
FACULTY TIMETABLING USING GENETIC ALGORITHM

LIONG BOON YAUN

A thesis submitted in partially fulfillment of the requirements for the award of

degree of Bachelor of Computer Science (Software Engineering)

Faculty of Computer Systems & Software Engineering

Universiti Malaysia Pahang

MAY 2011

PERPUSTAKAAN
	 I !

UNIVERSITI MALAYSIA PAHANG j
Oe6u

Tarkh

No. Panggllafl

ro 2-3

ABSTRACT

Faculty Timetabling using Genetic Algorithm (FTGA) is an application that

generate optimum timetable for faculty. The target user of this application is faculty

staff who responsible in generate timetable. The problem statement of the project is

many clashing exist in the timetable. Faculty staff needs to solve the clashing

manually. This will waste time and it is a problem for staff to solve the clashing. By

implement GA, clashing will be reduced. The objective of the project is to develop a

prototype in scheduling application for generates an optimum timetable for a faculty.

Genetic algorithm will be implemented. The scope of FTGA is Faculty of Computer

Systems & Software Engineering (FCSSE). The methodology use in this project is

prototype model. The testing result show 95 out of 100 test cases achieved the

maximum fitness value which means there is no clashing in the timetable. The

maximum generation is set to 15 generation. Population for each generation is 3

populations. Percentage of FTGA solve the problem is 95%.

iv

ABSTRAK

Penjadualan Fakulti menggunakan Algoritina Genetik (FTGA) adalah sebuah

aplikasi yang menghasilkan jadual yang optimum untuk fakulti. Target Pengguna

untuk aplikasi mi adalah kakitangan fakulti yang bertanggung jawal, dalam

menghasilkan jadual waktu. Masalah bagi projek mi adalah berlakunya banyak

bertembungan dalam jadual waktu. Kakitangan fakulti perlu menyelesaikan

pertembungan mi secara manual. Hal mi membuang masa dan merupakan masalah

bagi kakitangan falkuti untuk menyelesaikan pertembungan ml. Dengan menerapkan

GA, pertembungan boleh dikurangkan. Tujuan projek mi adalah untuk membina

prototaip dalam aplikasi penjadualan untuk menghasilkan jadual waktu yang

optimum untuk fakulti. Algoritma genetik akan diimplikasikan. Skop FTGA adalah

Fakulti Sistem Komputer & Kejuruteraan Perisian (FSKKP). Metodologi yang

digunakan dalam projek mi adalah model prototaip. Keputusan ujian menunjukkan

95 daripada 100 kes uji mencapai nilai fitness maksimum dengan tiadanya

pertembungan dalam jadual waktu. Generasi maksimum ditetapkan adalah 15

generasi. Populasi untuk setiap generasi adalah 3 populasi. Peratusan FTGA

mengatasi masalah pertembunganjadual waktu adalah 95%.

V

TABLE OF CONTENTS

CHAPTER	 TITLE PAGE

SUPERVISOR'S DECLARATION j

STUDENT'S DECLARATION

ACKNOWLEDGMENTS

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF APPENDICES xii

INTRODUCTION 1

1.1	 Introduction 1

1.2	 Problem Statement 2

1.3	 Objectives 2

1.4	 Scope 2

1.5	 Thesis Organization 3

2	 LITERATURE REVIEW 4

2.1	 Introduction 4

2.2	 Genetic Algorithm (GA) 4

2.2.1	 Encoding 7

2.2.2	 Fitness 7

2.2.3	 Selection 8

2.2.4	 Crossover 8

2.2.5	 Mutation 10

2.3	 Scheduling Problem 10

vii

2.3.1	 Nurse Scheduling Problem 10

2.3.2	 Job Shop Scheduling Problem 12

2.4 Existing Genetic Algorithm Application 13

2.4.1	 Travelling Salesman Problem Application 13

2.4.2	 GA Class Schedule 17

2.4.3	 Chess Tournament Scheduling System 23

2.4.4	 Comparison of the Applications 27

2.5 Faculty Timetabling using Genetic Algorithm 28

3	 METHODOLOGY 31

3.1 Prototype Model 31

3.2 Initial Requirements 32

3.3 System and Software Design 33

3.3.1	 Encoding 33

3.3.2	 Evaluation of a Timetable 35

3.3.3	 Selection 36

3.3.4	 Crossover 37

3.3.5	 Mutation 38

3.4 Prototype 39

3.5 Customer Evaluation 40

3.6 Review and Update 40

3.7 Development 41

3.8 Testing 41

3.9 Maintenance 41

3.10 Hardware and Software Requirements 41

4	 IMPLEMENTATION 43

4.1 Generate Random Population 43

4.2 Calculate the Fitness Value 45

4.3 Elitist Selection 48

4.4 Crossover 49
4.5 Mutation 52

4.6 Stopping Condition 54

VIII

5	 RESULT AND DISCUSSION 56

5.1	 Expected Result 56

5.2	 Testing Result 56

5.3	 Further Research 62

5.4	 Constraint 62

6	 CONCLUSION 63

6.1	 Conclusion of the Project 63

REFERENCES
	

65

APPENDICES	 69

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Encoding 7

2.2 Fitness 7

2.3 One Point Crossover 9

2.4 Two Point Crossover 9

2.5 Mutation 10

2.6 Type of Shift 11

2.7 List of the Rooms 29

3.1 Hardware Requirements 41

3.2 Software Requirements 42

5.1 Test Suite 57

5.2 Test Environment 57

5.3 Testing Result 58

ix

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Top Level of GAs 5

2.2 Outlines of the Genetic Algorithms 6

2.3 Roulette Wheel Selection 8

2.4 Interface of TSP Application 14

2.5 Result of TSP Application 15

2.6 Chromosome Representations 18

2.7 Crossover of GA Scheduler 20

2.8 Sample of Configuration File 22

2.9 Interface of GA Class Schedule 22

2.10 Result of the GA Class Schedule 23

2.11 Fitness Function of CTMS 24

2.12 Interface of CTMS 26

2.13 Setting of CTMS 26

2.14 Solution Window and Schedule Window 27

2.15 List of Hard Constraints 30

3.1 Prototype Model 31

3.2 Example of a Room Timetable 34

3.3 The Entire Faculty Timetable 34

3.4 Relationships between Chromosomes and Genes
Ar

35

3.5 Producing New Generation 37

3.6 Steps in Crossover 37

3.7 Illustration of Crossover Process 38

3.8 Steps in Mutation Process 39

3.9 Illustration of Mutation Process 39

4.1 Check Class Slot Availability Coding 44

4.2 Generate Random Population Coding 44

4.3 Retrieve Data Coding

x

4.4 Get Current Class Capacity Coding 46

4.5 Get Room Capacity Coding 46

4.6 Calculate Fitness Value for Room Capacity 47

4.7 Calculations for Fitness Value of the Population 48

4.8 Part of Elitist Selection Coding 49

4.9 Assign Highest Fitness Value Coding 49

4.10 Select Class Slot Coding 50

4.11 Retrieve Duration and 	 Coding 50

4.12 Crossover for Lecturer Constraint Coding 51

4.13 Mutation Rate Coding 52

4.14 Randomly Select Class Slot Coding 52

4.15 Mutation Coding 1 53

4.16 Mutation Coding 2 54

4.17 Stopping Condition 1 55

4.18 Stopping Condition 2 55

xi

LIST OF APPENDICES

APPENDIX	 TITLE	 PAGE

A	 Gantt Chart	 70

xl'

CHAPTER 1

INTRODUCTION

An introduction of Faculty Timetabling using Genetic Algorithm (FTGA)

will be presented in this chapter. The purpose of this chapter is to discuss the

objectives, problem statement and scope of the project.

1.1	 Introduction

There are three typical of timetable clashing in a course timetable. They are

student's timeslot clashing, lecturer's timeslot clashing and 'classroom clashing.

These clashing happen are mostly because the timetable is scheduled manually. A

scheduling application will be developed to replace manual scheduling. By

implement Genetic Algorithm into the scheduling application, these clashing can be

minimized. Thus, an optimum timetable can be produce.

2

1.2 Problem Statement

Producing an optimum timetable for each course in a University's faculty is

not an easy task. Especially we need to concern about the constraints such as, limited

classroom and laboratory, number of lecturer and students. Most of the timetable

now is done by hand or with limited help of a simple administration system. The

timetable generate by current existing application contains a lot of clashing. Faculty

staff needs to solve the clashing manually. This will waste time and it is a problem

for staff to solve the clashing. It is quite often involves taking the previous year's

timetable and modifying it so it will work for the new semester [1]. Besides that, the

number of student increase every year, this mean it is not suitable to use previous

year timetable. The constraint for producing the timetable also must be reconsidered

every semester. New timetable must be producing every semester.

	

1.3	 Objectives

i. To develop a prototype in scheduling application for generates an

optimum timetable for a faculty.

ii. To apply genetic algorithm to produce an optimum timetable.

	

1.4	 Scope

i. The scope of this project is Faculty Comuter System and Software

Engineering.

ii. The applications that use to develop this system are Microsoft Visual

Studio 2010 and Microsoft SQL 2005 for the database

Total of 18 Lecturers and approximate 60 class slbts use in this project.
iv.	 Timetables will be generated based on the number of rooms.
V.	 This application is a standalone application.

3

1.5	 Thesis Organization

This thesis is divided into 6 chapters and each chapter is devoted to discuss

different issue in the project Below is a summary of the content for each chapter:

Chapter 1

Introduction to the project is presented along with the project's

problem statement, objectives of the project and the scopes of the

project

ii. Chapter 2

• Some research and literature related to the project are reviewed

and discussed in this chapter.

iii. Chapter 3

The methodology of the project development is discussed.

iv. Chapter 4

The implementation of the project is explained.

V.	 Chapter 5

The testing result of the system and discussion on the result are

presented.

vi.	 Chapter 6

Summary of the project is presented.

CHAPTER 2

LITERATURE REVIEW

2.1	 Introduction

This chapter will discuss about the background of the genetic algorithm and

the process in the algorithm. The schedule problem will also be discussed. Three

applications that develop using GA will be explained. The purpose of this chapter is

to increase the knowledge on how GA implements in scheduling.

2.2 Genetic Algorithm (GA)

The concept of Genetic Algorithm (GAs) is iiftroduced by John Holland, a

professor of psychology at the University of Michigan, in the early 1970s [2]. GA is

inspired by Darwin's Theory of Evolution.

According to Darwin's Theory, each individual need to struggle for survive.

For those with the "fitness" genetic traits will have greater chance to survive

compared with others [3 1 . This is call natural selection. With natural selection, great

genetic traits will be passed to the next generation. After a few generations, the

5

genetic traits will become dominant among the population. The population is evolved

based on "survival of the fittest" [3]. A top level description of this process is given

in Figure 2.1 [4].

Create a population of creatures.

Evaluate the fitness of each creature.

While the population is not fit enough:

{
Kill all relatively unfit creatures.

While population size <max:

Select two population members. 	 -

Combine their genetic material to create a new creature.

Cause a few random mutations on the new creature.

Evaluate the new creature and place it in the population.

Figure 2.1: Top Level of GAs

GA is a powerful optimization method. It can use to solve many problems

that are not easy to solve by other techniques. Examples of difficult problems, which

cannot be solved by "traditional" way, are NP probleths. NP stands for

nondeterministic polynomial and it means that it is possible to "guess" the solution

(by some nondeterministic algorithm) and then check it;. both in polynomial time [5].

GA start with generate an initial population of chromosome. Define the fitness

function and evaluate the chromosome with the fitness function. Chromosomes will

be selected from the evaluation. Then, the GA's operator will be applied on the

Chromosomes that have been selected to create new chromosomes. Replace the initial

population with the new population. Repeat the process until the fitness population is

created. The following figure 2.2 is the basic outline of the (ntic Algorithms [6].

}

I.

1. [Start] Generate random population of n chromosomes (suitable

solutions for the problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the

population

3. [New population] Create a new population by repeating following steps

until the new population is complete

• [Selection] Select two parent chromosomes from a population

according to their fitness (the better fitness, the bigger chance to be

selected).

• [Crossover] With a crossover probability cross over the parents to

form a new offspring (children). If no crossover was performed,

offspring is an exact copy of parents.

• [Mutation] With a mutation probability mutate new offspring at

each locus (position in chromosome).

• [Accepting] Place new offspring in a new population.

4. [Replace] Use new generated population for a further run of algorithm

5. [Test] lithe end condition is satisfied, stop, and return the best solution

in current population

6. [Loop] Go to step 2

Figure 2.2: Outlines of the Genetic Algorithms

The process is similar with Darwin's Theory of Evolution. GA purpose is to

produce the "fitness" solution for the problem.

JI

7

2.21 Encoding

GA starts with encoding the chromosome. Genetic algorithms code the

candidate solutions of an optimization algorithm as a string of characters which are

usually binary digits [7J.

Table 2.1: Encoding

Chromosome A 1011 0011

Chromosome B 0100 1101

Chromosome C 0110 0101

Chromosome 1001 0110

2.2.2 Fitness

Fitness can be define or compute by various way. The easiest way is by

adding one point to each gene in the chromosome that corresponding to the ideal.

The point that rated for each chromosome is better to transform into percentage. This

will make it easier for selection stage. Another way is define a fitness function and

evaluate each chromosome with the fitness function.

Table 2.2: Fitness

Chromosome Fitness
Chromosome A 9

Chromosome B 7

Chromosome C 5

Chromosome D 4

8

2.2.3 Selection

This process guides the evolutionary algorithm to the optimal solution by

preferring chromosomes with high fitness [8]. The most common techniques use in

selection is Roulette wheel selection. Roulette selection is based on the fitness of the

chromosome. Each chromosome represents a part of the pie. The chromosome with

the highest fitness will have the. largest area of the pie. The area of the pie is

corresponding with the chromosome's fitness. The roulette wheel will spin and the

chromosome that the arrow stops by will be selected. The arrow may stop by the

chromosome that with the lowest fitness value. It is not necessarily that all the

selected chromosomes are the fitness.

Figure 2.3: Roulette Wheel Selection

2.2.4 Crossover

Crossover is a process combining two selected chromosome genes to produce

new chromosome (offspring). The idea behind crossovlr is that the new chromosome

may be better than both of the parents if it takes the best characteristics from each of

the parents [9]. The gene exchange based on the crossover point which is randomly
chooses.

j.	 One Point Crossover

One Crossover point is randomly selected within the chromosome and

Interchanges the two parent chromosomes at this point to produce two new offspring.

Table 23: Qne'Point Crossover

Chromosome A 10011 0110

romosomeB 11011 1001

Offspring A 10011 1001

OflpringB 110110110

ii.	 Two Point Crossover

Two Crossover points are randomly selected within the chromosome and

interchanges the two parent chromosomes at these points to produce two new

offspring.

Table 2.4: Two Point Crossover

Chromosome A 10011 01110
Chromosome B 11011 11001

Offspring 10011 11110
Offspring 1101101001

Crossover occurs during evolution according to a user-definable crossover

probability [10].

10

2.2.5 Mutation

This is a background operator which allowing a large search space to be

explored and produces some random changes in various chromosomes [8]. Mutation

is a process where randomly choose one of the gene in the chromosome and change

it. This process happens on the offspring's gene after the crossover process with a

small probability which define by user. This probability should usually be set fairly

low. If it is set to high, the search will turn into a primitive random search [11]. The

purpose of the mutation is to ensure that the search algorithm is not trapped on a

local optimum [12].

Table 2.5: Mutation

Offspring 1001 1110

Mutated Offspring A 1011 1110

Offspring 11010001

Mutated Offspring B 1101 0101

2.3	 Scheduling Problem

Two Scheduling Problems will be briefly explained in this part which is

Nurse Scheduling Problem and Job-Shop Scheduling Problem.

2.3.1 Nurse Scheduling Problem

Nurse Scheduling Problem (NSP) is a scheduling task consists of assignment

of shifts and holidays to nurses for each day on the time horizon, taking into

consideration a variety of conflicting interests or objectives between the hospitals

and individual nurses [13]. NSP appear as a NP-hard problem. This is because the
high number of Constraints.

I

There are three shifts for a nurse which is morning shift, late shift and night

shift. The time period is depend on the hospital. Different hospital maybe varies.

Table 2.6: Type of Shift

Shift From Till

M Morning Shift 06:45 14:45

Late Shift 14:30 22:00

N Night Shift 22:00 7:00

No nurse will work all three shifts on the same day. A nurse doesn't do a

night shift followed by a morning shift the next day [13]. This is because nurses who

work rotating shifts had complaints concerning fatigue and this was highest in the

night shift [14]. When the nurse is not in good condition, it maybe affects their

efficiency. These are the basic constraint of the schedule.

Beside hard constraints and soft constraints need to be fulfill, there are other

constraint such as hospital constraints, work regulation constraints, and personnel

constraints.

There is some personnel nurse or night nurses that work in the hospitals.

They are different from the fuiltime nurses that work in hospital. They sign up

contract or work agreement with the hospital. This work agreement leads to the

formulation of the work regulation constraints. Following are some example of the

work regulation constraints [15]:

• Minimum/Maximum number of consecutive days

• Minimum/Maximum number of hours worked

• Minimum/Maximum number of consecutive free days

• Maximum number of assignments per day of the week

• Maximum number of assignments for each sHift type

• Maximum number of a shift type per week

• Number of consecutive shift types

12

• Assign 2 free days after night shifts

• Assign complete weekends

• Assign identical shift types during the weekend

• Maximum number of consecutive working weekends

• Maximum number of working weekends in a 4-week period

• Maximum number of assignments on bank holidays

• Restriction on the succession of shift types

• Patterns enabling specific cyclic constraints

• Balancing the workload among personnel

All of these constraints make the scheduling problem become complicated

and hard to solve. Many research paper that study NSP trying to solve the problem

using GA. Ahinad Jan, Masahito Yamamoto, and Azuma Ohuchi proposed a

research paper to solve NSP. The objective of the research is to investigate

difficulties that occur during solution of NSP using Evolutionary Algorithms, in

particular Genetic Algorithms [13].

2.3.2 Job Shop Scheduling Problem

Job-shop is a system that process n number of tasks on in number of

machines [16]. In job-shop scheduling problem (JSSP) environnent, there are j jobs

to be processed on in machines with a certain objective function to be minimized.

JSSP with j jobs to be processed on more than two machines have been classified as

a combinatorial problem. They cannot be formulated as a linear programming and no

simple rules or algorithms yield to optimal solutions 4n a short time [16].

The job-shop scheduling problem (JSSP) can be described as a set of n jobs

denoted by Jj where] =1, 2,..., n which have to be processed on a set of in machines
denoted by M/cwhere k 1, 2,..., m. Operation of] th job on/the kth machine will be
denoted by Ojk with the processing time Pjk [16]. Makespan is the time that needed

13

to complete all the process. The objective is to determine the schedule which

minimized the makespan.

In 1976 Garey provided a proof that this problem is NP-complete for m>2,

that is, no optimal solution can be computed in polynomial time for three or more

machines [17].

2.4	 Existing Genetic Algorithm Application

Three existing application using genetic algorithm will be briefly explain.

These applications are Traveling Salesman Problem application, GA Class Schedule,

and Chess Tournament Management System.

2.4.1 Travelling Salesman Problem Application

Travelling Salesman Problem (TSP) is one of the NP-hard problems. The

problem is to find the shortest possible path, given N vertices so that each vertex is

visited exactly once [18]. This TSP application is developed using Genetic

Algorithm. Figure 2.4 shows the interface of the application.

Fe GA Help

Ceevokkm
• I

POPUWjmx

1100

Elte

fiiiation:
H

Hetáiicz
-J
-i-I

Ciosovef (Z
195	 :d

Selection:

! Removetwi

Sian

Stop

Oe&

Figure 2.4: Interface of TSP Application

First, click on the gray part of the application to produce red dots. The

information such as population, migration, percentage of crossover and percentage of

mutation are initially set. User can change these information be they start to solve the

problem. The result is shown below.

The shortest path to travel all the red dots and return to the starting point is
shown by the blue line. Figure 2.5 shows the result if the shortest path.

14

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

