NANOFILLERS FOR BINARY POLYMER BLENDS

Edited by Sabu Thomas Soney George Sharika Nair

Micro & Nano Technologies Series

Nanofillers for Binary Polymer Blends

Nanofillers for Binary Polymer Blends

Edited by

SABU THOMAS

International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India

SONEY C. GEORGE

Center for Nanoscience and Technology, Amal Jyothi College of Engineering, Kottayam, Kerala, India

SHARIKA T. NAIR

Department of Chemistry, St. Xavier's College Vaikom, Kottayam, Kerala, India

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands 125 London Wall, London EC2Y 5AS, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-88655-0

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Ana Claudia Garcia Editorial Project Manager: Namrata Lama Production Project Manager: Erragounta Saibabu Rao Cover Designer: Greg Harris

Typeset by MPS Limited, Chennai, India

Contents

List	of contributors	xiii
1.	Introduction: role of nanofillers in binary polymer blends Sharika T. Nair, Soney C. George and Sabu Thomas	1
	1.1 General introduction to polymer blends	1
	1.2 Thermodynamics in miscibility of binary polymer blends	3
	1.3 Classification of polymer blends	6
	1.4 Preparation of polymer blends	7
	1.5 Compatibilization of polymer blends	8
	1.6 Role of nanofillers in polymer blends	10
	1.7 Applications and challenges of nanofillers in polymer blends	12
	1.8 Summary of chapters	14
	1.9 Conclusions	15
	References	15
2.	Nanofillers in miscible polymer blends	21
	Amos Adeniyi, Emmanuel Rotimi Sadiku and Maurice S. Onyango	
	2.1 Introduction	21
	2.2 Miscible polymer blends	22
	2.3 Nanofiller and their properties	24
	2.4 Methods of incorporation of nanofillers in miscible polymer blends	26
	2.5 Nanofillers in miscible polymer blends	28
	2.6 Application of miscible polymer blends containing nanofillers	37
	2.7 Conclusion	37
	References	38
3.	Nanofillers in immiscible polymer blends	43
	Souad Nekhlaoui, Hamid Essabir, Marya Raji, Mohammed Ouadi bensalah, Abou el kacem Qaiss and Rachid Bouhfid	
	3.1 Introduction	43
	3.2 Immiscible polymer blends	44
	3.3 Polymer immiscible blends manufacturing process	45
	3.4 Nanofillers in the immiscible polymer blend	46
	3.5 Conclusion	66
	References	66

4.	Rol	e of nanofillers in thermoplastic-thermoplastic polymer blends	73
	Sed	at Kumartasli and Ozan Avinc	
	4.1	Introduction	73
	4.2	Properties of nanofiller polymer blend	74
	4.3	Interaction mechanism of nanoadditives and polymer blends	75
	4.4	Production of nanocomposites	76
	4.5	Mixing methods	77
	4.6	Effects of different types of nanofillers on various properties of different types of thermoplastic—thermoplastic blends	78
	4.7	Related textile applications and recent commercial developments	82
	4.8	Conclusions	89
	Refe	erences	89
	Furt	her reading	92
5.	Rol	e of nanofillers in thermoplastic elastomer polymer blends	93
	Avii	nash P. Manian, Michael Cordin and Tung Pham	
	5.1	Introduction	93
	5.2	Thermoplastic elastomer polymer blends	94
	5.3	Nanofillers in thermoplastic elastomer polymer blends	96
	5.4	Conclusion and outlook	110
	Refe	erences	111
6.	Rol	e of nanofillers in elastomer-elastomer blends	121
		ferie Abd Razak, Sahrim Haji Ahmad, Noraiham Mohamad, rul Effendy Ab Maulod, Ramli Junid, Soh Tiak Chuan and Poppy Puspitasari	
	6.1	Introduction	122
	6.2	Natural rubber/ethylene—propylene diene monomer elastomer—elastomer blend	123
	6.3	Nanofiller for elastomer—elastomer blend nanocomposites	126
	6.4	Role of nanofillers in elastomer—elastomer blend nanocomposites	133
	6.5	Conclusions	159
	Ack	nowledgments	160
	Refe	erences	160
7.	Rol	e of nanofillers in thermoset-based polymer blends	165
		o Santulli, Sivasubramanian Palanisamy, Mayandi Kalimuthu, Alavudeen Azeez, ni Nagarajan and Rajesh Shanmugavel	
	7.1	Thermoset-based blends	165
	7.2	The role of nanofillers in thermosetting blends	167
	7.3	Nanofillers used for application in thermoset blends	170

	7.4	Processes for fabrication of nanoblends	175
		Thermoset nanoblends	182
	7.6	Examples of introduction of fillers in thermoset blends and relevant applications	185
	7.7	Conclusions	186
	Refe	erences	186
8.		cessing, morphology, rheology, properties, and applications of T-filled polymer blends	195
	Bria	n P. Grady	
	8.1	Introduction	195
	8.2	Tube location in an immiscible polymer blend	197
	8.3	Rheology and phase morphology	206
		Applications	209
		Final thoughts	216
	Refe	erences	216
9.	Мо	rphology, rheology, properties, and applications of fullerene-filled	
	pol	ymer blends	223
	Ras	di Roslan and Mohd Hasbi Ab. Rahim	
	9.1	Introduction	223
	9.2	Fullerene	224
	9.3	Morphology of the fullerene-based polymer blend	225
	9.4	Rheology of the fullerene-based polymer blend	230
	9.5	Mechanical properties of the fullerene-based polymer blend	232
	9.6	Thermal properties of the fullerene-based polymer blend	234
	9.7	Application of fullerene-based polymer nanocomposites	234
	9.8	Summary, challenges, and future prospect	236
	Refe	erences	238
10.	Мо	rphology, rheology, properties, and applications of graphene-filled	
	pol	ymer blends	243
	Isha	q Lugoloobi, Bita Farhadi and Syed Rashedul Islam	
	10.1	Introduction	243
	10.2		244
	10.3	1 57	248
	10.4		251
	10.5	Properties	252
	10.6	Applications of graphene-filled polymer blends	253
	10.7	' Conclusion	266
	Refe	rences	266

11.	Morphology, rheology, properties, and applications of carbon fiber-filled polymer blends	277
	Teboho Clement Mokhena, Emmanuel Rotimi Sadiku, Suprakas Sinha Ray, Mokgaotsa Jonas Mochane, Gebhu Ndlovu, Sanele Nyembe, Phillemon Matabola, Mpho Philip Motloung, Asanda Mtibe and Maya John	
	11.1 Introduction	277
	11.2 Carbon nanofibers	279
	11.3 Classification of polymers	280
	11.4 Carbon nanofiber composites	281
	11.5 Polymer blends	286
	11.6 Carbon nanotubes—reinforced blend composites	291
	11.7 Applications	297
	11.8 Future remarks and conclusions	299
	References	299
12.	Morphology, rheology, properties, and applications of nanocellulose and nanochitin-filled polymer blends	303
	Saleheen Bano, Chhavi Sharma, Nikhil Rampatra, Asif Ali and Yuvraj Singh Negi	505
	12.1 Introduction	303
	12.2 Overview of cellulose and chitin nanomaterials	308
	12.3 Structural aspect of nanocellulose and nanochitin	310
	12.4 Properties of nanocellulose and nanochitin	316
	12.5 Modification and processing of nanocellulose/nanochitin-based composites	320
	12.6 Role of nanocellulose and nanochitin in a multiphase system as a property modifier	326
	12.7 Conclusion	332
	Acknowledgments	332
	References	332
13.	Morphology, rheology, properties, and applications of polyhedral oligomeric silsesquioxanes-filled polymer blends	343
	M. Murariu, AV. Oancea, B.G. Rusu and M. Olaru	
	13.1 Introduction	343
	13.2 Morphology of polyhedral oligomeric silsesquioxanes-filled polymer blends	344
	13.3 Conclusions	359
	References	360
14.	Morphology, rheology, properties, and applications of metal oxide filled polymer blends	365
	Osikemekha Anthony Anani and Inobeme Abel	
	14.1 Introduction	365

~	
Contents	I
COntents	

		Contents
	14.2 Distribution and dispersion of nanofillers	367
	14.3 Properties of metal oxide—filled polymer blends	368
	14.4 Applications of metal oxide—filled polymer blends	375
	14.5 Conclusion and recommendations	379
	References	380
15.	Morphology, rheology, properties, and applications of metal	
	carbide-filled polymer blends	385
	Oluwaseun A. Alo, lyiola Olatunji Otunniyi and Adefemi Adeodu	
	15.1 Introduction	385
	15.2 Polymer blend/titanium carbide nanocomposites	388
	15.3 Polymer blend/niobium carbide nanocomposites	391
	15.4 Polymer blend/zirconium carbide nanocomposites	392
	15.5 Opportunities for further research	393
	15.6 Conclusion	396
	References	396
16.	Morphology, rheology, properties, and applications of nanostructured	
	$\mathbf{J}_{\mathbf{r}}$	
	metal chalcogenide-filled polymer blends	401
	metal chalcogenide-filled polymer blends Olugbemi T. Olaniyan, Charles O. Adetunji, Mayowa J. Adeniyi, Ayobami Dare and Olagunju Abdulrahmon Adewuyi	401
	Olugbemi T. Olaniyan, Charles O. Adetunji, Mayowa J. Adeniyi, Ayobami Dare	401 401
	Olugbemi T. Olaniyan, Charles O. Adetunji, Mayowa J. Adeniyi, Ayobami Dare and Olagunju Abdulrahmon Adewuyi	
	Olugbemi T. Olaniyan, Charles O. Adetunji, Mayowa J. Adeniyi, Ayobami Dare and Olagunju Abdulrahmon Adewuyi 16.1 Introduction	401
	 Olugbemi T. Olaniyan, Charles O. Adetunji, Mayowa J. Adeniyi, Ayobami Dare and Olagunju Abdulrahmon Adewuyi 16.1 Introduction 16.2 Chalcogen chemistry 	401 407
	 Olugbemi T. Olaniyan, Charles O. Adetunji, Mayowa J. Adeniyi, Ayobami Dare and Olagunju Abdulrahmon Adewuyi 16.1 Introduction 16.2 Chalcogen chemistry 16.3 Various applications of chalcogenides-filled polymer blends 	401 407 412
	 Olugbemi T. Olaniyan, Charles O. Adetunji, Mayowa J. Adeniyi, Ayobami Dare and Olagunju Abdulrahmon Adewuyi 16.1 Introduction 16.2 Chalcogen chemistry 16.3 Various applications of chalcogenides-filled polymer blends 16.4 Importance of morphology and rheological study of chalcogenides 	401 407 412 415
	 Olugbemi T. Olaniyan, Charles O. Adetunji, Mayowa J. Adeniyi, Ayobami Dare and Olagunju Abdulrahmon Adewuyi 16.1 Introduction 16.2 Chalcogen chemistry 16.3 Various applications of chalcogenides-filled polymer blends 16.4 Importance of morphology and rheological study of chalcogenides 16.5 Properties of chalcogenides-filled polymer blends 	401 407 412 415 416

carbonate-filled polymer blends	423
Tannaz Karimi, Fatemeh Mottaghitalab and Mehdi Farokhi	
17.1 Introduction	423
17.2 Nanosilica	424
17.3 Nanocalcium carbonate	431
17.4 Conclusion	438
References	438

ix

18.		hology, rheology, properties, and applications of nanostarch-filled ner blends	443
		s Oluwaseun Adetunji, Titilayo Olotu, John Tsado Mathew, Inobeme Abel, emi T. Olaniyan, Modupeade C. Adetunji and Oluwafemi Adebayo Oyewole	
	18.1	Introduction	443
	18.2	Properties and features of nanostarch-filled polymer blends	445
	18.3	Characterization of nanostarch	446
	18.4	Different types of processes involved in the production of nanostarch	447
	18.5	Characterization of starch nanoparticles	449
	18.6	Instrumentation and analytical techniques involved in the determination of various physicochemical properties of nanostarch	450
	18.7	Particle sizes and shape effects in nanostarch-filled polymer blends	453
	18.8	Limitation of starch as a filler material	453
	18.9	Enhancing the performance of nanostarch-filled polymeric materials	453
	18.10	Steps in the formation of starch-polymer blend	455
	18.11	Industrial applications of nanostarch-filled polymer blends	455
	18.12	Natural and synthetic polymers blend as the matrix	455
	18.13	Nanostarch in drug delivery systems	456
	18.14	Antibacterial activity	457
	18.15	Packaging materials	457
	18.16	Morphology and rheological properties of nanostarch-filled polymers	458
	18.17	Effect of morphology on physicochemical properties of blends	458
	18.18	Effects of the hydrophilic feature on the mechanical strength of the blend	459
	18.19	Effect of elastomeric additives	459
	18.20	Cross linking agents and mechanical strength of nanostarch blend	459
	18.21	Effect of nanoadditive placement	459
	18.22	Selective localization and physicochemical properties of blends	460
	18.23	Viscoelasticity of nanostarch polymer blends	460
	18.24	Conclusion	460
	Refere	nces	460
19.	Effect	of hybrid nanofillers in polymer blends	465
		ny Chidi Ezika, Gbolahan Joseph Adekoya, Emmanuel Rotimi Sadiku, ‹as Sinha Ray and Yskandar Hamam	
	19.1	Introduction	465
	19.2	Polymer blends	466
	19.3	Nanofillers	467
	19.4	Effect of hybrid nanofillers in polymer blends	472
	19.5	Conclusion	479
	Refere	nces	479

20.		ory, modeling simulation, and life cycle assessment of nanofilled mer blends	483
	Prata	p Kalita, Anupam Sarma, Abdul Baquee Ahmed and Satyendra Deka	
	20.1	Introduction	483
	20.2	Theory behind the interfacial phenomenon between the nanofiller and polymer blend	485
	20.3	Theoretical prediction of localization of the filler in the blend	488
	20.4	Simulation modeling of the nanofiller in the polymer blend	490
	20.5	Life cycle assessment of nanofilled polymer blends	493
	20.6	Conclusion	499
	Refer	ences	499

Index

List of contributors

Hairul Effendy Ab Maulod

Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka, Malaysia

Mohd Hasbi Ab. Rahim

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang Kuantan, Pahang, Malaysia; Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang Kuantan, Pahang, Malaysia

Jeefferie Abd Razak

Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka, Malaysia

Inobeme Abel

Department of Chemistry, Faculty of Science, Edo State University, Uzairue, Edo State, Nigeria; Department of Chemistry, Edo University Iyamho, Auchi, Edo State, Nigeria

Gbolahan Joseph Adekoya

Institute of NanoEngineering Research (INER) & Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa

Amos Adeniyi

Department of Chemical Engineering, Cape Peninsula University of Technology (CPUT), Bellville Campus, Cape Town, South Africa

Mayowa J. Adeniyi

Department of Physiology, Federal University of Health Sciences, Otukpo, Nigeria

Adefemi Adeodu

Department of Project Management Bells University of Technology, Ota, Ogun State, Nigeria

Charles O. Adetunji

Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University, Uzairue, Edo State, Nigeria

Charles Oluwaseun Adetunji

Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Auchi, Edo State, Nigeria

Modupeade C. Adetunji

Department of Biological Sciences, Trinity University, Yaba, Lagos State, Nigeria

Olagunju Abdulrahmon Adewuyi

Department of Physiology, Federal University of Technology, Akure, Nigeria

Abdul Baquee Ahmed

Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam, India

Asif Ali

Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India

Oluwaseun A. Alo

Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa

Osikemekha Anthony Anani

Laboratory for Ecotoxicology and Forensic Biology, Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria

Ozan Avinc

Textile Engineering Department, Engineering Faculty, Pamukkale University, Denizli, Turkey

Alavudeen Azeez

Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Srivilliputhur, Tamil Nadu, India

Saleheen Bano

School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India

Rachid Bouhfid

Moroccan Foundation of Advanced Science Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir, Morocco

Michael Cordin

Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria

Ayobami Dare

Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa

Satyendra Deka

Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India

Abou el kacem Qaiss

Moroccan Foundation of Advanced Science Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir, Morocco

Hamid Essabir

Mechanic, Materials, and Composites (MMC), Laboratory of Energy Engineering, Materials and Systems, National School of Applied Sciences of Agadir, Ibn Zohr University, Agadir, Morocco

Anthony Chidi Ezika

Institute of NanoEngineering Research (INER) & Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa

Bita Farhadi

Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China

Mehdi Farokhi

National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran

Soney C. George

Centre for Nanoscience and Technology, Amal Jyothi College of Engineering, Kottayam, Kerala, India

Brian P. Grady

School of Sustainable Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK, United States

Sahrim Haji Ahmad

Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

Yskandar Hamam

French South African Institute of Technology (F'SATI)/Department of Electrical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa; ESIEE–Paris, Noisy-le–Grand, France

Syed Rashedul Islam

Key Lab of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, P.R. China

Maya John

Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa

Ramli Junid

Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia

Mayandi Kalimuthu

Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Srivilliputhur, Tamil Nadu, India

Pratap Kalita

Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India

Tannaz Karimi

National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran

Sedat Kumartasli

Research and Development Centre, Polyteks Textile Company, Bursa, Turkey

Ishaq Lugoloobi

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Songjiang, Shanghai, P.R. China

Avinash P. Manian

Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria

Phillemon Matabola

Department of Water and Sanitation University of Limpopo, Sovenga, South Africa

John Tsado Mathew

Department of Chemistry, Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria

Mokgaotsa Jonas Mochane

Department of Life Sciences, Central University of Technology Free State, Bloemfontein, South Africa

Noraiham Mohamad

Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka, Malaysia

Teboho Clement Mokhena

Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Randburg, South Africa

Mpho Philip Motloung

Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa

Fatemeh Mottaghitalab

Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Asanda Mtibe

Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa

M. Murariu

"Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania

Rajini Nagarajan

Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Srivilliputhur, Tamil Nadu, India

Sharika T. Nair

St. Xavier's College Vaikom, Kottayam, Kerala, India

Gebhu Ndlovu

Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Randburg, South Africa

Yuvraj Singh Negi

Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India

Souad Nekhlaoui

Group of Mechanics and Materials, Energy Research Center, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco

Sanele Nyembe

Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Randburg, South Africa

A.-V. Oancea

"Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania

Olugbemi T. Olaniyan

Laboratory for Reproductive Biology and Developmental Programming, Department of Physiology, Edo University Iyamho, Auchi, Edo State, Nigeria; Laboratory for Reproductive Biology and Developmental Programming, Department of Physiology, Kwara State University, Malete, Nigeria

M. Olaru

"Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania

Titilayo Olotu

Department of Microbiology, Adeleke University, Ede, Osun State, Nigeria.

Maurice S. Onyango

Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology (TUT), Pretoria, South Africa

Iyiola Olatunji Otunniyi

Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa

Mohammed Ouadi bensalah

Group of Mechanics and Materials, Energy Research Center, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco

Oluwafemi Adebayo Oyewole

Department of Microbiology, Federal University of Technology, Minna, Nigeria

Sivasubramanian Palanisamy

Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Srivilliputhur, Tamil Nadu, India; Department of Mechanical Engineering, Dilkap Research Institute of Engineering and Management Studies, Raigad, Maharashtra, India

Tung Pham

Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria

Poppy Puspitasari

Mechanical and Industrial Engineering Department, Center of Advanced Materials and Renewable Energy, Universitas Negeri Malang, Malang, East Java, Indonesia

Marya Raji

Moroccan Foundation of Advanced Science Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir, Morocco

Nikhil Rampatra

Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India

Suprakas Sinha Ray

Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa

Rasidi Roslan

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang Kuantan, Pahang, Malaysia; Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang Kuantan, Pahang, Malaysia

B.G. Rusu

"Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania

Emmanuel Rotimi Sadiku

Institute of NanoEngineering Research (INER) & Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa; Department of Chemical, Metallurgical and Materials Engineering (Polymer Technology Division), Institute of Nano Engineering Research (INER), Tshwane University of Technology, Pretoria, South Africa; Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology (TUT), Pretoria, South Africa

Carlo Santulli

School of Science and Technology, Geology Division, Università degli Studi di Camerino, Camerino, Italy

Anupam Sarma

Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati, Assam, India

Rajesh Shanmugavel

Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Srivilliputhur, Tamil Nadu, India

Chhavi Sharma

Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India

Sabu Thomas

International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India; Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg, South Africa

Soh Tiak Chuan

Rubber Leisure Products Sdn. Bhd., Kawasan Perindustrian Serkam, Merlimau, Jasin, Melaka, Malaysia