5

Metal-organic and covalentorganic frameworks for CO₂ capture

Supriyanka Rana^{1,2,3}, Eshita Sharma^{4,5}, P. Mishra⁶, L. Singh^{7,8}, Z.A. Wahid¹, R. Gupta² and Swati Sharma⁹

¹Faculty of Engineering Technology and Earth Resources, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kauntan, Pahang, Malaysia ²Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India ³Indira Gandhi Medical College Shimla, Himachal Pradesh, India ⁴CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India ⁵Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India ⁶Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong ⁷Department of Environmental Science, SRM University, Amravati, Andhra Pradesh, India ⁸Department of Chemistry and Industrial Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, India ⁹University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India

5.1 Introduction

Global efforts to counteract CO₂-inflicted climate change have incited interest in versatile emissions mitigation technologies. The CO₂ sequestration and catalytic conversion using porous metal-organic framework (MOF)- and covalent-organic framework (COF)-based materials are vital strategies to counteract the escalating CO₂ emissions (Siegelman et al., 2021), a chief prerequisite to achieve sustainable living (Wigley et al., 1996). These porous materials have a wide range of industrial applications such as sorbents, filters, membranes, and catalysts (Zhao, 2016). Function-led designing of novel porous materials like MOF and COF materials has established their prominent role in processes such as molecular separation (CO₂ capture/encapsulation) and catalysis (catalytic conversion into valuable renewable low-carbon fuels/products). Although the largest contribution was made by MOF materials in the field of CO2 capture/conversion so far, COF materials are still developing