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A B S T R A C T

Considering the rapidly evolving microgrid technology and the increasing complexity associated with integrating 
renewable energy sources, innovative approaches to energy management are crucial for ensuring sustainability 
and efficiency. This paper presents a novel Fuzzy Logic-Based Particle Swarm Optimization (FLB-PSO) technique 
to enhance the performance of hybrid energy management systems. The proposed FLB-PSO algorithm effectively 
addresses the challenge of balancing exploration and exploitation in optimization problems, thereby enhancing 
convergence speed and solution accuracy with robustness across diverse and complex scenarios. By leveraging 
the adaptability of fuzzy logic to adjust PSO parameters dynamically, the method optimizes the allocation and 
utilization of diverse energy resources within a grid-connected microgrid. Under fixed grid tariffs, the investi
gation demonstrates that FLB-PSO achieves grid power purchase and battery degradation costs of $1935.07 and 
$49.93, respectively, compared to $2159.67 and $61.43 for the traditional PSO. This results in an optimal cost of 
$1985.00 for FLB-PSO, leading to a cost saving of $236.09 compared to the $2221.10 of PSO. Furthermore, 
under dynamic grid tariffs, FLB-PSO incurs grid power purchase and battery degradation costs of $2359.20 and 
$64.66, respectively, in contrast to $2606.47 and $54.61 for PSO. The optimal cost for FLB-PSO is $2423.86, 
representing a cost reduction of $237.23 compared to the $2661.08 of PSO. The FLB-PSO algorithm proficiently 
manages energy sources while addressing complexities associated with battery storage degradation. Overall, the 
FLB-PSO algorithm outperforms traditional PSO in terms of robustness to system dynamics, convergence rate, 
operational cost reduction, and improved energy efficiency.

1. Introduction

1.1. Study background

There is global consensus on increasing the proportion of renewable 
energy-based power generation in the overall energy mix, shifting to a 
more environmentally friendly power generation [1]. Over the past 
three decades, there has been substantial growth in deploying renewable 
energy sources like solar photovoltaic, wind, hydroelectricity, and 
biomass. Governments and organizations are offering incentives to 
promote the adoption of renewable energy technologies to combat 
global climate change, decrease greenhouse gas emissions, and improve 

energy security [2,3]. The initiatives have resulted in significant ad
vancements in incorporating renewable energy sources into the existing 
power grids. This increasing integration of renewable energies reduces 
reliance on fossil fuels, addresses air pollution concerns, and promotes 
sustainable energy supply to meet continuous demand growth. Expan
sion of renewable energy has significantly contributed to diversifying 
energy sources, improving resilience, and creating economic opportu
nities for stakeholders [4].

However, the increasing incorporation of renewable energy sources 
(RES) such as solar PV and wind power into the existing grid network 
presents challenges due to their irregular nature and wide distribution. 
Nonetheless, progress in energy storage technologies, power interface 
advancement, smart grid infrastructure, and advanced energy control 
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strategies offer prospects for tackling these problems [3,5]. Adaptable 
grid management approaches are crucial for ensuring the dependable 
and effective integration of fluctuating renewable energy resources. The 
emergence of different energy management systems (EMS), including 
demand response, demand-side management, and utility-side energy 
regulation, have been playing significant roles in facilitating the seam
less accommodation of renewables with minimal impact on grid sta
bility. These advanced strategies are fundamental for maximizing the 
advantages of hybrid renewable energy, decreasing greenhouse gas 
emissions, and enhancing energy security. Developing flexible energy 
management strategies is essential as renewable RES becomes more 
widespread in the power system. These strategies must ensure a reliable 
energy supply while maintaining efficient demand management and 
optimizing the economic utilization of both renewable generation sys
tems and grid power [6].

Recent developments in EMS technology aimed at maximizing the 
economic advantages of RES now employ advanced, sophisticated 
optimization techniques. The popular methods cover the linear and non- 
linear programming methods, metaheuristic optimization algorithms, 
machine learning, and other artificial intelligence (AI) techniques for 
driving progress and innovations in EMS [7,8]. These methods have 
been adept at enhancing the efficiency and effectiveness of energy 
management strategies through real-time monitoring, predictive ana
lytics, and adaptive control measures. Utilizing these innovative EMS 
tools in standalone and grid-connected hybrid energy systems has 
contributed significantly to improved grid flexibility, responsiveness, 
and system performance enhancement, as well as optimizing multiple 
energy systems regardless of their inherent stochastic nature. Deploy
ment of efficient EMS has also contributed to grid stability and energy 
cost reduction, promoting hybrid energy deployment for peak load 
management while addressing battery energy storage system (BESS) 
degradation issues. Additionally, adopting EMS solutions has facilitated 
a shift towards a more sustainable and robust energy sector. These so
lutions provide a dynamic platform that aligns demand with supply, 
maximizes renewable energy utilization, and mitigates excessive 
generation.

To effectively fulfill energy management requirements in hybrid 
energy systems, EMS optimization methods must be capable of meeting 
the technical and operational challenges associated with the inherent 
features of diverse energy resources and deployment environments. 
Operationally, EMS deployment faces hurdles concerning regulatory 
compliance, cybersecurity, and stakeholder acceptance [9]. On the 
technicality, hybrid energy systems possess inherent complexity 
involving various dynamic and stochastic processes, hindering the 

development of accurate and reliable EMS models. Hybrid energy sys
tems often incorporate a diverse mix of renewable and non-renewable 
energy sources, grid systems, storage solutions, and irregular con
sumption patterns [10,11]. Therefore, designing EMS algorithms to 
effectively manage these variabilities requires substantial optimization 
capability, scalability, adaptability, robustness, and computational ef
ficiency. Advanced EMS optimization algorithms aid the seamless inte
gration of various energy sources, such as solar PV, wind, batteries, and 
the grid, while managing dynamic grid tariffs and demand response 
programs for cost-effective energy management and stability. EMS al
gorithms manage renewable generation variability and grid usage, 
optimize battery management, and enhance overall energy efficiency to 
maximize economic benefits. More importantly, they play a significant 
role in real-time decision-making, system scalability, flexibility, and 
accommodating any possible system expansions.

An EMS algorithm is designed to fulfill multiple tasks and objectives, 
often involving conflicting goals and unique operational constraints, 
making it challenging to develop a generally accurate and comprehen
sive model. To address these complexities, continuous research on 
advanced optimization algorithms becomes essential. In recent times, 
the most researched EMS algorithms include but are not limited to 
Particle Swarm Optimization (PSO), Genetic Algorithms (GA), Fuzzy 
Logic Control (FLC), Tabu Search (TA), and harmony search algorithm 
[10–13]. These algorithms are known for handling various levels of 
hybrid energy systems’ linear, nonlinear, and dynamic nature. Never
theless, they often face challenges such as convergence issues, compu
tational complexity, and the need for careful parameter tuning. They 
must be carefully designed to handle uncertainties and highly stochastic 
environments effectively while ensuring scalability and robustness 
across various conditions. Additionally, integrating these algorithms 
with existing systems and balancing multi-objective optimization 
problems can be complex and time-consuming [9–11]. These challenges 
called for advanced computationally efficient EMS algorithms to meet 
the essential demands in hybrid energy systems with their inherent 
dynamic features.

In the past two decades, hybridization approaches that combine 
different algorithms have shown significant promise in enhancing the 
performance of EMS algorithms. These hybrid techniques leverage the 
strengths of various optimization methods to address the limitations 
innate in individual algorithms. For instance, combining PSO with ANN 
can improve convergence speed and solution accuracy by dynamically 
adjusting PSO parameters ANN [14]. Similarly, integrating GA with PSO 
can enhance exploration and exploitation capabilities, leading to more 
robust and efficient solutions [15]. Hybrid methods have effectively 
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kWh kilowatt-hours
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FLB-PSO fuzzy logic-based particle swarm optimization
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managed the complexities of real-time decision-making, scalability, and 
adaptability in diverse and dynamic hybrid energy management sys
tems. Combining multiple objectives, such as cost reduction, energy 
efficiency, and system reliability, hybrid algorithms offer more 
comprehensive and effective solutions for modern energy management 
challenges.

The PSO is considered one of the most extensively investigated 
optimization algorithms across diverse applications in recent years [10]. 
The traditional PSO often faces fundamental challenges that impact its 
performance in complex optimization problems, notably premature 
convergence, where the swarm rapidly converges around a local opti
mum, potentially missing the global one. More importantly, selecting 
appropriate values for PSO parameters, such as inertia weight and 
cognitive and social coefficients, is critical for the algorithm’s efficient 
performance and, therefore, requires careful tuning to balance explo
ration and exploitation effectively [11,16]. Hybridizing PSO with other 
optimization methods, such as metaheuristics and machine learning 
techniques, can achieve effective parameters tunning to enhance its 
exploration and exploitation capabilities for better solution quality and 
robust optimal performance. These gaps in the literature underscore the 
necessity to advance further PSO variant methods that can effectively 
adapt the optimization process parameters in highly dynamic hybrid 
energy systems environment.

This study proposes an hybrid fuzzy logic-based PSO (FLB-PSO) en
ergy management system algorithm for optimizing hybrid solar PV 
generation, storage battery, and the grid system while meeting the load 
demand with minimum operational cost. By hybridizing PSO and fuzzy 
logic inference, the EMS aims to minimize energy costs and maximize 
operational efficiency through optimal battery charging/discharging 
scheduling. The EMS operation effectively limits grid power purchases 
for optimal cost and enhanced battery management procedures, 
improving performance and extending the battery’s lifespan for eco
nomic benefits. The Fuzzy logic controller (FLC) is employed to adjust 
the PSO cognitive and social acceleration coefficient parameters 
dynamically, balancing the algorithm’s exploration and exploitation to 
provide a more reliable, accurate, and robust solution. The FLC adap
tation is based on formulated fuzzy rules between the PSO process 
relative error and particle diversity as inputs, with the cognitive and 
social coefficients as outputs, resulting in adaptive PSO parameters 
suitable for an improved solution quality in a dynamic hybrid energy 
system environment. The proposed approach ensures the algorithm’s 
rapid convergence by effectively varying the PSO acceleration factors 
according to the optimization progress. Additionally, the ability of the 
algorithm to adapt to changes within the optimization landscape en
hances the algorithm’s robustness across complex problem cases.

The key contributions of this study are as follows.

• Hybridizing fuzzy logic with the PSO algorithm to dynamically adapt 
PSO parameters during optimization to improve solution quality.

• Leveraging multiple PSO parameters as feedback to enhance the al
gorithm’s exploration and exploitation capabilities, effectively 
addressing the challenges of excessive exploration and premature 
convergence.

• Developing the FLB-PSO EMS algorithm that adjusts its behaviour 
based on problem characteristics, ensuring effective solution quality 
across diverse and complex applications and changing system 
dynamics.

• Developing an EMS algorithm that exhibits greater stability and 
robustness in exploring larger search spaces and refining solutions.

The remaining part of the paper is structured as follows: Subsection 
1.2 provides background information and a review of some popular 
optimization algorithms focusing on metaheuristics and hybrid optimi
zation techniques. Section 2 explains the proposed hybrid FLB-PSO al
gorithm, covering the system modelling and implementation. Section 3
presents the performance evaluation results of the proposed algorithm 

and the discussion. Finally, Section 4 presents the conclusions and rec
ommendations for future research work.

1.2. Literature review

Energy management optimization techniques are crucial in 
improving energy systems’ efficiency, reliability, and sustainability 
across various domains, including power generation, distribution, and 
consumption. These techniques encompass diverse methods and algo
rithms to optimize the allocation, utilization, and control of energy re
sources to meet operational objectives while minimizing costs and 
environmental impacts. From conventional optimization algorithms to 
advanced metaheuristics and machine learning-based approaches, en
ergy management optimization techniques offer versatile solutions in 
addressing hybrid energy systems’ complex and dynamic nature [17]. 
This subsection discussed standard optimization techniques’ funda
mental concepts, challenges, and applications.

The energy optimization process involves systematically analyzing, 
modelling, and deploying energy optimization methods to enhance en
ergy resources’ operational efficiency and performance. Popular energy 
optimization techniques leverage classical mathematical algorithms, 
statistical methods, and advanced computational tools to address 
various aspects of energy system management, comprising but not 
limited to generation scheduling, demand-side management, grid 
management, renewable integration, and resource allocation [11] 
Considering component factors such as energy demand, energy supply, 
costs, energy constraints, and environmental conditions, energy man
agement optimization techniques enable informed decisions that opti
mize the utilization of energy resources to achieve desired objectives.

In recent times, classical optimization algorithms such as the 
gradient descent approach, Newton’s method, simplex method, 
gradient-based nonlinear programming, and mixed-integer linear pro
gramming methods have been extensively investigated in solving opti
mization problems [8]. However, while useful in many cases, these 
conventional methods have intrinsic restrictions that limit their appli
cability and performance in handling complex optimization problems. 
For example, gradient descent, a popular first-order optimization tech
nique, may struggle with non-convex and multimodal objective func
tions, frequently converge to local optima, and has a slow convergence 
rate [18,19]. Similarly, Newton’s method, a second-order optimization 
procedure, requires a differentiable objective function and may experi
ence convergence or numerical instability in high-dimensional or 
ill-conditioned optimization situations. These restrictions limit the 
effectiveness of gradient-based approaches in dealing with non-smooth 
or discontinuous objective functions, rendering them unsuitable for 
complex optimization problems [8,20].

There is continuously growing complexity in energy management 
problems necessitating the development of advanced control strategies, 
such as incorporating advanced computational intelligence and meta
heuristic optimization algorithms. Also, hybrid approaches are 
increasingly being explored to achieve satisfactory solutions profi
ciently. Among the popular intelligent methods applicable in EMS are 
rule-based approaches such as fuzzy logic, expert systems, and decision 
trees [21–23]. these EMS methods employ predefined rules to regulate 
energy distribution within the hybrid energy systems. Such rules pri
oritize specific energy sources at certain times, for instance, the use of 
more solar PV energy during daylight hours and switch to wind energy 
at nighttime or grid electricity during low renewable generation [24]. 
Rule-based EMS provides simplicity, cost-efficiency, and customization 
options that facilitate easier implementation and comprehension than 
some of the advanced methods [25]Nevertheless, such strategies alone 
are incapacitated to dynamically adjust to the various factors affecting 
the hybrid energy system’s components and operation. They frequently 
struggle to adapt to changing conditions, learn adequately, and improve 
without manual intervention.

To address some of the limitations of rule-based, heuristic 
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optimization techniques are progressively explored in energy manage
ment optimization, offering effective solutions to the inherent com
plexities and uncertainties. Techniques such as GA, SA, TS, and PSO 
have demonstrated the capability to tackle the dynamics of hybrid en
ergy systems by efficiently exploring solution spaces [10,11]. Their 
dynamic operation enables adaptability in EMS, allowing them to 
respond promptly to fluctuations in energy demand, supply, and market 
conditions. At the same time, their scalability facilitates the manage
ment of small to medium-scale systems. By balancing exploring new 
solutions with exploiting known ones, heuristic algorithms are crucial in 
optimizing resource utilization and adhering to operational constraints. 
Incorporating probabilistic approaches and robust optimization strate
gies, these techniques have provided reliable EMS solutions under mild 
uncertain conditions [17].

However, applying heuristic methods in hybrid energy management 
optimization faces several challenges. Their performance is often highly 
dependent on parameter choices and initial conditions, which can lead 
to suboptimal solutions if not carefully tuned [8,10]. These methods 
often struggle with scalability, especially in complex systems with 
numerous variables and constraints, resulting in increased computa
tional demands and longer processing times [10]. Heuristic approaches 
typically offer good solutions but are not guaranteed optimal, as they do 
not always exhaustively search the solution space. This limitation can 
lead to potential inefficiencies or missed opportunities for better optimal 
or quality solutions. Furthermore, balancing exploration and exploita
tion remains a significant challenge; excessive exploration can lead to 
longer convergence times, while excessive exploitation can cause pre
mature convergence to suboptimal solutions. Moreover, heuristic 
methods often lack robustness and perform inconsistently under varying 
conditions, necessitating frequent adjustments or updates to maintain 
effectiveness.

Hybrid methods have emerged as a promising approach to over
coming prevailing challenges with independent heuristic methods and 
enhancing the accuracy of optimization solutions in energy management 
systems. Integrating multiple optimization techniques combines the 
strengths of different algorithms to address individual limitations and 
achieve a more robust and efficient solution. This synergetic approach 
leverages different heuristic techniques’ exploratory and exploitation 
power alongside advanced methods, creating a more adaptable and 
comprehensive optimization framework. The hybridization approach 
has enhanced performance through dynamic parameter tuning, 
sequential hybridization, parallel hybridization, adaptability, and 
learning to handle uncertainties better and improve adaptability while 
addressing multiple objectives simultaneously [8,10,26]. Additionally, 
these methods often utilize multi-scale search strategies and adaptive 
mechanisms to refine the search process in response to real-time feed
back, allowing for more accurate and robust solutions. This synergetic 
approach helps overcome individual algorithms’ limitations, leading to 
more efficient and effective optimization in complex and dynamic 
environments.

Advanced hybrid optimization algorithms cut across strategies 
automated parameter tuning, online adaptive parameter tuning, and 
problem-specific adaptation for effective optimization in complex 
problems. Automated parameter tuning employs techniques such as 
combined metaheuristic algorithms, rule-based methods, and machine 
learning to dynamically adjust parameters, enhancing the adaptability 
and effectiveness of optimization processes [15,16,27]. Studies in this 
domain have demonstrated that such methods improve convergence and 
solution quality in energy management systems. These tailored methods 
manage nonlinearities and fluctuations in renewable energy sources, 
contributing to improved energy management efficiency and cost 
reduction, thus advancing the capabilities of hybrid optimization tech
niques in modern EMS. Largely, hybrid optimization approaches have 
shown great promise in addressing the complex stochastic nature of 
energy sources found in renewables, handling multi-objective optimi
zation problems for optimal Pareto solutions, and advancing toward 

more intelligent and resilient energy management practices. Therefore, 
research on parameter tuning within hybrid energy system optimization 
is essential for developing robust, efficient, and adaptable EMS algo
rithms that meet the technical and operational challenges of diverse 
energy resources and deployment environments.

2. Methodology

This study’s proposed FLB-PSO EMS algorithm aims to manage an AC 
microgrid system comprising the conventional grid, which provides 
reliable power, and the solar PV source that supplies much of the day
time energy needs. The EMS is a vital component of the hybrid energy 
system that optimally manages the power generation sources, storage 
units, and electricity distribution to various loads, considering fixed and 
dynamic time-of-use (TOU) grid tariffs.

(a) System Configuration

As depicted in Fig. 1, the proposed microgrid system configuration 
incorporates multiple energy sources, power interfaces, and loads. The 
BESS balances the demand-supply dynamics, stores excess renewable 
energy generation, and reduces operational costs during peak hours. The 
solar PV and BESS units are connected to a DC bus, which is then con
nected to an AC bus via appropriate power electronic converters, as 
illustrated in Fig. 1. The AC distribution bus voltage is designed for an 
11 kV, 50 Hz system.

(b) Load and Weather Profile

The study area is residential in Ilorin town, Kwara State, Nigeria, 
with coordinates 8.5373◦ N, 4.5444◦. The location presently gets its 
total supply from the conventional grid. Considering the abundance of 
solar irradiance providing 5.5 kWh/m2 energy in a day [28], incorpo
rating solar PV systems to reduce energy costs becomes a viable option. 
The location, with around 750 housing units, primarily houses con
sumers with diverse energy demands and facilities, including cooling, 
heating, home appliances, lighting, and electronic equipment. To ac
quire the daily load profile, the daily consumption pattern over a month 
was recorded for three types of housing units, namely: 3-bedroom, 
2-bedroom bungalow flats, and 4-bedroom duplex flats. The electrical 
load data was collected using a standard Fluke 434-II Power Quality and 
Energy Analyzer with hourly resolution. The collected energy data were 
averaged to obtain daily hourly demand, which was, in turn, scaled up 
for the total 750 housing units in the community, as shown in Fig. 2. The 
daily average minimum load demand was 458 kWh, and the peak energy 
demand stood at 957 kWh.

The location daily solar irradiance and ambient temperature data for 

Fig. 1. Microgrid architecture.
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some months of the year were obtained from the Photovoltaic 
Geographical Information System (PVGIS) hosted by the European 
Commission [29]. Based on satellite data and reanalysis, the average 
solar irradiance data comprised average values for every hour from 2001 
to 2024. Fig. 3 shows the months with the highest and lowest daily 
average direct solar irradiance (W/m2) on a 22 ◦C inclination, consid
ered the optimum tilt for the location [30], and the ambient temperature 
(◦C) for the same period.

2.1. Modelling of microgrid system

The mathematical modelling of a microgrid encompasses the 
development of detailed equations and expressions that capture the 
physical and operational characteristics of various components. This 
stage involves modelling the generation sources, including renewable 
and conventional generators, storage systems, loads, and control stra
tegies that regulate electricity flow within the microgrid. The primary 
objective is to analyze the microgrid’s behaviour under diverse oper
ating conditions, optimize its performance, and ensure stability, reli
ability, and efficiency.

(a) Grid System Modelling

The grid electricity generation at any time is represented by Pg(t) and 
modelled as a function of dynamic tariff, capturing the interaction be
tween electricity pricing and the operational decisions of power gener
ation facilities. The instantaneous operational cost C

(
Pg, t

)
,while 

considering the dynamic tariff T(t) denoting the price at the time (t) is 
represented by (1): 

C
(
Pg, t

)
=Pg(t).T(t) (1) 

(b) Solar PV Modelling

The mathematical modelling of solar PV output power generation 
involves key components like the solar irradiance on the PV panel, the 
solar cell’s efficiency, the impact of temperature, and other environ
mental factors. The goal of the model is to predict the electrical power 
output accurately (PPV) from solar PV installation under various con
ditions. The solar PV power generation is expressed as (2) [26,31]: 

PPV = η.A.GT (2) 

where A is the area of the PV panel (m2), and GT is the global solar 
irradiance incident on the PV panels (w/m2).

Their operating temperature influences the PV cell’s performance. 
The efficiency (η) decreases as the cell temperature increases above the 
standard test conditions (STC). The temperature effect is accounted for 
as (3): 

η= ηSTC − β⋅(Tcell − 25) (3) 

Where ηSTC is the efficiency at STC (25 ◦C), β is the temperature coef
ficient of efficiency (%/◦C), and Tcell is the PV cell temperature in ◦C. The 
actual operating temperatures of the PV cell usually vary and are mostly 
higher. The cell temperature can be estimated using the following for
mula (4) [26,31]: 

Tcell =Tamb +(TNOC − 20)⋅GT

/800 (4) 

Fig. 2. Typical average daily load profile.

Fig. 3. Monthly daily average solar irradiance (W/m2) and temperature (degree ◦C).
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where Tamb is the ambient temperature (◦C), and TNOC is the nominal 
operating cell temperature (◦C).

(c) Battery storage Modelling

The BESS operates in bidirectional mode with the charge and 
discharge modes power expressed as follows (5) [26]: 

Pb(t)= (1 − u)Pb.chrg(t) + uPb.disch(t) (5) 

where, Pb.chrg and Pb.disch are the battery power during charge and 
discharge mode and state

u ∈ [0, 1] is specified by the mode of operation as: 

u=
{

1; discharge mode
0; charge mode 

The charging and discharge power are limited within the stated 
conditions as follows: 
⃒
⃒Pb.chrg

⃒
⃒ ≤ Pb.chrg.max 

|Pb.disch| ≤ Pb.disch.max 

where, Pb.chrg.max and Pb.disch.max are the maximum allowed power in the 
charge and discharge modes.

The battery state of charge (SoC) characterizes the level of charges 
stored in the battery at any time (t). If Ic(t), Id(t) are the charge and 
discharge currents current flowing into and out of the battery, respec
tively, and ηc, ηd are the losses during the charge and discharge pro
cesses. The battery SoC can be estimated from the relation (6): 

SoC(t)= SoC(t − Δt) + Δt(ηc.Ic(t) − (1 / ηd).Id(t)) (6) 

where SoC(t − Δt) represents the SoC at the previous time step and Δt is 
the time step between successive updates. The common constraint in the 
battery operation is expressed as: 

SoCmin ≤ SoC(t) ≤ SoCmax 

where, SoCmin and SoCmax are the minimum and maximum allowable 
battery state of charge specified based on the battery characteristic.

2.2. Problem formulation

The formulated multi-objective energy management optimization is 
centered around minimizing total energy cost in the microgrid system by 
limiting the grid purchase while ensuring low battery degradation, as 
presented in (7): 

Min Ctotal =min
∑t=24

t=0
CG(t)+Cb.deg(t) (7) 

where Ctotal is the total system generation cost, CG(t) represents the grid 
power cost and Cb.deg(t) is the battery degrading cost. To achieve mini
mum operating cost, both the grid power cost under fixed and dynamic 
tariffs and the battery degradation cost are minimized. The formulated 
objectives around the two main factors are further explained as follows:

(a) Grid Power Cost Minimization

The grid cost with dynamic time-based tariffs varies according to the 
time of day and demand level, influencing consumer behaviour and how 
the utility operates for generations. The idea is to encourage using 
renewable energy when it’s abundant and inexpensive. The objective of 
this study is to minimize the generation usage cost while meeting the 
demand and adhering to grid reliability standards (8): 

CG(t)=Pg(t).T(t) (8) 

min
∑i=24

i=0
CG(t)

subject to
∑i=24

i=0
Pgi(t,T(t))=Di(t,T(t))

where, D(t,T(t)) is the demand functions and Pg(t,T(t)) is the generation 
function.

(b) Battery Degradation Cost Minimization

The battery degradation minimization is considered one of the multi- 
objective functions in the study to extend the battery’s useful lifespan. It 
indicates the decline in the performance and capacity of a battery over 
time due to the charge-discharge cycle, depth of discharge (DoD), 
temperature, SoC, and charge rate. The battery power cost is modelled 
as expressed in equation (9) [32–34]: 

CPb (t)=Pb(t)Cbd(t) (9) 

where Cbd(t) is the battery kWh degradation cost, which is a fcost(CN,CDoD,

CT, CSoC, CCR). The CN,CDoD,CT ,CSoC,CCR are battery degradation costs 
due to the number of charge-discharge cycles (N), depth of discharge 
(DoD), temperature (T), state of charge (SoC), and charge rate (CR) 
respectively. 

Cbd(t)=Ccycle(N,DoD,CR) + Ccalendar(t, SoC,T) (10) 

The Ccycle and Ccalendar are cycle and calendar-dependent costs given 
by (11) and (12), respectively [32–34]. 

Ccycle = k.N.(DoD)α
.exp

(
− Ea

RT

)

. CRβ (11) 

Ccalendar =m.t.exp
(
− Ea

RT

)

.SoCγ (12) 

where k and m are combined pre-exponential factors that include unit 
cost coefficients, then α, β, γ are empirical constants describing the 
sensitivity of degradation to DoD, CR, and SoC, respectively, and Ea and 
R are the activation energy and universal gas constant, respectively.

(c) Microgrid Constraints

The formulated multi-objective optimization problem is solved 
considering equality and non-equality constraints stated as follows:

Equality constraint: 

PL(t)=PPV(t) + Pb(t) + Pg(t) (13) 

Inequality constraint:
SoC constraints: SoCmin ≤ SoC(t) ≤ SoCmax.
Battery energy constraint: Eb.min ≤ Eb ≤ Eb.max.
Grid power constraint: Pg.min ≤ Pg ≤ Pg.max.
Solar PV constraints: PPV.min ≤ PPV ≤ PPV.max.

Table 1 
Battery operational modes.

Operational 
mode

Battery 
threshold 
(kWh)

SoC threshold Charge rate constraint

Mode 1 50–450 10% ≤ SoC ≤ 90% dSoC
dt

≤ − kheavy

Mode 2 125–375 25% ≤ SoC ≤ 75%
− kmod.max ≤

dSoC
dt

≤ −

kmod.min
Mode 3 200–350 40% ≤ SoC ≤ 70% dSoC

dt
≤ − kslow
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To limit the battery cycling rate for an improved battery life span 
while ensuring minimum battery degradation, the battery can be oper
ated in three different modes between the SoCmin and SoCmax. As pre
sented in Table 1, each operating mode has a different discharge power, 
with kheavy , kmod.max , kmod.min and kslow defined as constants representing 
heavy, moderate maximum, moderate minimum and slow rate of 
discharge in their respective mode.

2.3. Multi-objective function optimization

In this work, a multi-objective FLB-PSO algorithm is developed for 
energy scheduling in microgrid systems to optimize the energy utiliza
tion of grid, battery, and solar PV systems. The objective is to minimize 
the grid power cost and battery degradation cost while taking advantage 
of solar PV generation. Fig. 4 block diagram presents the structure of the 
proposed optimization algorithm. The inputs to the FLB-PSO are the 
hourly instances of solar PV generation, the dynamic grid cost, and the 
battery power capacity and constraints. The FLB-PSO algorithm fulfills 
the energy demands from the PV generation augmented by the battery 
and grid, ensuring optimal battery schedule and grid cost. The FLB-PSO 
optimization is a variant of PSO where the fuzzy logic controller (FLC) 
dynamically adjusts the PSO acceleration coefficients parameters c1 and 
c2 based on real-time process feedback and problem characteristics, 
leading to improved optimization performance and accuracy. The pro
cess involves fuzzifying crisp input values into fuzzy sets using mem
bership functions (MF), applying fuzzy logic rules by an inference engine 
to determine fuzzy outputs, and defuzzification that converts these 
outputs back into crisp values for adjusting PSO parameters.

A PSO is a computational method that offers the advantages of 
implementation simplicity, as well as quickly converges to a reasonable 
solution for complex problems. The solution starts by randomly initial
izing the positions and velocities of all particles in the swarm (14), (15). 
The next stage involves the evaluation of each particle using the 
objective function and keeping track of the best position visited, referred 
to as the local best pbest . The current position of a particle is updated once 
it has a better fitness value than its previous best, and the best position 
across the swarm is stored as the global best position gbest . 

Position : xi =(xi1, xi2,…, xiD) (14) 

Velocity : vi =(vi1, vi2,…, viD) (15) 

where xi is particle position, D is the dimensional search space and vi is 
velocity usually initialized randomly.

At each iteration, the particles update their velocities and positions 

according to the relation (16) followed by a position update with rela
tion (17). The final stage checks for the termination criteria if fulfilled, 
and if not, then the particle is reevaluated, velocity and position are also 
updated, and the best position visited by each particle becomes the new 
local best. In contrast, the best position among all particles becomes the 
new global best. This cycle continues until the stopping criteria are met. 

vi(t+1)=ωvi(t)+ c1r1

[
pbest(i) − xi(t)

]
+ c2r2

[
gbest(i) − xi(t)

]
(16) 

xi(t+1)= xi(t) + vi(t+1) (17) 

where:
ω is inertial weight that controls the impact of the previous velocity 

on the current
c1 and c2 are cognitive and social acceleration coefficients respec

tively
r1 and r2 are stochastic random numbers between 0 and 1
t is the current iteration

2.3.1. FLB-PSO feedback parameters
The PSO process solution rate of improvement or convergence rela

tive error, and the swarm particle diversity parameters served as feed
back input into the Fuzzy logic controller. The feedback mechanisms 
monitor the algorithm performance, and the FLC uses the measured 
values to adjust the PSO parameters accordingly. The process stages 
presented in Fig. 5 start by crisping the input feedback parameter, then 
to the fuzzy inference system and crisp outputs. The acceleration co
efficients, including the cognitive (c1) and social (c2) factors are adjusted 
based on the global best convergence relative error (RE) and swarm 
diversity average distance (AD) based on the FLC’s predefined rules. The 
c1 encourages the exploitation of the search space based on the particle’s 
experience. A higher value means that particles are more influenced by 
their memory, potentially leading to faster convergence while increasing 

Fig. 4. Proposed FLB-PSO optimization structure.

Fig. 5. Fuzzy logic controller with PSO parameters.
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the risk of getting stuck in local optima. c2 facilitates the utilization of 
the swarm’s collective knowledge, promoting convergence towards 
promising areas of the search space or the global best position found by 
the swarm. Like the cognitive coefficient, a higher value accelerates 
convergence, but can also lead to premature convergence if too high.

The metric for evaluating the convergence rate of PSO optimization 
algorithms is the convergence speed, measured using fitness value pro
gression by tracking the progression of the best fitness value achieved by 
the swarm over generations or iterations. In this work, the rate at which 
the algorithm converges was calculated by analyzing the change in 
fitness values over successive iterations as a relative error (RE). The RE 
was computed using the difference between consecutive fitness values as 
expressed in (18). A positive relative error suggests particle divergence, 
while a negative relative error indicates convergence progress. 

RE=
Fitnesscurrent − Fintnessprevious

Fitnesscurrent
(18) 

The PSO diversity is measured by population spread, calculating the 
dispersion of particles in the search space. Metrics such as standard 
deviation, variance, and entropy of particle positions, along with fitness 
gradient and fitness variance, are used to quantify swarm diversity. In 
this work, the average distance (AD) metric was used to measure the 
swam diversity as feedback. It involves computing pairwise distances 
between particles and finding the average to indicate their spread out in 
the search space. The Euclidean distance to every other particle in the 
swarm is computed for each particle. In a two-dimensional space, the 
Euclidean distance between two particles with coordinates (x1, y2) and 
(x2, y2) can be computed from (19): 

Euclidean distance=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x2 − x1)
2
+ (y2 − y1)

22
√

(19) 

The AD is then computed across all pairs of particles as the ratio of 
the sum of distances to the number of pairs in the swarm, representing 
the separation between particles in the search space. A larger average 
distance between particles indicates a more diverse swarm. Conversely, 
a smaller average distance suggests that particles are clustered closely, 
potentially leading to a lack of exploration and diversity in the swarm.

2.3.2. Fuzzy logic membership function
The PSO signals are used as a control parameter mechanism to 

determine the direction of c1 and c2 adjustment. If the swarm is too 
dispersed, indicating excessive exploration, then the Fuzzy algorithm 
increases c2 to enhance social learning and decrease c1 to reduce the 
reliance on individual knowledge. If the swarm is quickly converging, 

indicating less exploration, the algorithm decreases c2 to limit social 
learning and increase c1 to improve the individual knowledge exploi
tation. The magnitude of adjustment establishes how significantly the 
parameters are modified. The default c1 and c2 values were set to 2, and 
to prevent excessive changes that could destabilize the search process, 
the adjustment magnitude was bounded to a step change of 0.2 or 10 % 
change of the nominal. The inputs and outputs of MF are categorized 
into spectrums labelled low (L), medium (M), and high (H), quantify the 
degree to which they belong. The MF for the input parameters 
improvement rate of global best is computed as RE (18) and average 
swarm distance AD computed from (19) were defined for adapting the 
PSO output parameters c1 and c2.

MF plays a crucial role in quantifying the linguistic variables repre
senting inputs and outputs when designing the FLC to adapt the PSO 
acceleration coefficients. For the input parameters, the RE and AD are 
captured with the spectrum of L,M, and H classes. At the input, a trap
ezoidal MF with appropriate ranges is defined for the RE and AD pa
rameters, ranging from 0 % to 100 % as presented in Fig. 6. When the 
AD, diversity value is smaller, ranging from 0 % to 35 % relative to the 
initial average distance, indicating low particle diversity; the MF is 
defined with the L class. The M class corresponds to moderate diversity 
from 30 % to 70 %, while the H class is defined for high diversity from 
65 % to 100 %. Similarly, RE convergence values of 0 %–35 %, 30 %–70 
%, and 65 %–100 % indicate high, moderate, and low convergence, 
respectively, which are classified as H, M, and L classes. For the output 
parameters, the coefficients c1 and c2 factors, triangular MFs were 
selected as presented in Fig. 6. This also spans L, M, and H classes, 
ranging from 0 to 3.5, reflecting the desired adjustment for the PSO 
acceleration coefficient parameters. The L range values cover 0 to 1.5, 
within which the coefficients step decrease, while the M values range 
from 1 to 2.5, for which the coefficients are maintained, and 2 to 3.5 for 
H value for which the coefficients are increased. The choice of trape
zoidal MFs for input parameters and triangular MFs for output param
eters is motivated by the need for clear, interpretable boundaries for 
input classes and precise adjustments for output coefficients, ensuring 
effective adaptation of the PSO algorithm to varying conditions.

2.3.3. Rule formulation for inference engine
The designed FLC takes multiple inputs, the global best improvement 

rate inputs, and swarm diversity to adjust PSO parameters based on the 
defined fuzzy rules. This approach allows a nuanced adaptation of a 
fuzzy inference system with the appropriate MFs and regulations. The 
rules were crafted by prior experience and empirical observations to 
adjust the PSO algorithm parameters dynamically. The FLC continu
ously adjusts the c1 and c2 to achieve balanced exploration and exploi
tation. Ultimately, the proposed hybrid FLB-PSO approach allows the 
adaptive capabilities, enabling it to respond flexibly to changes in the 
optimization landscape and improve its convergence speed and solution 
quality across various optimization tasks.

The developed fuzzy IF − AND − THEN rules describe how the PSO 
parameters are adjusted based on the inputs. The rules form the core of 
the FLC, guiding the system response to changes in the optimization 

Fig. 6. Fuzzy input and output membership functions.

Table 2 
Proposed Fuzzy inference rule for the FLB-PSO.

Improvement rate of 
global best, RE

Swarm 
Diversity, AD

Adjustment of cognitive coefficient 
(c1) and social coefficient (c2)

Low, L Low, L c1 increase, c2 is maintain
Medium, M c1 maintain, c2 is maintain
High, H c1 maintain, c2 is decrease

Medium, M Low, L c1 maintain, c2 is maintain
Medium, M c1 maintain, c2 is maintain
High, H c1 maintain, c2 is decrease

High, H Low, L c1 decrease, c2 is maintain
Medium, M c1 decrease, c2 is maintain
High, H c1 decrease, c2 is decrease
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process. The summary of the adaptation fuzzy rules for step adjusting 
the output parameters c1 and c2 factors of the PSO algorithm indepen
dently based on the RE and AD values as inputs are presented in Table 2.

The rules ensure that each acceleration factor can be increased, 
maintained, or decreased separately depending on the specific condi
tions. For example, IF improvement rate of global best RE is Low AND 
swarm diversity AD is Low THEN factor c1 increased while c2 is main
tained. That is if the solution RE is low, and the AD is also low, indicating 
slow progress and limited exploration, then the c1 is increased to 
encourage more exploration. Meanwhile, the c2 remains unchanged to 
maintain the existing level of collaboration among particles. In the same 
manner, IF RE is Low AND AD is High THEN c1 is maintained while c2 is 
decreased. This can be interpreted as if the improvement rate of the 
global best solution is low and the swarm diversity is high, indicating 
slow progress but high exploration, then the c1 remains unchanged to 
maintain the current level of exploration, while the c2 is decreased to 
reduce collaboration and encourage more individual exploration. The 
subsequent rules follow a similar logic, adjusting c1 and c2 based on the 
combination RE and AD to balance exploration and exploitation in the 
PSO algorithm, ensuring adaptability to different optimization land
scapes and problem characteristics.

2.3.4. Defuzzification
The defuzzification stage of the FLC involves obtaining a crisp 

number from the output of the aggregated fuzzy set. It transferred the 
fuzzy inference results into a crisp output. Several methods have been 
reported in the literature, including the center of gravity or area (COG), 
mean of maximum (MOM), first of maximum (FOM), mean of maxima 
(MeOM) methods, and others [35]. Among these methods, the centroid 
method, largely favoured due to its accuracy and simplicity of imple
mentation, is selected in this work. The COG method finds the center of 
mass of the fuzzy output set, resulting in a precise parameter adjustment 
value. For the discrete MF, the defuzzified value denoted as centroid x∗, 
with COG is defined as (20) [35]: 

Centroid, x∗ =

∑n

i=1
xiμ(xi)

∑n

i=1
μ(xi)

(20) 

Where xi denotes the sample element, μ(xi) is the MF, and n is the 
number of elements in the sample.

2.4. System specifications and simulation

The hybrid energy system test bed comprises solar PV interconnected 
to the utility grid through a DC/AC inverter. The PV arrays are con
nected in series and parallel strings to produce an 800 kW/500V system, 
which is then connected to a DC bus via a DC-DC boost converter. The 
DC-DC converter boosts and stabilizes the 500V voltage to serve the 
inverter. The battery energy storage system is a 500 kWh, 1250 Ah, 400 
V unit connected via a bidirectional DC-DC boost converter. The AC bus 

operates at 11 kV, and the inverter that transfers energy from the battery 
and solar PV to the AC bus is rated at 1 MW. The component ratings of 
the simulation test system are summarized in Table 3.

The microgrid system components were first simulated in the 
MATLAB/Simulink environment to obtain an accurate solar PV gener
ation. The battery was modelled as a lithium-ion battery with a 500 kWh 
capacity, as specified in Table 3. The grid system was modelled as a 
three-phase voltage source in series with an RL branch, and the loads 
were implemented with a three-phase parallel RLC circuit. The solar PV 
was constructed with 8 units of 100 kW PV arrays, each comprising 64 
parallel string SunPower SPR-315E-WHT-D modules with 5 series- 
connected modules per string to meet the current and voltage de
mand, respectively. To achieve precise energy generation from the solar 
PV over 24 h, the solar irradiance and temperature at the considered 
location were fed into the PV array. Additionally, each PV was attached 
to a maximum power point tracker (MPPT) controller based on the 
perturb and observe (P & O) method. The MPPT ensures maximum 
power harvesting from the solar PV array by continuously adjusting the 
operating point, observing the power output, and perturbing the oper
ating voltage to meet the reference voltage corresponding to the 
maximum power point.

The FLB-PSO EMS algorithm was implemented using a MATLAB m- 
file script that takes inputs such as solar PV power, load demand, battery 
capacity, battery efficiency, and grid cost. The algorithm was executed 
on an Intel Core i3-3217U CPU @ 1.80 GHz with 8 GB of RAM, following 
Fig. 7 flow chart. It performs real-time control actions to adjust energy 
flow based on current supply and demand conditions and updated 
optimization results. The algorithm determines optimal energy flows 

Table 3 
Hybrid energy system components.

Components Rating

Solar PV array 500 kW, 500V
BESS capacity 500 kWh
BESS efficiency 95 %
BESS SoC minimum 20 %
BESS SoC maximum 80 %
BESS degradation cost $0.04
DC-DC boost converter 500 kVA, 600 dc
Bidirectional DC-DC converter 250 kVA, 600 dc
Bidirectional inverter 1 MVA, 11 kV
Grid buying/Selling (off-peak) $0.18
Grid buying/Selling (peak) $0.25

Fig. 7. FLB-PSO optimization algorithm.
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between energy sources and the load hourly over a 24-h period, aiming 
to minimize total operational costs while meeting energy demand and 
system constraints. The PSO and FLC parameters, including fuzzy sets, 
membership functions, and rules, are set at the start. The initial fitness of 
each particle is evaluated to set the pbest(i) and gbest(i) positions. The al
gorithm enters a loop until the maximum number of iterations is reached 
or convergence criteria are met. Within the loop, FLC inputs are used to 
calculate new values for PSO coefficients c1 , and c2, which is used to 
update particle velocities and positions. The algorithm terminates when 
the maximum number of iterations is reached, or an acceptable level of 
convergence is achieved, with the final optimal solution corresponding 
to the gbest particle’s position.

3. Results and discussion

This section presents the performance evaluation of the proposed 
FLB-PSO algorithm for a hybrid EMS. The algorithm was implemented in 
a MATLAB environment within a grid-connected microgrid system with 
solar PV panels and battery energy storage system energy sources. In the 
simulation, the PV energy source generates sufficient power to meet a 
significant portion of the demand during the day, and any excess energy 
is used to charge the batteries. Fig. 8 presents the monthly average daily 
solar PV energy generation at the study location, with peak generation 
occurring at 13:00 h. The daily load demand varies between 458 kWh 
and 957 kWh, with peak demands occurring in the early morning and 
nighttime hours, as depicted in Fig. 2. The study location’s current fixed 
grid electricity tariff stands at ₦225, equivalent to $0.18. This is the 
same for off-peak periods under dynamic tariffs. The peak dynamic tariff 
spanning 6:00 h to 9:00 h and the 18:00 h to 22:00 h has an increase of 
40 %, amounting to $0.25, away from the nominal off-peak tariff of 
$0.18.

4. FLB-PSO EMS performance under fixed grid tariff

The FLB-PSO’s performance on the energy mix for load operation at 
optimal daily cost was evaluated under both fixed and dynamic grid 
tariffs. The first test scenario considered a fixed grid power tariff when 
solar PV generation was insufficient and the battery SoC threshold could 
not meet the load demand. The results of the FLB-PSO EMS algorithm’s 
hourly operating cost for two selected periods, 10:00 and 21:00 h, are 
presented in Tables 4 and 5, respectively.

As one of the main objectives of this study, battery degradation is a 
critical factor, and the test results for three different operational modes 
are included in Table 4. These results indicate diverse grid power pur
chase and battery degradation costs. The battery’s first operational 
mode allows an 80 % battery SoC range, while the second mode allows a 
30 % battery SoC range. The optimal Pareto solution was obtained in the 
third mode, which allows a 50 % battery SoC range, resulting in the 
minimum daily energy cost by balancing grid purchase with battery 
degradation costs. Balancing grid power purchases and battery degra
dation is crucial for cost reduction and extending the battery lifespan, 

Fig. 8. Daily average solar PV energy generation.

Table 4 
Optimal parameter values in 10:00 h.

Optimal values 80 % battery 
SoC capacity

30 % battery 
SoC capacity

50 % battery 
SoC capacity

Grid power (kW) 343.6617 330.3313 269.1307
Battery power (kW) 30.5478 43.8787 105.0793
Objective function values
Grid power purchase/ 

sales cost ($)
61.8592 59.4596 48.4435

Battery degradation 
cost ($)

1.2219 1.7552 4.2032

Table 5 
Optimal parameter values in 21:00 h.

Optimal values 80 % battery 
SoC capacity

30 % battery SoC 
capacity

50 % battery 
SoC capacity

Grid power (kW) 763.4944 1031.8256 889.9621
Battery power (kW) 193.0756 75.2556 25.4679
Objective function values
Grid power 

purchase/sales cost 
($)

137.4289 185.7286 160.1932

Battery degradation 
cost ($)

7.7230 3.0102 1.0187

Table 6 
Optimal parameter values in 24 h period.

Optimal values 80 % battery 
SoC capacity

30 % battery 
SoC capacity

50 % battery 
SoC capacity

Grid power (kW) 10622.3787 10938.6979 10750.4115
Battery power (kW) 2368.2039 1004.0553 1248.3521
Objective function values
Grid power 

purchase/sales 
cost ($)

1912.0282 1968.9656 1935.0741

Battery degradation 
cost ($)

94.7282 40.1622 49.9341
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thereby reducing replacement costs.
The results of the 24-h daily energy operational costs with the FLB- 

PSO EMS algorithm are presented in Table 6 for the three battery 
operational modes. In Mode 1, with 80 % battery SoC capacity, grid 
purchase is limited to $1912.03, which incurs a higher battery degra
dation cost of $94.73. Mode 2, with 30 % SOC capacity, reduces the 
battery degradation cost to $40.16, but the grid purchase cost increases 
to $1968.97. Mode 3, with 50 % battery SoC capacity, balances the grid 
purchases and battery degradation costs at $1935.07 and $49.93, 
respectively. This results in a total daily operational cost of $1985.01, 
compared to $2006.76 and $2009.13 for Modes 1 and 2, respectively. 
Mode 3 demonstrated the optimal Pareto solution by achieving the dual 
objectives of minimizing both grid purchase and battery degradation 
costs, resulting in the lowest daily energy operating cost.

The microgrid energy profile is depicted in Fig. 9, illustrating the 
load demand, solar PV generation, utility grid power, and battery 
charge/discharge over 24 h. The combined energy production from 
renewable power generation, battery discharge, and energy imported 
from the utility grid meet the energy demand. During peak daytime 
generation, solar PV significantly supplies the load demand, with any 
excess energy either stored in the battery or sold to the grid, depending 
on the battery SoC. Fig. 9 shows that the battery SoC is maintained at a 

high level between 12:00 and 15:00 h since renewable generations meet 
most energy demands. Between 12:00 and 14:00 h, excess PV generation 
is used to charge the battery, while the remaining power is sold to the 
grid during the same period.

Fig. 10 presents the main grid energy purchases and sales over a 24-h 
period. Energy purchases vary throughout the day but are highest at 
nighttime during peak energy demand when only the battery is available 
for supplementary supply without renewable energy generation. Grid 
power sales occur at 11:00, 12:00, and 13:00 h when there is excess solar 
PV generation. Fig. 11 (a) shows the battery’s intermittent charging and 
discharging over 24 h, with most charging occurring during hours of 
high renewable generation. Fig. 11 (b) depicts the battery SoC profile 
within the constraints set at a 25 % SoC minimum and a maximum of 75 
% SoC for the optimization process. The 50 % SoC battery capacity 
delivers the optimal operational cost and efficiency, ensuring extended 
battery lifespan while meeting the daily energy demand.

Fig. 12 (a) and (b) present the battery degradation and utility grid 
costs under a fixed tariff for the proposed FLB-PSO EMS and conven
tional PSO EMS. The battery degradation cost, representing the cost 
associated with the decline in battery performance and capacity over 
time due to charge-discharge cycles, was set to $0.04 per kWh for utility- 
scale battery storage in this study, as contained in recent literature 

Fig. 9. Energy profile of demand in 24 h.

Fig. 10. Grid energy buying/selling in 24 h period.
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findings [36]. In Fig. 12 (a), the FLB-PSO battery degradation cost was 
lower during most operational hours in the morning and evening but 
significantly higher in the afternoon when renewable generation peaks 
and charges the battery. The battery profile in Fig. 11 indicates that the 
FLB-PSO EMS charges the battery more during the hours of 12:00 to 
15:00, when renewable generation is abundant, and moderately sup
plies this energy to the load throughout the day, thereby avoiding the 
higher degradation costs seen with PSO in the morning and evening 
hours. This smoothing of battery degradation costs by FLB-PSO dem
onstrates its superiority in optimizing the EMS solution, ultimately 
reducing grid purchase and the total daily energy cost.

Fig. 12 (b) show that FLB-PSO prioritizes charging the battery during 
peak renewable generation periods rather than selling excess energy to 
the grid, as opposed to the PSO, which sells more and subsequently buys 
more energy later in the day. This strategy results in a reduction in grid 
costs between 15:00 and 24:00 h. Specifically, FLB-PSO grid purchases 

are lower during 15:00, 16:00, 19:00, 20:00, 21:00, 23:00, and 24:00 h, 
compared to the PSO, which shows lower grid purchases only at 17:00 
and 22:00 h.

The convergence plot under a fixed grid tariff for the FLB-PSO and 
PSO algorithms are presented in Fig. 13. The plots show that the PSO 
converges after 40 iterations, while the FLB-PSO rapidly converges after 
just 3 iterations. The proposed methods achieved fast convergence speed 
by balancing exploration and exploitation during the optimization. The 
achieved convergence speed surpasses that of some state-of-the-art 
methods, as reported in Ref. [37], ÇetınbaŞ et al. [38], Zhao et al. 
[39]. These studies exhibit convergence within 10–50 iterations when 
using various advanced algorithms to optimize hybrid energy systems. 
Initially, the PSO starts at $2290 and converges to $2221.10 after 40 
iterations. In contrast, despite starting from a significantly larger initial 
value of $200,000, the FLB-PSO converges to $1985.01 after only 3 it
erations. The quick convergence and superior solution of the FLB-PSO 

Fig. 11. Battery charge/discharge (a) and SoC profile (b).

Fig. 12. EMS battery degradation cost (a) and grid cost (b) under fixed tariff.
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indicate that the proposed optimization algorithm is highly effective, 
well-adapted, and capable of robust performance across a wide range of 
initial conditions. This performance confirms its exploration capability 
in searching the solution space. The daily optimized energy operational 

cost of $1985.01 for FLB-PSO in Table 7, compared to $2221.10 for PSO, 
demonstrates its excellent exploitation by effectively refining the solu
tion towards an improved optimal outcome. The cost difference shows 
that the FLB-PSO saves $236.09, approximately 11 %, on daily energy 
costs. These traits of robustness and efficiency are highly desirable in 
real-time EMS and many practical optimization scenarios.

4.1. FLB-PSO EMS performance under dynamic grid tariff

The second test case scenario considered a dynamic grid tariff for 
purchasing utility power while maximizing the use of solar PV genera
tion to meet daytime load demand and using excess energy to charge the 
battery. Tables 8 and 9 present the hourly operating costs of the FLB-PSO 
EMS algorithm for two selected periods, 02:00 and 15:00 h, respectively, 
while Table 10 shows the 24-h costs.

In Table 10, battery mode 3, which denotes 50 % battery capacity, 
balances the daily grid purchase and battery degradation costs at 
$2359.20 and $64.66, respectively. This results in a total daily opera
tional cost of $2423.85, compared to $2379.68 for mode 1 and $2465.94 
for mode 2. The advantage of mode 3 lies in balancing the multi- 
objective functions of minimizing grid purchases and battery degrada
tion costs rather than relying heavily on the battery, as in mode 1, which 
would lead to rapid battery degradation and high replacement costs.

The microgrid energy profile under dynamic tariff is presented in 
Fig. 14, illustrating the load demand, solar PV generation, utility grid 

Fig. 13. Convergence plot under fixed grid tariff.

Table 7 
Optimal cost comparison of the proposed EMS under fixed tariff.

Optimal values Proposed FLB-PSO 
EMS

Conventional PSO EMS

Grid power purchase cost ($) 1935.0741 2159.670605
Battery degradation cost ($) 49.9341 61.42916699
Total 1985.0082 2221.0998

Table 8 
Optimal parameter values in the 02:00 h.

Optimal values 80 % battery 
SoC capacity

30 % battery 
SoC capacity

50 % battery 
SoC capacity

Grid power (kW) 150.4364 435.2540 467.9900
Battery power (kW) 317.5636 32.7460 0.0070
Objective function values
Grid power purchase/ 

sales cost ($)
27.07856 78.3457 84.2382

Battery degradation 
cost ($)

12.7025 1.3098 0.0004

Table 9 
Optimal parameter values in 15:00 h.

Optimal values 80 % battery 
SoC capacity

30 % battery 
SoC capacity

50 % battery 
SoC capacity

Grid power (kW) 25.6347 121.2739 171.8056
Battery power (kW) 171.3553 75.7161 25.1844
Objective function values
Grid power purchase/ 

sales cost ($)
4.6143 21.8293 30.9250

Battery degradation 
cost ($)

6.8542 3.0286 1.0074

Table 10 
Optimal parameter values in 24 h period.

Optimal values 80 % battery 
SoC capacity

30 % battery 
SoC capacity

50 % battery 
SoC capacity

Grid power (kW) 10711.0280 10871.5142 10717.2909
Battery power (kW) 2360.2494 2412.8403 1616.4218
Objective function values
Grid power 

purchase/sales 
cost ($)

2288.1535 2412.8403 2359.1965

Battery degradation 
cost ($)

91.5261 53.0968 64.6569
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power, and battery charge/discharge over 24 h. During peak daytime 
generation, the load demand is primarily met by solar PV energy, with 
any excess energy either stored in the battery or sold to the grid, 
depending on the battery SoC. From 12:00 to 15:00 h, the battery SoC 
remains relatively stable at a high charge level during peak renewable 
generation, while the surplus power is sold to the grid during this period.

Fig. 15 presents the main grid energy purchases and sales over a 24-h 
period. Energy purchases vary throughout the day, with higher pur
chases occurring at night during peak energy demand when there is no 
renewable energy generation, and the battery provides a complemen
tary supply. As shown in the figure, grid power sales occur during 11:00, 
12:00, and 13:00 h when there is excess solar PV generation. Fig. 16 (a) 
depicts the 24-h intermittent charging and discharging of the battery, 
with most charging occurring during the high renewable generation 
hours between 11:00 and 14:00. The figure also reveals the battery’s 
complementary actions during peak tariff hours, with increased dis
charging between 07:00 and 10:00, thereby reducing grid purchases. 
Fig. 16 (b) shows the battery SoC profile operating within the specified 
minimum SoC of 25 % and maximum SoC of 75 %, as specified con
straints for the optimization problem to ensure extended battery 
lifespan.

Fig. 17 (a) and (b) present the battery degradation and grid costs 
under dynamic tariff for the proposed FLB-PSO and conventional PSO 
EMS. In Fig. 17 (a), the FLB-PSO battery degradation cost is observed to 
be lower for most operational hours and significantly higher during peak 
tariff hours when the battery supplements grid purchases to reduce 
hourly operating costs. Fig. 16 revealed that the FLB-PSO prioritizes 
charging the battery during peak renewable generation periods rather 
than selling excess energy to the grid. This is evident in the grid cost 
depicted in Fig. 17 (b), particularly between 11:00 and 13:00 h, 
compared to PSO, which sells more to the grid. This strategy signifi
cantly reduces grid purchases during the peak tariff period of 18:00 and 
19:00 h, lowering daily operational costs.

The convergence under dynamic grid tariff for the proposed FLB-PSO 
was attained after 3 iterations compared to the PSO algorithms that 
converged after 40 iterations. The PSO starts the search at $2745 and 
converges to $2661.08 after 40 iterations. In contrast, the FLB-PSO 
quickly converges to $2423.85 after three iterations despite starting 
from a significantly higher initial value of $200,000. The quick 
convergence and superior solution of the FLB-PSO under dynamic tariff 
conditions also indicate the effectiveness, adaptive tuning capability, 
and robust performance of the proposed optimization algorithm. This 

Fig. 14. Energy profile of demand in 24 h.

Fig. 15. Grid energy buying/selling in 24 h period.
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result confirms its ability to explore a more widespread solution space 
and achieve rapid convergence. The daily optimized energy operational 
cost in Table 11 shows that the FLB-PSO results save $237.23 compared 
to PSO, representing a 9 % reduction in daily energy costs.

The proposed FLB-PSO EMS algorithm was tested under fluctuating 

weather conditions to further demonstrate its robustness and efficiency. 
The energy profile in Fig. 18 depicts the load demand, solar PV gener
ation, utility grid power, and battery charge/discharge over 24 h to 
demonstrate its robustness and performance in more realistic scenarios. 
Solar power generation drastically decreased between 10:00 and 12:00 
h, affecting the available diverse energy mix. However, the EMS algo
rithm effectively responded by importing more grids to balance the 
energy needs. The EMS algorithm prioritized battery charging as a quick 
response to an increase in solar PV generation from 13:00 h, showing its 
effectiveness.

5. Conclusion

This study presents an efficient energy management strategy using 

Fig. 16. Battery charge/discharge (a) and SoC profile (b).

Fig. 17. EMS battery degradation cost (a) and grid cost (b) under dynamic tariff.

Table 11 
Optimal cost comparison of the proposed EMS under dynamic tariff.

Optimal values Proposed FLB-PSO 
EMS

Conventional PSO EMS

Grid power purchase cost ($) 2359.1965 2606.4702
Battery degradation cost ($) 64.6569 54.6120
Total 2423.8534 2661.0823
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the FLB-PSO algorithm to optimally operate loads on multiple energy 
sources, including solar PV and BESS, within a grid-connected frame
work. The proposed EMS addressed the limitations of independent 
heuristic optimization methods such as PSO in balancing exploration 
and exploitation in dynamic optimization problems. The solution 
demonstrated enhanced BESS utilization, improving overall system cost 
and efficiency. The three tested battery operational modes revealed that 
the algorithm effectively balanced grid power purchases and battery 
degradation costs. Mode 1, with 80 % battery SoC utilization capacity, 
incurs high grid cost and battery degradation. Mode 2, with 30 % battery 
SoC utilization capacity, incurs the highest grid and low battery degra
dation costs. The optimal Pareto was achieved with 50 % battery SoC 
utilization capacity, having the lowest grid utilization with moderately 
low battery degradation, resulting in the lowest daily operational cost.

Under dynamic tariff conditions, the FLB-PSO algorithm optimized 
battery charging during peak renewable generation periods, leading to 
significant cost savings and better operational efficiency for a long 
battery lifespan. The proposed algorithm also demonstrated superior 
performance in managing the hybrid EMS resources under fixed and 
dynamic grid tariffs, achieving quicker convergence and lower daily 
operational costs than conventional PSO. Overall, the FLB-PSO algo
rithm resulted in cost savings comparable to other advanced techniques, 
and the implementation was simpler and less computationally 
demanding compared to hybrid adaptive methods that rely on two 
iterative methods and machine learning. The algorithm proved highly 
effective, adaptive to process changes, and robust, achieving approxi
mately 9–11 % savings in daily energy costs while ensuring optimal 
battery management and minimizing operational expenses. This was 
evident when tested under fluctuating weather conditions. Furthermore, 
this study underscores the potential significance of the proposed method 
as a strategic tool for microgrid operators, facilitating more intelligent 
decision-making in managing energy resources efficiently in sustainable 
power systems. Future research will investigate the algorithm’s perfor
mance on new energy sources and integrate machine learning tech
niques and real-time data analytics to enhance the EMS adaptability and 
performance under more varying environmental conditions and load 
demands.
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[22] M. Restrepo, C.A. Cañizares, J.W. Simpson-Porco, P. Su, J. Taruc, Optimization-and 
rule-based energy management systems at the canadian renewable energy 
laboratory microgrid facility, Appl. Energy 290 (2021) 116760.

[23] H. Abdelhadi, A.M. Mahmoud, E.M.M. Saied, M.A.E. Mohamed, Innovative 
hierarchical control of multiple microgrids: cheetah meets PSO, Energy Rep. 11 
(2024) 4967–4981.

[24] P. Barman, et al., Renewable energy integration with electric vehicle technology: a 
review of the existing smart charging approaches, Renew. Sustain. Energy Rev. 183 
(2023) 113518.

[25] O. Ibrahim, et al., Development of fuzzy logic-based demand-side energy 
management system for hybrid energy sources, Energy Convers. Manag. X 18 
(2023) 100354.

[26] V.V. Babu, J.P. Roselyn, P. Sundaravadivel, Multi-objective genetic algorithm 
based energy management system considering optimal utilization of grid and 
degradation of battery storage in microgrid, Energy Rep. 9 (2023) 5992–6005.

[27] M.A.E. Mohamed, A.M. Mahmoud, E.M.M. Saied, H.A. Hadi, Hybrid cheetah 
particle swarm optimization based optimal hierarchical control of multiple 
microgrids, Sci. Rep. 14 (1) (2024) 9313.

[28] M. Akorede, O. Ibrahim, S. Amuda, A. Otuoze, B. Olufeagba, Current status and 
outlook of renewable energy development in Nigeria, Nigerian Journal of 
Technology 36 (1) (2017) 196–212.

[29] PVGIS. "Photovoltaic Geographical Information System." European Commission 
(accessed.

[30] K. Ajao, R. Ambali, M. Mahmoud, Determination of the optimal tilt angle for solar 
photovoltaic panel in Ilorin, Nigeria, Journal of Engineering Science and 
Technology Review 6 (1) (2013) 87–90.

[31] K.S. El-Bidairi, H.D. Nguyen, S. Jayasinghe, T.S. Mahmoud, I. Penesis, A hybrid 
energy management and battery size optimization for standalone microgrids: a 
case study for Flinders Island, Australia, Energy Convers. Manag. 175 (2018) 
192–212.

[32] T. Katrašnik, I. Mele, K. Zelič, Multi-scale modelling of Lithium-ion batteries: from 
transport phenomena to the outbreak of thermal runaway, Energy Convers. Manag. 
236 (2021) 114036.
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