5

Recent progress of polyamide thin film nanocomposite membranes for water applications

Ying Siew Khoo¹, Woei Jye Lau¹, Yong Yeow Liang² and Ahmad Fauzi Ismail¹

¹Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia ²Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Malaysia

OUTLINE

5.1 Introduction5.2 Nanomaterials for the papocomposite mem	125 hin film brane	5.2.3 Metal-organic framework nanomaterials5.2.4 Hybrid nanomaterials	137 139
fabrication 5.2.1 Carbon-based n 5.2.2 Metal oxide nar	anomaterials 127 pomaterials 133	5.3 Conclusion and future remarks References	143 144

5.1 Introduction

New generation of reverse osmosis (RO) membrane incorporated with inorganic nanofillers was first reported by Hoek and his co-workers in 2007 in an attempt to break the permeability-selectivity trade-off of the conventional thin film composite (TFC) RO membrane (Jeong et al., 2007). In this pioneering research work, the researchers named the newly developed membrane as "thin film nanocomposite (TFN)" membrane to indicate the presence of nanomaterials in the polyamide (PA) selective layer. This TFN membrane