Department, University of Chlef, Algeria

R. Joumblat Faculty of Engineering, Department of Civil and Environmental Engineering, Beirut Arab University, Beirut, Lebanon

H. Kassem Faculty of Engineering, Department of Civil and Environmental Engineering, Beirut Arab University, Beirut, Lebanon

S. Kenai Civil Engineering Department, University Blida 1, Blida, Algeria

J. Khatib Faculty of Engineering, Department of Civil and Environmental Engineering, Beirut Arab University, Beirut, Lebanon; Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom

Anwar Khitab Civil Engineering, Mirpur University of Science and Technology, Mirpur, AJ&K, Pakistan

John Kinuthia School of Engineering, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom

Mehmet Serkan Kırgız Northwestern University, Chicago, IL, United States

Nabilla Mohamad Faculty of Civil Engineering Technology, University Malaysia Pahang, Pahang, Malaysia

Khairunisa Muthusamy Faculty of Civil Engineering Technology, University Malaysia Pahang, Pahang, Malaysia

Ala' Taleb Obaidat Civil Engineering Department, Philadelphia University, Amman, Jordan

Theresah Osei Council for Scientific and Industrial Research, Building and Road Research Institute, Kumasi, Ghana

Jonathan Oti School of Engineering, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom

Anwar P.P. Abdul Majeed Faculty of Manufacturing and Mechatronics Engineering Technology, University Malaysia Pahang, Pahang, Malaysia

Jose Rajan Faculty of Industrial Science and Technology, University Malaysia Pahang, Pahang, Malaysia

Irfan Ali Shar Department of Civil Engineering, ISRA University Hyderabad, Sindh, Pakistan

Amani Smadi Department of Civil Engineering, Jordan University of Science and Technology, Amman, Jordan

H. Soualhi Civil Engineering Department, University of Laghouat, Laghouat, Algeria

Muhammad Syarif Department of Architecture, Faculty of Engineering, University of Muhammadiyah Makassar, Makassar, Indonesia

Trinity Ama Tagbor Council for Scientific and Industrial Research, Institute of Industrial Research, Accra, Ghana

Baenah Al Tawalbeh Department of Civil Engineering, University of Jordan, Amman, Jordan

Filippo Ubertini Department of Civil and Environmental Engineering, University of Perugia, Perugia, PG, Italy

Wang Hui Wong Faculty of Civil Engineering Technology, University Malaysia Pahang, Pahang, Malaysia

Preface

Construction materials—concrete, geopolymer material, cement, and mortar—are the most manufactured structural materials. Sometimes, they substitute one another, and sometimes, they contest with one another so that similar structure types and functions could be built by any of the materials. However, scientists often focus more on advanced upcycling processes, in which by-products are made in various industrial manufacturing.

Today's building construction is totally different because the point the construction technology has reached involves the constructions printed with threedimension printers using either cement paste or cement mortar, water and sand and binder. It is clearly true that manufacturers give guarantee regarding binder quality in a manner similar to that of other construction materials—tiles, brick, steel, wood, and so on. Nevertheless, the topic of advanced upcycling of byproducts in binder and binder-based materials is not limited to cement since there appear a number of novel binders everyday, such as geopolymer binder systems. The disparity in the methods of upcycling making is, therefore, unique, and the significance of the control of the quality of materials work on the site is apparent. Furthermore, since the trade of a materialist has not yet become the education and the convention of a number of other building trades, a scientist supervision is essential on the site. These facts must be considered in mind by the researcher and scientist as careful and intricate design could be easily vitiated if the properties of the actual materials differ from those assumed in the design calculation.

From the above points mentioned, it must not be inferred that making good upcycling of by-products is difficult. Good upcycling is often related to a substance of suitable constituents, mixing, hardening into a formwork, and homogeneous mass. Unfortunately the constituents of a bad upcycling process are also related to the same functions. Therefore the difference is obtained in terms of know-how and cost of labor.

What, then, is the advanced upcycling of by-products? There are two overall criteria: The method has to be satisfactory in its hardened state as well as its fresh state while being moved from the mixer and put in the formwork. The rules in the fresh state of upcycled materials are that there should be consistency in the mix and that it should be compacted by the means desired without excessive effort and also that the mix should be cohesive enough for the method of putting used not to make segregation with a consequent lack of homogeneity of the finished material.

Because the book will be used in so many countries, I thought it is best to use SI units of measurement. All the data, figures, and tables are therefore conveniently presented for readers, progressive or traditionalist, in all countries.

In a book of this size, it is not possible to cover the whole field of upcycling of by-products. The editor and author choose what they take into account as the most important or most interesting or simply what they know most about, but the emphasis is on an integrated view of the properties of materials containing by-products and on the underlying scientific reasons.

Mehmet Serkan Kırgız

Contents

List of contributors Preface Introduction					
1.	Wheat straw ash as hydraulic binder substitution in binder-based materials made of an admixture superplasticizer Mehmet Serkan Kırgız and Hasan Biricik				
		.1 Introduction			
			ials and methods	1 3	
			Materials—mixing, handling, placing, and forming	3	
	1.3		ods used for measuring the physical and mechanical		
			rties of mortar	5	
	1.4		cal tests	5	
		•	Measurement of air pore	5	
			Measurement of unit weight	6	
			Measurement of water absorption in volume	6	
			Measurement of capillary water absorption	7	
		1.4.5		7	
	1.5	Mechanical tests		8	
		1.5.1	Flexural strength	8	
		1.5.2	Compressive strength	9	
	1.6	Result	Results and discussion and mathematical models for strength		
		estima		9	
		1.6.1	Air pore of fresh mortar	9	
		1.6.2	Unit weight of fresh mortar	11	
		1.6.3	Water absorption	12	
		1.6.4	Capillary water absorption	13	
		1.6.5	Change of mass	14	
		1.6.6	Flexural strength	16	
		1.6.7	Compressive strength	17	
	1.7	Concl	usions	19	
	Ack	nowled	gement	19	
	Con	flict of	interest	19	
	Refe	erences		20	

2.	Class C fuel ash as hydraulic binder substitution in binder-based materials fortified with the high-technology additive of graphite					
		ioparticles	25			
		hmet Serkan Kırgız				
	2.1 2.2	Introduction and background of pulverized fuel ash-cement system	25			
		in the cement-based materials	27			
	2.3	Synthetic graphite nanoparticles	28			
	2.4		31			
	2.5		32			
	2.6		33			
		2.6.1 Strength in flexure	33			
		2.6.2 Strength in splitting tension	35			
		2.6.3 Strength in compression force	37			
	2.7		41			
	Ack	knowledgments	41			
	Data	a availability	41			
	Fune	lding	41			
	Refe	erences	41			
3.	Class F fuel ash as hydraulic binder substitution in binder-based material fortified with high-technology additive of graphite					
		oparticle and admixture of superplasticizer	47			
	Mehmet Serkan Kırgız					
	3.1	÷	47			
	3.2		48			
		3.2.1 Materials	48			
	3.3	Cement binder and its types	49			
	3.4	91	50			
	3.5	-	52			
	3.6		52			
		3.6.1 Mixing, handling, placing, and forming processes for				
		upcycling of class F pulverized fuel ash	53			
		3.6.2 Test program	53			
	3.7	Properties related to strength	55			
		3.7.1 Splitting tensile strength	55			
		3.7.2 Flexural strength	56			
		3.7.3 Compressive strength	57			
		3.7.4 Strength gain index at an early age	58			
		3.7.5 Strength variation in binders used commonly	59			
	3.8	Conclusion	61			
	Refe	erences	62			

4.		Oil shale ash as hydraulic binder substitution in binder-based material with additive of superplasticizer and roller compaction					
	method						
		Ahmed M. Ashteyat, Amani Smadi, Yousef S. Al Rjoub and					
			rkan Kırgız				
		Introd	0	67			
			rials and methods	70			
		4.2.1					
			roller-compacted green concrete	70			
		4.2.2					
			roller-compacted green concrete	71			
		4.2.3		71			
	4.3		ts and discussions	73			
			Chemical and physical properties of mixing materials	73			
		4.3.2					
			roller-compacted green concrete	76			
		4.3.3	Durability properties of the roller-compacted concrete and				
			roller-compacted green concrete	79			
		4.3.4					
			and the roller-compacted green concrete	82			
		4.3.5	Microstructure analysis of the roller-compacted concrete				
			and roller-compacted green concrete	93			
	4.4	Concl		96			
	Ava	ilability	y of data and materials	97			
	Fun	ding		97			
	Refe	erences		97			
5.	Nat	ural po	zzolan as hydraulic binder substitution in				
	com	binatio	on with recycled aggregates in concrete	101			
	S. K	enai, M	1. Ghrici and J. Khatib				
	5.1	Introd	luction	101			
	5.2	Rheol	logical properties	101			
	5.3	Mech	anical properties	103			
		5.3.1		103			
		5.3.2	Flexural strength	104			
		5.3.3	Elastic modulus	105			
		5.3.4	Shrinkage	105			
	5.4	Durab	bility	106			
		5.4.1	Permeability	106			
		5.4.2	Carbonation	107			
		5.4.3	Resistance to chloride attack	110			
		5.4.4	Resistance to sulfate attack	112			
		5.4.5	Alkali-silica reaction	114			
	5.5		ostructure	116			
	5.6	Envir	onmental and economical aspects	117			

		Concl erences	usion	117 118		
6.	New	y hydra	ulic binder and binder based material with burning			
	pulverised coal ash, household waste, Mediterranean soil,					
	and	calcine	ed clay waste	123		
	Meh	met Sei	rkan Kırgız and Muhammad Syarif			
	6.1	Introd	uction	123		
	6.2	Resea	rch methodology	128		
		6.2.1	Tools and materials used	128		
		6.2.2	Research procedures	129		
	6.3		ts and discussion	133		
		6.3.1	Chemical composition of the wastes	133		
		6.3.2	Chemical composition of new cement	135		
		6.3.3	X-ray powder diffraction analysis of new cement	136		
		6.3.4	Physical properties	136		
	6.4	Concl	usions	139		
	Refe	erences		140		
7.	Alkali-activated hydraulic binder geopolymer with ground					
	-		blast furnace slag	143		
			rkan Kırgız and Hasan Biricik			
	7.1		uction	143		
	7.2		ials and methods	144		
			Materials	144		
		7.2.2				
			high-performance geopolymers	145		
		7.2.3	Methods	145		
	7.3		ts and discussion	146		
			Capillary water absorption	146		
			Coefficient of capillarity	147		
			Flexural capacity	148		
			Uniaxial compression strength	148		
	7.4	Concl	usions	149		
	Refe	erences		150		
8.			bber latex-substituted-bitumen binder and bitumen	4.50		
			ed materials used in highway	153		
			sei, Trinity Ama Tagbor, Johannes A.M. Awudza and			
			rkan Kırgız	150		
	8.1		uction	153		
	0.2	8.1.1	Objective	154		
	8.2		ials and method	155		
	0.2	8.2.1	Bitumen-based binder	155		
	8.3		ts and discussion	159		
		8.3.1	Penetration point	159		

		8.3.2	Softening point temperature (°C)	160
			Viscosity analysis	161
			Specific gravity test	162
			Temperature susceptibility and penetration index	162
		8.3.6	Flash point, aging, and viscosity of selected blends	163
		8.3.7	Fourier-transform infrared analysis	164
	8.4	Conclu	sions	164
	Refe	rences		165
9.	Mar	ble pow	der as hydraulic binder substitution	167
	S. Ke	enai, B.	Benabed and H. Soualhi	
	9.1		uction	167
	9.2		ntages of marble powder	167
	9.3		cations of marble powder	168
	9.4		rties of marble powder	168
			Particle size	168
			Physical properties	169
			Chemical properties	170
	9.5		of marble powder on fresh properties of	
			nt/mortar/concrete	171
			Workability	171
		9.5.2	6	172
		9.5.3	6	173
		9.5.4	5	174
	9.6		of marble powder on the hardened properties	175
		9.6.1	Strength activity index of mixtures incorporating marble powder	175
		9.6.2	Thermal analysis of mixtures incorporating marble powder	175
		9.6.3	Compressive strength	176
		9.6.4	Flexural tensile strength	176
		9.6.5	Splitting tensile strength	176
		9.6.6	Modulus of elasticity	177
	9.7		structure	178
	9.8		ility properties of concrete made with marble powder	181
			Permeability	181
		9.8.2	1	182
		9.8.3		183
			Shrinkage	184
		9.8.5		185
		9.8.6		186
		9.8.7		186
		9.8.8		187
		9.8.9	1 2	188
		9.8.10		189
		9.8.11	Fire resistance (high temperature resistance)	190

		9.8.12	Resistance to freeze and thaw cycling	191
		9.8.13	Abrasion resistance	191
	9.9	Econon	nic aspect	192
	9.10	Enviror	nmental performance	193
		Conclu		194
	Refere	ences		194
10.	Gray	cement,	, white cement, gypsum, and lime modified	
	with g	graphite	e nanoparticles	203
	Mehm	et Serka	ın Kırgız	
	10.1	Introd	uction	203
	10.2		ials and methods	204
		10.2.1	Transforming of conventional binder into binder and	
			mortar including graphite nanoparticles	204
	10.3		ng, mixing, and specimen preparation	205
	10.4	Chara	cterization	206
	10.5	Result	ts and discussion	206
			Compressive strength	206
	10.6		ematical model for estimation of compressive strength	208
	10.7		ng moment	209
	10.8		ematical model for prediction of bending moment	212
	10.9	-	ng tensile strength	214
	10.10		ematical model for estimation of splitting tensile strength	216
	10.11		usion	217
	Refere	ences		217
11.		-	v as hydraulic binder substitution	221
			hatib and M. Ghrici	
	11.1	Introdu		221
		Materia		222
	11.3		concrete properties	224
		11.3.1		224
			Setting time	225
			Workability	226
	11.4		nical properties	227
		11.4.1		227
		11.4.2	1 0	227
		11.4.3	Splitting tensile and flexural strengths	230
		11.4.4	Elastic and dynamic moduli	231
	11.5	Shrinka		231
	11.6		lity properties	232
		11.6.1	General	232
		11.6.2	Absorption, porosity, and pore structure	232
		11.6.3	Permeability, chloride ingress, and carbonation	234
		11.6.4	Sulfate resistance	235

	11.6.5 Abrasion and skid resistance	236			
	11.6.6 Fire resistance	236			
	11.7 Economic and environmental aspects	236			
	11.8 Conclusions	237			
	References	237			
12.	Properties of concrete containing coal bottom ash as	242			
	hydraulic binder substitution Khairunisa Muthusamy, Wang Hui Wong, Nabilla Mohamad,	243			
	Jose Rajan, Ahmed Mokhtar Albshir Budiea,				
	Anwar P.P. Abdul Majeed and Mehmet Serkan Kırgız				
	12.1 Introduction	243			
	12.2 Methodology	244			
	12.2.1 Preparation of raw materials	244			
	12.2.2 Preparation of concrete and testing	246			
	12.3 Result and discussion	246			
	12.3.1 Workability	246			
	12.3.2 Compressive strength	247			
	12.3.3 Splitting tensile strength	248			
	12.4 Conclusion	248			
	References	249			
13.	Upcycling of recycled asphalt pavement aggregate and recycled				
	concrete aggregate and silica fume in roller-compacted concrete	251			
	Ahmed M. Ashteyat, Ala' Taleb Obaidat, Baenah Al Tawalbeh and				
	Mehmet Serkan Kırgız				
	13.1 Introduction	251			
	13.2 Experimental work	255			
	13.2.1 Materials	255			
	13.2.2 Testing procedure	259			
	13.3 Results and discussion	262			
	13.3.1 Compressive strength	262			
	13.3.2 Splitting tensile strength	264			
	13.3.3 Flexural strength	266			
	13.3.4 Modulus of elasticity	268			
	13.3.5 Water absorption	270			
	13.3.6 Density	272			
	13.4 Conclusions	273			
	References	273			
14.	Clay and natural latex as admixture in binary and ternary bitumen				
	binder system for transportation and geotechnical applications	277			
	Theresah Osei, Trinity Ama Tagbor, Johannes A.M. Awudza and				
	Mehmet Serkan Kırgız				
	14.1 Introduction	277			

	14.2	Materia	als and method	278
		14.2.1	Bitumen	278
		14.2.2	Natural rubber latex	278
		14.2.3	Clay samples	278
		14.2.4	Sample preparation	279
		14.2.5	Absorption test	279
	14.3	Particle	e size distribution	279
		14.3.1	Compaction	279
		14.3.2	Atterberg limit (plastic and liquid limit)	279
	14.4		gen ion concentration (pH)	279
	14.5	Prepara	ation of blends	279
		14.5.1	Laboratory analysis	280
		14.5.2	Penetration point	280
		14.5.3	Softening point temperature	280
		14.5.4	Kinematic viscosity	280
			Specific gravity	280
			Short-term aging test	280
		14.5.7	Flash point	280
	14.6	Results		281
			Atterberg limit and pH	281
			Compaction, moisture content, and specific gravity	282
			Particle size distribution	282
			Penetration point	283
			Softening point	284
			atic viscosity	284
	14.8	-	c gravity	285
			Aging and flash point	286
		Conclu	sions	287
	Refer	ences		287
15.			oach through recycling of brick kiln dust and	
			rubber tires in the manufacturing of clayey	201
			ementitious composites	291
		Introdu	Bhatti and Anwar Khitab	291
	15.1			291 292
	13.2			292 292
		15.2.1	Ingredients Environmental hazards	292 293
				293 293
			Greenization	
	15 2		Replacement of natural aggregates rubber tires	293 295
	15.3	15.3.1		295 295
	15 4		Crumb rubber	295 296
	15.4	15.4.1	ized concrete Untreated rubber particles as replacement of fine	296
		13.4.1	1 1	204
			aggregates	296

		15.4.2	Treated rubber particles as replacement of fine aggregates	298
			Rubber powder as an admixture	298
	15.5	Waste l	brick powder	299
		15.5.1	Use in concrete	299
		15.5.2	Use in clayey bricks	302
	15.6	Conclu	sion	303
	Refer	rences		303
16.	Self-c	compacti	ing concrete blended with fly ash and ground	
			ast furnace slag	309
			eel, Paul Awoyera, Irfan Ali Shar and	
		net Serka	8	
		Introdu		309
	16.2		lls and methodology	311
			Materials	311
	16.3	-	oportion	312
	16.4		methods	313
			Fresh properties of self-compacting concrete mixture	313
			Hardened properties of self-compacting concrete mixture	314
	16.5		and discussion	314
			Fresh concrete results	314
	16.6		ed concrete results	319
		16.6.1	Compressive strength of self-compacting concrete	
		1660	mixture	319
		16.6.2	Splitting tensile strength of self-compacting concrete	221
		1660	mixture	321
		16.6.3	Flexural strength of self-compacting concrete mixture	324
		16.6.4	Water penetration depth of self-compacting concrete	225
	167	C 1	mixture	325
	16.7		sion	327
	Refer	rences		330
17.			ative recycled fillers in bituminous mixtures: a review	335
	K . <i>Jo</i> . 17.1	-	H. Kassem, A. Elkordi and J. Khatib	335
	17.1			333 337
			ement practices of municipal solid waste incineration ashes	337
	17.3		pal solid waste incineration ashes as road construction	339
		materia 17.3.1	Municipal solid waste incineration bottom ash	339
		17.3.1	Application of bottom ash in bituminous mixtures	339 340
		17.3.2	Municipal solid waste incineration fly ash	340
	17.4		mental effect of municipal solid waste incineration	542
	17.4		s a road construction material	345
		17.4.1	Leaching characteristics of municipal solid waste	545
		1/.4.1	incineration ashes	345

		17.4.2	Municipal solid waste incineration ash leaching		
			reduction and treatments	347	
	17.5	Conclu	sions and recommendations	348	
	Refer	ences		348	
18.	Ecology-based green clay-hemp brick material made with				
	ground granulated blast-furnace slag				
	Jonat	han Oti,	John Kinuthia and Mehmet Serkan Kırgız		
	18.1	Introdu	ction	357	
	18.2	Method	lology	358	
		18.2.1	Materials	358	
		18.2.2	Mix composition, sample preparation, and testing	360	
	18.3	Result	and discussion	364	
		18.3.1	Strength development of the lime-GGBS and		
			PC-GGBS stabilized systems	364	
			Linear expansion	365	
		18.3.3	Laboratory stabilized clay-hemp brick manufacture	368	
		18.3.4	Cost analysis hemp-clay brick	369	
	18.4	Conclu	sions	370	
	Refer	ences		371	
19.	Innovative and sustainable concrete materials 3				
	Antonella D'Alessandro and Filippo Ubertini				
	19.1	Introdu	ction	373	
	19.2	State-o	f-art concrete materials	374	
	19.3	New bi		376	
		19.3.1	Mixing ground granulated blast furnace slag		
			(GGBFS) and geopolymers	377	
			Earth-concretes	377	
			Fine recycled fillers: fly ash and silica fume	379	
			New efficient cements	380	
	19.4	•	ed components	380	
			Recycled aggregates	380	
			Recycled tires	383	
			Recycled glass	384	
		19.4.4	Recycled plastic	385	
		19.4.5	Organic waste	387	
	19.5			388	
		New ac		389	
	19.7		sustainable processes	389	
	19.8	Conclu	sion	390	
	Fund	-		390	
	Refer	ences		391	

Properties of concrete containing coal bottom ash as hydraulic binder substitution

12

Khairunisa Muthusamy¹, Wang Hui Wong¹, Nabilla Mohamad¹, Jose Rajan², Ahmed Mokhtar Albshir Budiea³, Anwar P.P. Abdul Majeed⁴ and Mehmet Serkan Kırgız⁵

¹Faculty of Civil Engineering Technology, University Malaysia Pahang, Pahang, Malaysia, ²Faculty of Industrial Science and Technology, University Malaysia Pahang, Pahang, Malaysia, ³Faculty of Industrial Management, University Malaysia Pahang, Pahang, Malaysia, ⁴Faculty of Manufacturing and Mechatronics Engineering Technology, University Malaysia Pahang, Pahang, Malaysia, ⁵Northwestern University, Chicago, IL, United States

The use of coal bottom ash (CBA) as a partial cement substitute on the effect of concrete workability is studied.

12.1 Introduction

Concrete is a flexible substance that is produced using natural resources with cement as a binding agent. The use of natural resources rises every year owing to urban and rural growth. Cement manufacturing requires the use of large amounts of raw materials, energy, and heat. World Business Council for Sustainable Development International Energy Agency Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry (2013) projected in 2050 the demand for cement in the range of 780-1361 million tons. Argiz et al. (2018) observed that when 1 ton of Portland cement is manufactured, it releases approximately 0.8 tons of carbon dioxide. The calcination process and combustion for energy generation during cement production are the processes with the greatest effect to the environment (Durastanti & Morretti, 2020). Alternative sustainable materials are needed to enhance the performance of concrete to minimize the use of natural resources (Jayakumar et al., 2021). Utilizing the freely available locally generated waste to replace the harvesting of natural resources for cement production would also contribute to preservation of natural nonrenewable resources and reduce degradation of the environment and wildlife.

At the same time the expanding population with their growing needs and flourishing industries causes an increase in energy demand in many parts of the world. Coal became one of the materials to generate energy in thermal power production