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1 	 | 	 INTRODUCTION

Around	one	in	eight	US	women	may	develop	invasive	breast	
cancer	throughout	their	lifetime	as	of	January	27,	2020.1,2	

Whenever	any	form	of	the	disorder	is	diagnosed	by	medi-
cal	image	analysis,	the	computer-	aided	diagnosis	(CADx)	
system	takes	precedence.	It	gives	pathologists	a	workflow	
as	it	takes	only	a	little	time	to	execute	the	results.3,4	Cancer	
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Abstract
Objective: Breast	 cancer	 is	 one	 of	 the	 leading	 cancer	 causes	 among	 women	
worldwide.	It	can	be	classified	as	invasive	ductal	carcinoma	(IDC)	or	metastatic	
cancer.	Early	detection	of	breast	 cancer	 is	 challenging	due	 to	 the	 lack	of	early	
warning	 signs.	 Generally,	 a	 mammogram	 is	 recommended	 by	 specialists	 for	
screening.	Existing	approaches	are	not	accurate	enough	for	real-	time	diagnostic	
applications	and	thus	require	better	and	smarter	cancer	diagnostic	approaches.	
This	study	aims	to	develop	a	customized	machine-	learning	framework	that	will	
give	more	accurate	predictions	for	IDC	and	metastasis	cancer	classification.
Methods: This	 work	 proposes	 a	 convolutional	 neural	 network	 (CNN)	 model	
for	classifying	IDC	and	metastatic	breast	cancer.	The	study	utilized	a	large-	scale	
dataset	of	microscopic	histopathological	images	to	automatically	perceive	a	hier-
archical	manner	of	learning	and	understanding.
Results: It	is	evident	that	using	machine	learning	techniques	significantly	(15%–
25%)	 boost	 the	 effectiveness	 of	 determining	 cancer	 vulnerability,	 malignancy,	
and	demise.	The	results	demonstrate	an	excellent	performance	ensuring	an	aver-
age	of	95%	accuracy	in	classifying	metastatic	cells	against	benign	ones	and	89%	
accuracy	was	obtained	in	terms	of	detecting	IDC.
Conclusions: The	results	suggest	that	the	proposed	model	improves	classifica-
tion	 accuracy.	 Therefore,	 it	 could	 be	 applied	 effectively	 in	 classifying	 IDC	 and	
metastatic	cancer	in	comparison	to	other	state-	of-	the-	art	models.
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is	defined	as	a	heterogeneous	disease	made	up	of	several	
diverse	 subgroups.5	 Abnormal	 cells	 are	 not	 carcinogenic	
but	 can	 sometimes	 boost	 the	 risk	 of	 cancer.	 The	 non-	
spreadable	unusual	cells	are	marked	as	noninvasive.	Often	
this	is	called	pre-	cancer,	or	level	0	cancer,	for	example,	in-
vasive	ductal	carcinoma	(IDC)	or	ductal	carcinoma	in situ	
(DCIS).6	IDC	is	indeed	a	milk	duct	breast	cancer	and	is	not	
invasive.	It	has	not	progressed	further	than	the	duct	from	
where	it	originated.	If	unusual	cells	travel	outside	the	tis-
sue	barrier	where	 they	are	 formed,	 then	 the	cells	appear	
invasive.7	 When	 these	 unusual	 cells	 spread	 out	 into	 sur-
rounding	breast	tissue	within	the	milk	ducts,	this	is	known	
as	invasive	breast	cancer.8	Such	cells	may	also	move	away	
and	disperse	to	certain	other	body	parts	from	the	host	site.	
Cancerous	cells	head	for	 the	nearby	blood	or	 lymph	ves-
sels	 when	 they	 grow	 forward.9	 From	 there,	 the	 cells	 can	
migrate	through	the	bloodstream	or	lymph	system	to	meet	
other	 body	 parts.	 Once	 this	 develops,	 the	 cells	 develop	
tiny	tumors	called	“micrometastases”	at	 first.10	Such	tiny	
tumors	cause	 the	development	of	new	blood	vessels	 that	
are	then	used	to	drive	tumor	growth.	This	form	of	tumor	is	
labeled	as	a	metastatic	tumor.11	Metastatic	cancer	is	more	
dangerous	and	harder	to	cure	because	it	creates	a	web	of	
abnormalities	throughout	the	body	and	often,	we	can	not	
recognize	from	where	it	originated.12	Metastatic	cancer	is	
normally	called	stage	IV	cancer.13	With	early	diagnosis,	it	is	
possible	to	shrink	the	tumor	cells	and	stop	the	cell	growth	
somehow	which	can	prolong	the	 lifetime	of	a	cancer	pa-
tient.	Therefore,	 if	 metastasis	 is	 not	 early	 diagnosed,	 the	
cell	growth	will	be	more	rapid	and	 large.	But	 it	does	not	
mean	metastatic	cancer	 is	not	curable.	 If	metastatic	can-
cers	 are	 diagnosed	 early,	 patients	 may	 recover	 optimally	
from	 successful	 early	 therapeutic	 interventions.	 For	 this	
form	of	intelligent	image	processing,	machine	learning	or	
more	specifically	deep	neural	networks	can	be	used	with	
success.

Models	based	on	CNN	consist	of	multiple	layers	of	con-
volutional	 and	 pooling	 layers.14	 The	 convolutional	 layer	
can	be	considered	as	running	sliding	windows	over	inputs	
and	multiplying	the	components.15	It	uses	matrix	multipli-
cations	instead	of	loops	since	these	scale	better	and	operate	
faster.16	Compared	to	conventional	completely	connected	
layers,	 coevolutionary	 layers	 have	 a	 few	 parameters	 in	
which	a	model	uses	the	same	parameters	in	more	than	one	
location.17	That	enables	the	model	more	effective,	both	sta-
tistically	and	in	terms	of	computation.	CNN	has	excellent	
feature	extraction	capabilities	in	medical	images.18

To	chase	 the	classification	of	breast	cancer	cells,	 sev-
eral	 detection	 approaches	 through	 image	 analysis	 have	
been	 previously	 explored	 by	 many	 researchers.	 Petushi	
et  al.19	 developed	 an	 automated	 computational	 method	
for	tissue	classification	based	on	micro-	texture	features	of	
tissues	by	dividing	the	nuclei	into	segments	and	analyzing	

them,	two	textural	features	(nuclei	surface	density	along	
with	 spatial	 position)	 were	 extracted.	 The	 proposed	 ap-
proach	 was	 employed	 to	 differentiate	 between	 different	
categories	 of	 tumor	 cells	 as	 well	 as	 surrounding	 tissues	
such	 as	 stroma	 or	 adipose	 tissue.	The	 proposed	 method	
can	be	an	efficient	tool	in	classifying	the	tumor	cells	based	
upon	the	subdivision	of	the	whole	slide	images	having	a	
dense	concentration	of	cancer	cell	nuclei	that	aligns	with	
the	 slide's	 overall	 grade	 classification.	 Unlike	 the	 paper	
approaching	 binary	 classification,	 Zhongyi	 et  al.	 priori-
tized	the	multi-	classification	of	breast	cancer.20	According	
to	 their	 proposal,	 a	 comprehensive	 model	 based	 on	 a	
class	structure-	based	deep	convolutional	neural	network	
(CSDCNN)	that	pursued	an	end-	to-	end	training	manner	
and	 is	 capable	 of	 learning	 semantic	 features	 from	 low	
level	to	high	level.	The	design	of	CSDCNN	has	been	devel-
oped	to	accomplish	an	account	of	the	relation	of	feature	
spaces	 among	 intra-	class.	 Here,	 inter-	class	 as	 well	 with	
a	 noteworthy	 performance,	 and	 accuracy	 of	 an	 average	
of	 93.2%	 on	 the	 demonstration	 of	 multi-	classification	 of	
breast	cancer	cells	has	been	achieved	so.

Spaniel	et al.21	brought	out	an	approach	that	provided	a	
map	of	binary	classification	that	is	designed	to	categorize	
benign	 and	 malignant	 tumors	 through	 different	 feature	
descriptors	 and	 machine-	learning	 classifiers.	 They	 drew	
out	patches	of	32	×	32	and	64	×	64	from	the	images	to	in-
struct	their	CNN.	Here,	the	accuracy	gained	was	around	
80%	to	85%.	Cruz	Roa	et.al22	built	up	a	trained	CNN	that	
operated	on	100	×	100	size	patches	taken	out.	Among	the	3	
layers	of	CNN	architecture,	two	of	the	layers	were	utilized	
for	performing	convolution	and	pooling	operations,	while	
the	remaining	layers	are	fully	connected.	Using	this,	they	
constructed	 a	 probability	 map	 where	 the	 predicted	 IDC	
regions	were	highlighted	and	perceived	a	balanced	accu-
racy	of	about	84.23%.	On	an	overall	slide	 level,	Bejnordi	
et al.23	approach	can	automatically	 identify	ductal	carci-
noma	 in  situ	 (DCIS)	 and	 distinguish	 it	 from	 the	 benign	
area.	They	 developed	 a	 novel	 data-	driven	 system	 that	 is	
primarily	 susceptible	 to	demonstrating	 stromal	morpho-
logical	 features	 to	distinguish	between	those	with	breast	
cancer	and	 those	who	have	benign	breast	ailments	with	
an	 accuracy	 of	 about	 92%.	 Beck	 et  al.24	 generated	 a	 C-	
Path	system	to	measure	a	rich	number	of	morphological	
features	that	could	determine	the	characteristics	of	prog-
nostic	relevance	to	provide	a	prompt	means	for	assessing	
prognosis	from	microscopic	image	data.	The	significance	
of	 stromal	 morphological	 traits	 as	 a	 crucial	 prognostic	
factor	in	breast	cancer	was	demonstrated	in	new	ways	by	
this	 model.	 Paper25	 created	 a	 computer-	aided	 diagnosis	
(CAD)	 system	 that	 can	 detect	 and	 differentiate	 between	
benign	 and	 malignant	 tumors	 in	 breast	 mammography	
images.	 The	 system	 required	 a	 region	 of	 interest	 (ROI)	
and	 threshold-	based	 approaches	 to	 segment	 the	 images.	
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DCNN	framework	AlexNet	is	being	used	for	the	extraction	
of	the	elements.	The	support	vector	machine	classifier	was	
merged	 with	 the	 final	 fully	 connected	 layer	 to	 increase	
accuracy.	 They	 utilized	 two	 public	 datasets:	 (i)	 the	 digi-
tal	 mammography	 screening	 database	 (DDSM),	 and	 (ii)	
DDSM's	 Curated	 Breast	 Imaging	 Subset	 (CBIS-	DDSM).	
In,19	a	CAD	method	is	built	for	masses	in	the	volume	of	
digital	breast	tomosynthesis	(DBT)	that	uses	a	deep	coevo-
lutionary	 neural	 network	 (DCNN)	 with	 mammographic	
transfer	learning.	It	used	digitized	films	and	mammogram	
images.	 To	 minimize	 overfitting,	 jittering,	 and	 dropout	
strategies	were	employed.	The	performance	of	 two	CAD	
mass	detection	systems	 in	DBT	was	compared	that	used	
the	DCNN	and	FP	reduction	feature-	based	approaches.

The	accuracy	level	of	the	proposed	CNN	model	is	com-
pared	with	the	other	methods	regarding	breast	cancer	detec-
tion	shown	in	Table 4.	Dina	et al.	proposed	a	method	where	
they	used	 the	combination	of	DCNN,	SVM,	and	AlexNet	
methods	 for	 detecting	 breast	 cancer	 detection,	 where	 the	
accuracy	level	was	87.2%.19	In	the	same	way,	Zhongyi	et al.	
used	CSDCNN	and	the	multiclassification	method	where	
they	 got	 93.2%	 accuracy.26	 In	 other	 words,	 Shweta	 et  al.	
analyzed	 breast	 cancer	 based	 on	 the	 pre-	trained	 network	
extracted	traits	and	SVM	and	achieved	an	average	accuracy	
of	90.12%.27	Moreover,	Saad	et al.	used	the	CNN	technique	
to	classify	cancer	detection	by	examining	the	zones	of	hos-
tile	ductal	carcinoma	tissue	in	whole-	slide	images	(WSIs).	
The	success	 rate	of	 that	proposed	system	was	87%.	Fabio	
et al.	proposed	a	handcrafted	 feature-	based	breast	 cancer	
classification	method	based	on	 the	BreaKHis	dataset	and	
achieved	94.54%	accuracy.28	Kalpana	et al.	stated	a	method	
based	on	three	training	strategies:	nucleus	patches,	trans-
fer	 learning,	 and	 classifier	 fusion.	 The	 average	 level	 of	
success	 rate	 was	 96.91	±	0.67	 [29n].	 Long	 and	 colleagues	
proposed	a	novel	deep	neural	network	structure	that	uses	
transfer	 learning	 for	 the	classification	of	microscopic	 im-
ages.	Their	proposed	network	utilizes	the	features	extracted	
from	three	pre-	trained	deep	CNNs,	where	the	accuracy	was	
92.63	±	1.68.29	 Using	 the	 BreaKHis	 dataset,	 Gour	 et  al.17	
proposed	 the	 ResHist	 model,	 a	 modified	 version	 of	 the	
ResNet-	152	architecture	that	can	be	utilized	for	breast	can-
cer	 classification.	 For	 various	 magnification	 factors,	 one	
can	expect	an	average	accuracy	of	91.35	±	2.3	at	the	image	
level	by	using	this	technique.	Shallu	and	colleagues	estab-
lished	a	framework	that	focuses	on	fine-	tuned	pre-	trained	
VGG16	 networks	 where	 the	 precision	 rate	 was	 92.60%.30	
Varsha	et al.	used	a	variety	of	machine	learning	classifica-
tion	techniques,	including	Random	Forest	(RF),	Adaboost,	
XGBoost,	Naïve	Bayes	(NB),	Logistic	Regression	(LR),	and	
Support	Vector	Machine,	etc	on	a	dataset	of	breast	cancer	
patients.31	 The	 techniques	 were	 evaluated	 using	 various	
performance	measures.	Among	all	models,	it	has	been	dis-
covered	that	the	decision	tree	and	XGBoost	classifier	have	

the	highest	accuracy	(97%).	An	additional	study	was	to	cre-
ate	a	new	neural	network	for	breast	cancer	diagnosis,	we	
integrated	US	characteristics	extracted	by	a	modified	VGG-	
11	network	with	pictures	rebuilt	from	a	DOT	deep	learning	
auto-	encoder-	based	model,	which	was	inspired	by	a	fusion	
model	deep	learning	technique.32	After	training	on	simula-
tion	data	and	refining	it	with	clinical	data,	the	mixed	neural	
network	model	attained	an	AUC	of	0.931.	Mahendran	et al.	
proposed	a	machine-	learning	model	based	on	blood	profile	
data	 to	 classify	 metastasis	 cancer.33	 To	 categorize	 cancer	
metastases,	Mahendran	et al.	presented	a	machine-	learning	
model	based	on	blood	profile	data.	An	83%	accuracy	rate	
with	 an	 AUC	 of	 0.87	 was	 demonstrated	 by	 a	 Decision	
Tree	 (DT)	 classifier.	 Next,	 to	 develop	 a	 web	 application	
for	reliable	MBC	patient	diagnosis,	they	implemented	DT	
classifiers	using	Flask.	Lastly	according	to	Cengiz	et al.,34	
proposed	 a	 CNN-	based	 breast	 cancer	 classification	 tech-
nique	from	noisy	breast	histopathological	images.	Initially,	
the	photos	in	the	utilized	data	set	were	supplemented	with	
various	kinds	and	levels	of	noise.	Subsequently,	the	Wavelet	
Transform	(WT)	technique	was	utilized	to	eliminate	noise	
from	 photographs.	 The	 suggested	 framework	 classified	
breast	cancer	with	86%	accuracy.

This	 article	 discusses	 computer-	assisted	 image	 pro-
cessing	of	histopathology	to	diagnose	the	presence	of	IDC	
and	metastatic	cancer	cells	and	for	this,	we	used	Kaggle's	
version	 of	 the	 PatchCamelyon	 dataset.	 The	 benchmark	
PatchCamelyon	is	a	recent	and	demanding	data	collection	
for	the	classification	of	images.	It	comprises	327,680	color	
images	 of	 size	 96	×	96	 taken	 from	 lymph	 node	 segment	
histopathologic	 scans.	 PCam	 offers	 a	 modern	 standard	
for	machine	learning	frameworks.	The	visual	analysis	of	
images	 refers	 to	 inconsistency	 in	 diagnosis	 after	 obtain-
ing	 a	 digital	 histology	 image	 from	 a	 biopsy	 specimen.	
Computer-	assisted	systems	are	used	to	resolve	this	prob-
lem	that	providing	an	objective	assessment	of	diseases.35	
The	main	novel	aspects	of	this	work	are	next	summarized.

1.	 Novel	Model:	We	present	our	customized	unique	CNN-	
based	 model	 for	 both	 IDC	 and	 metastasis-	type	 breast	
cancer	 classification.	 By	 using	 simple	 patching	 and	
normalization	prepossessing,	we	significantly	 improve	
accuracy	compared	with	state-	of-	the-	art	other	research	
approaches	 even	 pre-	trained	 well-	known	 models.

2.	 Dataset	Invariance:	The	proposed	Branch	CNN-	based	
model	is	evaluated	with	breast	histopathology	datasets	
containing	 IDC	 and	 Metastasis	 cancer	 images	 and	 it	
generated	state-	of-	the-	art	results.	Therefore,	the	model	
is	generalized	and	dataset	invariant.

3.	 Performance:	 A	 comprehensive	 empirical	 assessment	
is	performed	by	systematically	manipulating	the	model	
configurations	and	hyperparameters	of	CNN.	Finally,	
an	 effective	 model	 with	 higher	 accuracy	 (of	 95%	 and	
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89%	for	Metastasis	and	IDC	breast	cancer	respectively)	
is	developed	compared	with	both	transfer-	based	learn-
ing	 and	 unique	 contributions	 of	 state-	of-	the-	art	 ma-
chine	learning	approaches.

The	remaining	portion	of	the	paper	is	divided	into	three	
sections.	In	Section 2,	we	discuss	the	methodology	of	our	
work	which	includes	dataset	collection,	prepossessing,	a	
brief	 discussion	 on	 the	 CNN	 model	 architecture,	 model	
parameters,	layers,	activation	function,	and	optimization	
algorithm.	 The	 results	 of	 both	 IDC	 and	 metastasis-	type	
breast	cancer	classification	are	given	in	Section 3.	Finally,	
Section 4	discusses	 the	conclusion	and	 future	aspects	of	
our	research	work.

2 	 | 	 METHODOLOGY

This	 section	 presents	 an	 overview	 of	 the	 used	 datasets,	
data	 preprocessing	 techniques,	 and	 model	 architecture,	
training	 of	 the	 model,	 activation	 function	 optimization	
algorithm.	Our	proposed	branch	CNN	model	takes	breast	
histopathological	images	as	input	and	predicts	cancer	type	
as	output.	The	overall	structure	of	our	approach	for	classi-
fying	breast	cancer	is	shown	in	Figure 1.	The	CNN	model	
is	comprised	of	two	different	branches	for	predicting	the	
presence	of	IDC	and	metastasis.

2.1	 |	 Dataset collection and 
preprocessing

As	 our	 comprehensive	 research	 on	 breast	 cancer	 clas-
sification	deals	with	two	types	of	binary	classifications,	
we	used	a	dataset	for	this	evaluation	process	to	meet	the	
purpose.	 In	 the	 case	 of	 binary	 classification	 of	 IDC,	 a	

bundle	 of	 breast	 histopathology	 images	 has	 been	 used	
that	is	expansively	available	for	the	researchers	as	pro-
vided	 by	 the	 authors.36	 The	 original	 dataset	 comprises	
BCa	 histopathologic	 slide	 images	 collected	 from	 162	
patients	 diagnosed	 with	 IDC	 at	 the	 Hospital	 of	 the	
University	of	Pennsylvania	and	The	Cancer	Institute	of	
New	 Jersey.	 Evaluating	 the	 whole	 histopathology	 im-
ages	 is	 quite	 turbulent	 due	 to	 their	 large	 size,	 leading	
to	the	preprocessing	of	images	as	the	size	of	the	images	
was	 reduced	 to	 277,524	 total	 image	 patches	 that	 in-
clude	198,738	IDC	negatives	and	78,786	IDC	positives.	
Figure 2	represents	the	parching	process	for	our	work.	
The	format	used	for	the	classification	purpose	was	view-
ing	software	ImageScope	from	Aperio,	which	was	used	
to	plot	the	annotations	along	with	it.	Regarding	param-
eter	examinations,	the	subsets	of	the	used	data	comprise	
84	 training	and	29	validations,	while	 the	remaining	49	
were	used	 for	 testing	purposes.	 If	our	 input	 image	 I	 is	
of	size	H	×	W	 (height	H	and	width	W),	and	we	want	to	
resize	it	to	a	new	size	′H′	×	W′.	The	resized	image	′I′	is	
computed	as	follows:

For	 each	 pixel	 (x',y')	 in	 the	 resized	 image	 ′I′,	 where	
x'	=	0,1,	…	W′	−	1	and	y'	=	0,1,	…	H′	−	1,	compute	the	cor-
responding	coordinates	(x,y)	in	the	original	image	I	using:

Then,	we	normalize	our	image	before	using	it	for	train-
ing	purposes.	The	mathematical	notation	for	this	type	of	
normalization	can	be	expressed	as	follows:

Given	an	input	image	I	of	size	m	×	n	with	pixel	values	
Iij	 where	 i	=	1,2…m	 and	 j	=	1,2…n,	 the	 normalized	 image	
Inorm	is	calculated	as:

x= scale_factor_width×x ’, y= scale_factor_height×y’

(1)Inorm =
I − �

�

F I G U R E  1  The	overall	framework	of	our	proposed	CNN-	based	model	to	predict	breast	cancer	status.	Model	inputs	breast	cancer-	based	
histopathological	images	are	preprocessed,	trained,	and	finally	classified	as	IDC,	metastasis,	or	none.
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   | 5 of 14ISLAM et al.

where,	μ	represents	the	mean	of	all	pixel	values	in	the	
image	I.	σ	represents	the	standard	deviation	of	all	pixel	val-
ues	in	the	image	I.	Inorm	represents	the	normalized	image.

In	 the	case	of	another	binary	detection	regarding	the	
benign	 and	 metastasis	 cancer	 cells,	 the	 PatchCamelyon	
benchmark	 dataset	 was	 used	 which	 is	 much	 more	 dig-
itized	 and	 clinically	 modified	 for	 this	 metastasis	 detec-
tion	purpose.37	This	data	cohort	comprises	220	K	training	
image	 files	 and	 57.5	K	 files	 entitled	 based	 on	 the	 image	
identity.	The	train_labels.csv	used	here	meets	the	purpose	
of	serving	the	ground	truth	for	images	in	the	training	lo-
cation.	 Each	 positive	 indication	 represents	 that	 a	 mini-
mum	of	one	pixel	of	tumor	tissues	is	present	in	the	patch's	
32-	by-	32-	pixel	center.38,39

2.2	 |	 Model architecture

In	this	section,	we	will	discuss	the	overall	architecture	of	
our	proposed	branch	CNN-	based	breast	cancer	detection	
model.	Model	CNN	layers,	activation	functions,	and	opti-
mization	algorithms	will	be	discussed	in	this	subsection.

2.2.1	 |	 CNN	layer

CNN	 is	 used	 primarily	 in	 computer	 vision	 as	 well	
as	 image	 processing	 tasks.	 It	 is	 designed	 to	 process	
and	 analyze	 grid-	like	 structured	 data	 such	 as	 images,	
audio,	and	video	by	using	a	set	of	convolutional	 layers	

to	identify	features	and	patterns	in	the	data.	In	several	
computer	 vision	 tasks	 like	 semantic	 segmentation,	 ob-
ject	identification,	and	picture	classification,	CNNs	have	
demonstrated	 exceptional	 outcomes,	 positioning	 them	
at	 the	 forefront	of	 the	 field.	One	of	 the	key	benefits	of	
a	CNN-	based	deep	learning	architecture	is	it	needs	pre-
processing	of	the	dataset	or	sometimes	needs	a	very	little	
bit	of	preprocessing.	Its	working	principle	is	very	similar	
to	 the	 human	 neuron	 and	 the	 learning	 process	 is	 very	
efficient	compared	 to	other	deep	 learning	models.	The	
starting	operation	of	a	CNN	model	is	just	a	convolution	
operation	with	filter	and	image.

In	the	CNN	model,	the	filter	is	defined	as	the	kernel.	The	
convolutional	 layers	play	a	crucial	 role	 in	 the	architecture	
of	 CNN.	 In	 this	 layer,	 matrix	 multiplication	 is	 performed	
between	the	specific	shape	of	the	kernel	and	input	images.	
In	our	proposed	architecture,	the	main	CNN	layer	contains	
two	sub-	branches:	CNN	branch	1,	and	CNN	branch	2.	Each	
sub-	branch	 contains	 three	 sets	 of	 ReLU,	 convolution,	 and	
pooling	 layers.	 In	 the	 end,	 flattened	 and	 dense	 layers	 are	
connected.	If	we	consider	a	single	image	output	image	after	
one	convolution	will	be	nA	×	nB	×	nC	based	on	the	length	of	
filters,	input	images,	and	weight.	The	bias	is	represented	in	
expressions	(2),	(3),	(4),	and	(5),	respectively.

(2)size_of_input = n
[l−1]
A

× n
[l−1]
B

× n
[l−1]
C

(3)size_of_filter = f
[l]
A

× f
[l]
B

× f
[l−1]
C

F I G U R E  2  Represents	patching	of	
images.
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6 of 14 |   ISLAM et al.

The	output	layer	at	level	 l	can	be	measured	as	by	the	
equation (5)	given	below.

The	 measurement	 of	 nW	 is	 very	 similar	 to	 nA	 shown	
in	equation (6)	where	s[l]	and	p[l]	represent	the	stride	and	
padding	size	respectively.	We	used	a	3	×	3	filter	size	in	the	
two	CNN	branches	in	each	convolution	layer.

2.2.2	 |	 Activation	functions

Several	 activation	 functions	 can	 be	 used	 in	 CNNs.	 Some	
popular	ones	include	ReLU,	sigmoid,	tanh,	and	softmax.	In	
this	research,	the	commonly	used	sigmoid	activation	func-
tion	is	applied.	It	squashes	the	input	values	within	the	range	
of	zero	to	one.	The	mathematical	expression	for	the	sigmoid	
activation	function	can	be	expressed	in	equation (8).

2.2.3	 |	 Optimization	algorithm

Optimization	algorithms	are	used	to	update	the	weights	of	
the	neural	network	during	training.	Several	optimization	al-
gorithms	can	be	used	for	CNNs.	Some	of	the	most	commonly	
used	 ones	 are	 stochastic	 gradient	 descent	 (SGD),	 Adam,	
Adagrad,	 RMSprop,	 Adadelta,	 and	 Nesterov	 accelerated	
gradient	(NAG).	Here,	we	use	the	‘Adam’	algorithm	which	
is	a	very	popular	optimization	algorithm	that	combines	the	
advantages	of	the	Adagrad	and	RMSprop	algorithms.	It	uses	
a	running	average	of	both	the	first	and	second	moments	of	
the	gradients	to	update	the	weights.	Image	moment	which	
is	denoted	by	Mij,	and	calculated	as:

where	i	and	j	are	non-	negative	integers	denoting	the	order	
of	 the	 moment.	 x	 and	 y	 represent	 the	 pixel	 coordinates	
within	the	image.	I(x,y)	is	the	intensity	of	the	pixel	at	co-
ordinates	(x,y).

Since	 f(x,y)	 is	 a	 binary	 image,	 its	 value	 will	 always	
be	one	or	zero.	It	 is	simple	to	observe	that	this	equation	

assigns	a	value	of	one	to	each	pixel	 in	our	 image.	 In	es-
sence,	it	determines	our	binary	image's	area.	By	comput-
ing	the	core	moment,	we	can	determine	the	moments	for	
every	 single	blob.	Our	common	 formula	 is	 to	determine	
the	central	moment	of	a	blob	about	any	point.

where	x	and	y	are	the	centroid	coordinates	of	the	image,	
calculated	as	 the	mean	of	all	pixel	coordinates	weighted	
by	the	intensity	values.	The	Adaptive	Moment	Estimation	
(Adam)	 gradient	 descent	 algorithm	 is	 used	 to	 optimize	
the	 neural	 network.	 For	 ‘Adam’	 the	 update	 rule	 of	 the	
parameter	 is	 like	 below.	 For	 each	 parameter	 wj;	 If	 we	
represent;	η	=	Initial	learning	rate;	gt	=	Gradient	at	time	t	
along	wj;	Vt	=	Exponential	average	of	 the	gradient	along	
wj;	St	=	Exponential	average	of	the	square	of	the	gradient	
along	wj;	β1,	β2	=	Hyperparameters.

Then,

Again,	it	can	be	written	that,

where	mt	and	vt	 indicate	 the	estimates	of	 the	1st	moment	
(i.e.	mean)	and	the	second	moment	(i.e.	un-	centered	vari-
ance)	of	the	gradient	respectively.

Here	 for	 the	 ‘Adam’	 optimizer	 the	 best	 fit	 value	 of	
decay	rate	β1	=	0.9,	β2	=	0.999,	and	ϵ	=	10−8.

2.2.4	 |	 Training	model

For	 both	 of	 the	 branches,	 we	 split	 our	 data	 for	 training	
and	testing	as	80%	and	20%,	respectively.	We	use	15%	of	
our	training	data	to	validate	our	models.	Figures 3	and 4	
represent	 the	 subbranch	 layers	 with	 input	 and	 output	

(4)size_of_weight =
(

f
[l]
A

× f
[l]
B

× f
[l−1]
C

)

× n
[l]
C

(5)size_of_bais = 1 × 1 × 1 × n
[l]
C

(6)nA =

n
[l−1]
A

+ 2p[l] − f [l]

S[l]
+ 1

(7)size_of_output = n
[l]
A

× n
[l]
B

× n
[l]
C

(8)f (x) =
1

1 + e(−x)

(9)Mij =
∑

x

∑

y

xiyj. I(x, y)

(10)�ij =
∑

x

∑

y

(x−x)i(y−y)j. I(x, y)

(11)Vt = �1 ∗Vt−1 −
(

1 − �1

)

∗ gt

(12)St = �2 ∗St−1 −
(

1 − �2

)

∗ g2t

(13)Δwt = − �
Vt

√

St + �

∗ gt

(14)wt+1 = wt+1 +Δwt

(15)�t+1 = �t −
n

√

v̂ + ∈

m̂t

(16)m̂t =

mt

1 − �
t
1

(17)v̂t =

vt

1 − �
t
2
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   | 7 of 14ISLAM et al.

dimensions.	Here,	we	used	p	=	1	and	s	=	1	for	the	general-
ized	value	for	overall	the	networks.	The	maximum	polling	
approach	is	used	in	our	network.	To	implement	the	learn-
ing	process	of	our	proposed	model,	Google	Colab	is	em-
ployed.	Table 1	is	given	to	show	the	used	parameters	for	
our	proposed	model.	The	overall	summary	of	the	training	
process	is	shown	in	Tables 2	and	3.

3 	 | 	 RESULTS AND DISCUSSION

In	our	experiment,	we	classified	breast	cancers	of	the	IDC	
and	metastatic	types	using	a	CNN	model	based	on	branch	
CNN.	We	divide	the	results	section	into	two	subsections	in	

this	section:	one	for	model	performance,	and	the	other	for	
a	comparison	of	the	model	with	the	state	of	art	models	for	
classifying	breast	cancer.

F I G U R E  3  Framework	of	the	proposed	CNN	branch	1	for	IDC	breast	cancer	classification.

F I G U R E  4  Framework	of	the	proposed	CNN	branch	2	for	metastasis	breast	cancer	classification.

T A B L E  1 	 The	values	of	our	proposed	CNN	model	
hyperparameters.

Serial 
number Hyperparameters Values Notation

1 Batch	size 128 -	

2 Model	dimension 128 dmodel
3 Epochs	for	branch	1 40 -	

4 Epochs	for	branch	2 20 -	

5 Dropout	rate 0.02 -	
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8 of 14 |   ISLAM et al.

3.1	 |	 Model performance

In	 this	 subsection,	 we	 will	 analyze	 the	 brunch-	wise	
model	 performance	 of	 our	 proposed	 research	 work.	
Tables 4 and 5	respectively	represent	the	confusion	matrix	
for	IDC	and	metastatic	model	with	a	total	dataset	of	22,201	
and	16,000.	Figures 6	and	9	show	training	and	validation	
accuracy	are	relatively	high	concerning	the	corresponding	
loss	for	both	models.

3.1.1	 |	 For	CNN	branch	1

Figure 5	and	Table 4	depict	the	confusion	matrix	for	IDC	
breast	 cancer.	This	 represents	 the	computational	breast	
cancer	 hypothetical	 results	 compared	 with	 the	 actual	
data.	The	5736	images	predicted	correctly	the	presence	of	
IDC	while	13,655	are	identified	as	the	absence	of	IDC;	the	
machine	anticipated	result	and	the	actual	value	are	simi-
lar.	Moreover,	the	false	negative	and	false	positive	scores	
are	2234	and	576	respectively.	This	matrix	 is	crucial	 for	
measuring	 the	 accuracy,	 precision,	 recall,	 and	 F1	 score	
followed	 by	 the	 success	 rate	 of	 detection	 of	 IDC	 breast	
cancer.

Figure  6	 depicts	 the	 IDC	 breast	 cancer	 detection	 ex-
periment,	training	accuracy,	and	validation	accuracy	both	
rose	and	 stabilized	at	a	 certain	point	while	 training	 loss	
and	validation	loss	both	decreased.	This	denotes	a	model	
with	the	best	fit—one	that	is	neither	overfit	nor	underfit.

3.1.2	 |	 For	the	CNN	branch	2

Figure 7	and	Table 5	elucidate	a	confusion	matrix	of	me-
tastasis	breast	cancer.	This	demonstrates	the	comparison	

T A B L E  2 	 Summary	of	proposed	model	CNN	branch	1.

Layer type
Output 
dimension # Parameters

Conv2D None,	48,	
48,	32

896

Conv2D 46	×	46	×	32 9248

Conv2D 44	×	44	×	32 9248

MaxPooling2D 22	×	22	×	32 0

Dropout 22	×	22	×	32 0

Conv2D 20	×	20	×	64 18,496

Conv2D 18	×	18	×	64 36,928

Conv2D 16	×	16	×	64 36,928

MaxPooling2 8	×	8	×	64 0

Dropout 8	×	8	×	64 0

Conv2D 6	×	6	×	128 73,856

Conv2D 4	×	4	×	128 147,584

Conv2D 2	×	2	×	128 147,584

MaxPooling2 1	×	1	×	128 0

Dropout 1	×	1	×	128 0

Flatten 128 0

Dense 256 33,024

Dropout 256 0

Dense 2 514

Total	parameters:	514,306
Trainable	parameters:	
514,306
Non-	trainable	parameters:	0

T A B L E  3 	 Summary	of	proposed	model	CNN	branch	2.

Layer type
Output 
dimension # Parameters

Conv2D 94	×	94	×	32 896

Conv2D 92	×	92	×	32 9248

Conv2D 90	×	90	×	32 9248

MaxPooling2D 45	×	45	×	32 0

Dropout 45	×	45	×	32 0

Conv2D 43	×	43	×	64 18,496

Conv2D 41	×	41	×	64 36,928

Conv2D 39	×	39	×	64 36,928

MaxPooling2 19	×	19	×	64 0

Dropout 19	×	19	×	64 0

Conv2D 17	×	17	×	128 73,856

Conv2D 13	×	13	×	128 147,584

Conv2D 13	×	13	×	128 147,584

MaxPooling2 6	×	6	×	128 0

Dropout 6	×	6	×	128 0

Flatten 4608 0

Dense 256 1,179,904

Dropout 256 0

Dense 2 514

Total	params:	1,661,186
Trainable	params:	1,661,186
Non-	trainable	params:	0

T A B L E  4 	 Confusion	matrix	for	IDC	classification	result.

Predicted condition
Condition 
negative

Condition 
positive

IDC	absent 13,655 2234

IDC	present 576 5736

T A B L E  5 	 Confusion	matrix	for	metastasis	type	breast	cancer	
classification.

Predicted condition
Condition 
negative

Condition 
positive

Metastasis	absent 7629 371

Metastasis	present 491 7509
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   | 9 of 14ISLAM et al.

between	the	theoretical	computational	findings	for	breast	
cancer	 and	 the	 real	 facts.	 The	 machine-	predicted	 result	
and	the	true	value	are	comparable;	the	true	positive	value	
is	7509,	and	the	true	negative	value	is	7629.	Additionally,	
the	scores	for	false	positive	and	negative	are	491	and	371,	
respectively.	 This	 matrix	 is	 essential	 for	 analyzing	 the	
success	rate	of	detecting	breast	cancer	metastases	as	well	
as	the	accuracy,	precision,	recall,	and	F1	score.

Figure 8	delineates	the	ROC	curve	for	a	CNN	method	
used	 for	 metastasis	 breast	 cancer	 detection.	 By	 utilizing	
the	ROC	curve,	the	model's	performance	can	be	assessed	
in	distinguishing	between	metastasis	and	non-	metastasis	
breast	cancer	cases.	The	true	positive	rate	(sensitivity)	rep-
resents	the	proportion	of	true	positive	cases	(i.e.,	correctly	
identified	 metastasis	 cases)	 out	 of	 all	 metastasis	 cases,	F I G U R E  5  Confusion	matrix	of	the	proposed	model	for	IDC.

F I G U R E  6  Training	and	validity	
accuracy	and	loss	curves	of	our	proposed	
model	for	IDC.

F I G U R E  7  Confusion	matrix	of	our	
proposed	model	for	metastasis	cancer	
classification.
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10 of 14 |   ISLAM et al.

while	the	false	positive	rate	(1-	specificity)	represents	the	
proportion	 of	 false	 positive	 cases	 (i.e.,	 non-	metastasis	
cases	incorrectly	identified	as	metastasis)	out	of	all	non-	
metastasis	cases.

This	graph	indicates	that	the	CNN	method	for	detecting	
metastatic	breast	cancer	has	a	high	rate	of	correctly	identi-
fying	positive	cases	(true	positives),	equal	to	10,	and	a	low	
rate	 of	 incorrectly	 identifying	 negative	 cases	 as	 positive	
(false	positives),	which	is	equal	to	nearly	zero.	Therefore,	
the	ROC	curve	hugs	the	upper	left	corner	of	the	graph.	The	
area	under	the	ROC	curve	(AUC)	is	a	statistic	that	offers	a	
comprehensive	evaluation	of	the	performance	of	the	CNN	
method,	with	values	of	0.985	which	is	closer	to	1	indicat-
ing	better	performance.	Figure 9	 represents	our	 training	
and	validation	accuracy	and	 loss	curve	 for	both	 training	
and	validation	accuracy	of	our	proposed	metastasis-	type	

breast	cancer	detection.	Here,	Tables 6	and	7	represent	the	
classification	of	different	types	of	accuracy	values	for	IDC	
and	metastasis-	type	breast	cancer	detection	respectively.

The	box	plot,	shown	in	Figure 10	depicts	 the	 level	of	
accuracy	 of	 detecting	 IDC	 and	 metastasis	 breast	 cancer.	
The	mean	success	rate	of	detection	for	metastasis	cancer	

F I G U R E  8  Receiver	operating	
characteristic	(ROC)	of	our	proposed	
model	for	metastasis.

F I G U R E  9  Training	and	validation	accuracy	and	loss	curves	of	our	proposed	model	for	metastasis	cancer.

T A B L E  6 	 The	classification	report	for	IDC	prediction	
(CNN branch	1).

Criteria Precision Recall
f1- 
score Support

IDC_absent 0.91 0.72 0.96 13,889

IDC_present 0.86 0.96 0.91 6312

Average/total 0.89 0.84 0.94 22,201
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   | 11 of 14ISLAM et al.

was	 95%	 while	 the	 IDC	 rate	 was	 89%.	 The	 F1	 score	 de-
picts	 the	 average	 of	 precision	 and	 recalls	 in	 a	 harmonic	
manner	 that	represents	 the	highest	 level	of	accuracy	 for	
detecting	 metastasis	 tissue	 (MT)	 and	 IDC	 tissue	 respec-
tively,	comprising	95%	and	94%.	The	precision	was	89%	for	
IDC	prediction,	on	the	other	hand,	the	precision	value	for	
metastasis	was	greater,	accounting	for	95%.	Moreover,	the	
positive	cases	in	the	data	(recall)	were	84%	for	IDC	tissue	
detection,	meanwhile,	the	rate	of	accuracy	for	metastasis	
tissue	was	95%.

3.2	 |	 Model comparison

We	obtained	an	average	of	89%	accuracy	for	IDC	models	
and	 95%	 accuracy	 for	 the	 metastasis	 model,	 indicating	
that	 these	 models	 are	 more	 effective.	 For	 analysis,	 the	
proposed	model	is	compared	with	state-	of-	the-	art	models	
given	in	Table 8.

A	comparison	of	the	accuracy	rate	of	CNN	base	IDC	
and	 metastasis	 breast	 cancer	 prediction	 approach	 with	
the	 other	 machine	 learning	 base	 detection	 method	 is	

Criteria Precision Recall f1- score Support

Metastasis_absent 0.94 0.95 0.95 8000

Metastasis_present 0.95 0.94 0.95 8000

Average/total 0.95 0.95 0.95 16,000

T A B L E  7 	 All	parameters	contribute	
to	predictive	uncertainty	for	metastasis	
cancer.

F I G U R E  1 0  Box	plot	for	predictive	
uncertainty.

T A B L E  8 	 Comparison	of	the	proposed	CNN	models	with	other	methods.

Authors Method(s) Cancer Types Accuracy (%) ± SD

Kahya	et al.19 Handcrafted	features	+	classification Metastasis 94.54

Zhongyi	et al.20 CSDCNN	+	multi-	classification IDC 93.2

Saxena	et al.21 Pre-	trained	network	extracted	traits	+	sSVM IDC	&	Metastasis 90.12

Alanazi	et al.22 CNN IDC 87

Nguyen	et al.24 Features	concatenation	network	+	transfer	learning IDC	&	Metastasis 92.63	±	1.68

Ragab	et al.19 DCNN-	SVM–AlexNet Metastasis 87.2

Alom	et al.26 IRRCNN IDC 96.84

Gour	et al.27 Transfer	learning	+	ResHist	CNN	(based	on	ResNet-	152) Metastasis 91.35	±	2.3

Mehra	et al.28 Fine-	tuned	pre-	trained	VGG16 Metastasis 92.60

Kamlesh	Kumar	et al.39 VGG16,	InceptionV3 IDC 85.59,	82

S.	Singh	et al.40 ResNet-	50 IDC 85.21

Sara	Hosseinzadeh	
Kassani	et al41

DenseNet Metastasis 83.10

Proposed	Models CNN IDC	&	Metastasis IDC	89	and	Metastasis	95
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shown	 in	Table 7.	Kahya	et al.	presented	a	method	 for	
breast	 tumor	 classification	 using	 an	 adaptive	 sparse	
support	 vector	 machine	 that	 selects	 features,	 and	 they	
reported	an	average	accuracy	of	94.54%	across	all	mag-
nification	factors	for	metastasis	breast	cancer	detection.	
Zhongyi	 et  al.,22	 state	 the	 Complex	 Shifting-	Dilated	
Convolutional	 Neural	 Network	 (CSDCNN)	 multi-	
classification	method	for	the	identification	of	IDC	breast	
cancer.	This	approach	obtained	an	average	accuracy	of	
93.2%	for	classifying	images	with	varying	levels	of	mag-
nification.	Alanazi	et al.42	utilized	advanced	deep	CNN	
architectures	 in	 their	 deep	 learning	 methods	 with	 the	
BreaKHis	 database	 for	 predicting	 IDC	 breast	 cancer,	
achieving	an	accuracy	rate	of	approximately	87%	while	
requiring	high-	end	hardware	resources	and	considerable	
training	 time.	 Moreover,	 Gour	 et  al.43	 trained	 transfer	
learning—ResNet-	152	networks	with	various	input	sizes	
for	 feature	extraction	 from	enhanced	and	preprocessed	
histopathology	 images.	This	 process	 was	 able	 to	 detect	
the	 metastasis	 of	 breast	 cancer	 91.35	±	2.3	 percent	 cor-
rectly.	All	of	these	models	need	high-	level	preprocessing	
and	long	training	time.	Patches	of	size	32	×	32	and	64	×	64	
were	used	to	solve	this	problem	and	augment	the	train-
ing	data,	which	were	extracted	from	the	Cancer	Institute	
of	New	Jersey	as	well	as	the	University	of	Pennsylvania	
biopsy	 images.	 Here,	 our	 CNN	 model	 needs	 very	 low-	
level	 preprocessing	 however	 patch	 results	 were	 image	
level	 accuracy	 of	 an	 average	 of	 89%	 accuracy	 for	 IDC	
models	and	95%	accuracy	for	the	metastasis	model,	indi-
cating	that	our	model	is	more	effective	than	the	state-	of-	
art	models.	We	can	assist	physicians	in	detecting	breast	
cancer	 levels	 by	 using	 our	 model	 in	 real-	time	 medical	
diagnosis	applications.

4 	 | 	 CONCLUSIONS

In	this	study,	we	aimed	to	automatically	classify	the	two	
main	 IDC	and	metastatic	breast	cancer.	Here,	 two	 types	
of	customized	CNN	models	are	proposed	for	 the	predic-
tion	of	the	cancer	types	separately	along	with	comprising	
some	 state-	of-	art	 detection	 procedures	 and	 classifica-
tion	 accuracy.	We	 utilized	 microscopic	 histopathological	
images	from	the	Cancer	Institute	of	New	Jersey	and	the	
University	 of	 Pennsylvania	 to	 train	 our	 models.	 CNN	
branches	1	and	2	were	customized	to	detect	IDC	and	me-
tastasis	breast	cancer	with	an	accuracy	of	89%	and	95%,	
respectively.	 We	 compared	 our	 classification	 accuracy	
with	 some	 state-	of-	the-	art	 models	 and	 found	 our	 pro-
posed	model	to	be	functional	in	predicting	breast	cancer.	
In	 our	 future	 work,	 we	 integrate	 eXplainable	 Artificial	
Intelligence	(XAI)	techniques	like	Grad-	CAM,	and	SHAP	

with	our	proposed	model	 to	enhance	 its	 interpretability.	
So,	oncologists	can	use	our	model	to	identify	breast	can-
cer	with	 its	current	 level,	 IDC,	or	metastasis.	The	future	
research	plan	includes	proposing	a	more	robust	and	gen-
eralized	model	utilizing	a	privately	collected	dataset	along	
with	a	private	one.
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