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1   |   INTRODUCTION

Around one in eight US women may develop invasive breast 
cancer throughout their lifetime as of January 27, 2020.1,2 

Whenever any form of the disorder is diagnosed by medi-
cal image analysis, the computer-aided diagnosis (CADx) 
system takes precedence. It gives pathologists a workflow 
as it takes only a little time to execute the results.3,4 Cancer 
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Abstract
Objective: Breast cancer is one of the leading cancer causes among women 
worldwide. It can be classified as invasive ductal carcinoma (IDC) or metastatic 
cancer. Early detection of breast cancer is challenging due to the lack of early 
warning signs. Generally, a mammogram is recommended by specialists for 
screening. Existing approaches are not accurate enough for real-time diagnostic 
applications and thus require better and smarter cancer diagnostic approaches. 
This study aims to develop a customized machine-learning framework that will 
give more accurate predictions for IDC and metastasis cancer classification.
Methods: This work proposes a convolutional neural network (CNN) model 
for classifying IDC and metastatic breast cancer. The study utilized a large-scale 
dataset of microscopic histopathological images to automatically perceive a hier-
archical manner of learning and understanding.
Results: It is evident that using machine learning techniques significantly (15%–
25%) boost the effectiveness of determining cancer vulnerability, malignancy, 
and demise. The results demonstrate an excellent performance ensuring an aver-
age of 95% accuracy in classifying metastatic cells against benign ones and 89% 
accuracy was obtained in terms of detecting IDC.
Conclusions: The results suggest that the proposed model improves classifica-
tion accuracy. Therefore, it could be applied effectively in classifying IDC and 
metastatic cancer in comparison to other state-of-the-art models.
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is defined as a heterogeneous disease made up of several 
diverse subgroups.5 Abnormal cells are not carcinogenic 
but can sometimes boost the risk of cancer. The non-
spreadable unusual cells are marked as noninvasive. Often 
this is called pre-cancer, or level 0 cancer, for example, in-
vasive ductal carcinoma (IDC) or ductal carcinoma in situ 
(DCIS).6 IDC is indeed a milk duct breast cancer and is not 
invasive. It has not progressed further than the duct from 
where it originated. If unusual cells travel outside the tis-
sue barrier where they are formed, then the cells appear 
invasive.7 When these unusual cells spread out into sur-
rounding breast tissue within the milk ducts, this is known 
as invasive breast cancer.8 Such cells may also move away 
and disperse to certain other body parts from the host site. 
Cancerous cells head for the nearby blood or lymph ves-
sels when they grow forward.9 From there, the cells can 
migrate through the bloodstream or lymph system to meet 
other body parts. Once this develops, the cells develop 
tiny tumors called “micrometastases” at first.10 Such tiny 
tumors cause the development of new blood vessels that 
are then used to drive tumor growth. This form of tumor is 
labeled as a metastatic tumor.11 Metastatic cancer is more 
dangerous and harder to cure because it creates a web of 
abnormalities throughout the body and often, we can not 
recognize from where it originated.12 Metastatic cancer is 
normally called stage IV cancer.13 With early diagnosis, it is 
possible to shrink the tumor cells and stop the cell growth 
somehow which can prolong the lifetime of a cancer pa-
tient. Therefore, if metastasis is not early diagnosed, the 
cell growth will be more rapid and large. But it does not 
mean metastatic cancer is not curable. If metastatic can-
cers are diagnosed early, patients may recover optimally 
from successful early therapeutic interventions. For this 
form of intelligent image processing, machine learning or 
more specifically deep neural networks can be used with 
success.

Models based on CNN consist of multiple layers of con-
volutional and pooling layers.14 The convolutional layer 
can be considered as running sliding windows over inputs 
and multiplying the components.15 It uses matrix multipli-
cations instead of loops since these scale better and operate 
faster.16 Compared to conventional completely connected 
layers, coevolutionary layers have a few parameters in 
which a model uses the same parameters in more than one 
location.17 That enables the model more effective, both sta-
tistically and in terms of computation. CNN has excellent 
feature extraction capabilities in medical images.18

To chase the classification of breast cancer cells, sev-
eral detection approaches through image analysis have 
been previously explored by many researchers. Petushi 
et  al.19 developed an automated computational method 
for tissue classification based on micro-texture features of 
tissues by dividing the nuclei into segments and analyzing 

them, two textural features (nuclei surface density along 
with spatial position) were extracted. The proposed ap-
proach was employed to differentiate between different 
categories of tumor cells as well as surrounding tissues 
such as stroma or adipose tissue. The proposed method 
can be an efficient tool in classifying the tumor cells based 
upon the subdivision of the whole slide images having a 
dense concentration of cancer cell nuclei that aligns with 
the slide's overall grade classification. Unlike the paper 
approaching binary classification, Zhongyi et  al. priori-
tized the multi-classification of breast cancer.20 According 
to their proposal, a comprehensive model based on a 
class structure-based deep convolutional neural network 
(CSDCNN) that pursued an end-to-end training manner 
and is capable of learning semantic features from low 
level to high level. The design of CSDCNN has been devel-
oped to accomplish an account of the relation of feature 
spaces among intra-class. Here, inter-class as well with 
a noteworthy performance, and accuracy of an average 
of 93.2% on the demonstration of multi-classification of 
breast cancer cells has been achieved so.

Spaniel et al.21 brought out an approach that provided a 
map of binary classification that is designed to categorize 
benign and malignant tumors through different feature 
descriptors and machine-learning classifiers. They drew 
out patches of 32 × 32 and 64 × 64 from the images to in-
struct their CNN. Here, the accuracy gained was around 
80% to 85%. Cruz Roa et.al22 built up a trained CNN that 
operated on 100 × 100 size patches taken out. Among the 3 
layers of CNN architecture, two of the layers were utilized 
for performing convolution and pooling operations, while 
the remaining layers are fully connected. Using this, they 
constructed a probability map where the predicted IDC 
regions were highlighted and perceived a balanced accu-
racy of about 84.23%. On an overall slide level, Bejnordi 
et al.23 approach can automatically identify ductal carci-
noma in  situ (DCIS) and distinguish it from the benign 
area. They developed a novel data-driven system that is 
primarily susceptible to demonstrating stromal morpho-
logical features to distinguish between those with breast 
cancer and those who have benign breast ailments with 
an accuracy of about 92%. Beck et  al.24 generated a C-
Path system to measure a rich number of morphological 
features that could determine the characteristics of prog-
nostic relevance to provide a prompt means for assessing 
prognosis from microscopic image data. The significance 
of stromal morphological traits as a crucial prognostic 
factor in breast cancer was demonstrated in new ways by 
this model. Paper25 created a computer-aided diagnosis 
(CAD) system that can detect and differentiate between 
benign and malignant tumors in breast mammography 
images. The system required a region of interest (ROI) 
and threshold-based approaches to segment the images. 
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DCNN framework AlexNet is being used for the extraction 
of the elements. The support vector machine classifier was 
merged with the final fully connected layer to increase 
accuracy. They utilized two public datasets: (i) the digi-
tal mammography screening database (DDSM), and (ii) 
DDSM's Curated Breast Imaging Subset (CBIS-DDSM). 
In,19 a CAD method is built for masses in the volume of 
digital breast tomosynthesis (DBT) that uses a deep coevo-
lutionary neural network (DCNN) with mammographic 
transfer learning. It used digitized films and mammogram 
images. To minimize overfitting, jittering, and dropout 
strategies were employed. The performance of two CAD 
mass detection systems in DBT was compared that used 
the DCNN and FP reduction feature-based approaches.

The accuracy level of the proposed CNN model is com-
pared with the other methods regarding breast cancer detec-
tion shown in Table 4. Dina et al. proposed a method where 
they used the combination of DCNN, SVM, and AlexNet 
methods for detecting breast cancer detection, where the 
accuracy level was 87.2%.19 In the same way, Zhongyi et al. 
used CSDCNN and the multiclassification method where 
they got 93.2% accuracy.26 In other words, Shweta et  al. 
analyzed breast cancer based on the pre-trained network 
extracted traits and SVM and achieved an average accuracy 
of 90.12%.27 Moreover, Saad et al. used the CNN technique 
to classify cancer detection by examining the zones of hos-
tile ductal carcinoma tissue in whole-slide images (WSIs). 
The success rate of that proposed system was 87%. Fabio 
et al. proposed a handcrafted feature-based breast cancer 
classification method based on the BreaKHis dataset and 
achieved 94.54% accuracy.28 Kalpana et al. stated a method 
based on three training strategies: nucleus patches, trans-
fer learning, and classifier fusion. The average level of 
success rate was 96.91 ± 0.67 [29n]. Long and colleagues 
proposed a novel deep neural network structure that uses 
transfer learning for the classification of microscopic im-
ages. Their proposed network utilizes the features extracted 
from three pre-trained deep CNNs, where the accuracy was 
92.63 ± 1.68.29 Using the BreaKHis dataset, Gour et  al.17 
proposed the ResHist model, a modified version of the 
ResNet-152 architecture that can be utilized for breast can-
cer classification. For various magnification factors, one 
can expect an average accuracy of 91.35 ± 2.3 at the image 
level by using this technique. Shallu and colleagues estab-
lished a framework that focuses on fine-tuned pre-trained 
VGG16 networks where the precision rate was 92.60%.30 
Varsha et al. used a variety of machine learning classifica-
tion techniques, including Random Forest (RF), Adaboost, 
XGBoost, Naïve Bayes (NB), Logistic Regression (LR), and 
Support Vector Machine, etc on a dataset of breast cancer 
patients.31 The techniques were evaluated using various 
performance measures. Among all models, it has been dis-
covered that the decision tree and XGBoost classifier have 

the highest accuracy (97%). An additional study was to cre-
ate a new neural network for breast cancer diagnosis, we 
integrated US characteristics extracted by a modified VGG-
11 network with pictures rebuilt from a DOT deep learning 
auto-encoder-based model, which was inspired by a fusion 
model deep learning technique.32 After training on simula-
tion data and refining it with clinical data, the mixed neural 
network model attained an AUC of 0.931. Mahendran et al. 
proposed a machine-learning model based on blood profile 
data to classify metastasis cancer.33 To categorize cancer 
metastases, Mahendran et al. presented a machine-learning 
model based on blood profile data. An 83% accuracy rate 
with an AUC of 0.87 was demonstrated by a Decision 
Tree (DT) classifier. Next, to develop a web application 
for reliable MBC patient diagnosis, they implemented DT 
classifiers using Flask. Lastly according to Cengiz et al.,34 
proposed a CNN-based breast cancer classification tech-
nique from noisy breast histopathological images. Initially, 
the photos in the utilized data set were supplemented with 
various kinds and levels of noise. Subsequently, the Wavelet 
Transform (WT) technique was utilized to eliminate noise 
from photographs. The suggested framework classified 
breast cancer with 86% accuracy.

This article discusses computer-assisted image pro-
cessing of histopathology to diagnose the presence of IDC 
and metastatic cancer cells and for this, we used Kaggle's 
version of the PatchCamelyon dataset. The benchmark 
PatchCamelyon is a recent and demanding data collection 
for the classification of images. It comprises 327,680 color 
images of size 96 × 96 taken from lymph node segment 
histopathologic scans. PCam offers a modern standard 
for machine learning frameworks. The visual analysis of 
images refers to inconsistency in diagnosis after obtain-
ing a digital histology image from a biopsy specimen. 
Computer-assisted systems are used to resolve this prob-
lem that providing an objective assessment of diseases.35 
The main novel aspects of this work are next summarized.

1.	 Novel Model: We present our customized unique CNN-
based model for both IDC and metastasis-type breast 
cancer classification. By using simple patching and 
normalization prepossessing, we significantly improve 
accuracy compared with state-of-the-art other research 
approaches even pre-trained well-known models.

2.	 Dataset Invariance: The proposed Branch CNN-based 
model is evaluated with breast histopathology datasets 
containing IDC and Metastasis cancer images and it 
generated state-of-the-art results. Therefore, the model 
is generalized and dataset invariant.

3.	 Performance: A comprehensive empirical assessment 
is performed by systematically manipulating the model 
configurations and hyperparameters of CNN. Finally, 
an effective model with higher accuracy (of 95% and 
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89% for Metastasis and IDC breast cancer respectively) 
is developed compared with both transfer-based learn-
ing and unique contributions of state-of-the-art ma-
chine learning approaches.

The remaining portion of the paper is divided into three 
sections. In Section 2, we discuss the methodology of our 
work which includes dataset collection, prepossessing, a 
brief discussion on the CNN model architecture, model 
parameters, layers, activation function, and optimization 
algorithm. The results of both IDC and metastasis-type 
breast cancer classification are given in Section 3. Finally, 
Section 4 discusses the conclusion and future aspects of 
our research work.

2   |   METHODOLOGY

This section presents an overview of the used datasets, 
data preprocessing techniques, and model architecture, 
training of the model, activation function optimization 
algorithm. Our proposed branch CNN model takes breast 
histopathological images as input and predicts cancer type 
as output. The overall structure of our approach for classi-
fying breast cancer is shown in Figure 1. The CNN model 
is comprised of two different branches for predicting the 
presence of IDC and metastasis.

2.1  |  Dataset collection and 
preprocessing

As our comprehensive research on breast cancer clas-
sification deals with two types of binary classifications, 
we used a dataset for this evaluation process to meet the 
purpose. In the case of binary classification of IDC, a 

bundle of breast histopathology images has been used 
that is expansively available for the researchers as pro-
vided by the authors.36 The original dataset comprises 
BCa histopathologic slide images collected from 162 
patients diagnosed with IDC at the Hospital of the 
University of Pennsylvania and The Cancer Institute of 
New Jersey. Evaluating the whole histopathology im-
ages is quite turbulent due to their large size, leading 
to the preprocessing of images as the size of the images 
was reduced to 277,524 total image patches that in-
clude 198,738 IDC negatives and 78,786 IDC positives. 
Figure 2 represents the parching process for our work. 
The format used for the classification purpose was view-
ing software ImageScope from Aperio, which was used 
to plot the annotations along with it. Regarding param-
eter examinations, the subsets of the used data comprise 
84 training and 29 validations, while the remaining 49 
were used for testing purposes. If our input image I is 
of size H × W (height H and width W), and we want to 
resize it to a new size ′H′ × W′. The resized image ′I′ is 
computed as follows:

For each pixel (x',y') in the resized image ′I′, where 
x' = 0,1, … W′ − 1 and y' = 0,1, … H′ − 1, compute the cor-
responding coordinates (x,y) in the original image I using:

Then, we normalize our image before using it for train-
ing purposes. The mathematical notation for this type of 
normalization can be expressed as follows:

Given an input image I of size m × n with pixel values 
Iij where i = 1,2…m and j = 1,2…n, the normalized image 
Inorm is calculated as:

x= scale_factor_width×x ’, y= scale_factor_height×y’

(1)Inorm =
I − �

�

F I G U R E  1   The overall framework of our proposed CNN-based model to predict breast cancer status. Model inputs breast cancer-based 
histopathological images are preprocessed, trained, and finally classified as IDC, metastasis, or none.
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where, μ represents the mean of all pixel values in the 
image I. σ represents the standard deviation of all pixel val-
ues in the image I. Inorm represents the normalized image.

In the case of another binary detection regarding the 
benign and metastasis cancer cells, the PatchCamelyon 
benchmark dataset was used which is much more dig-
itized and clinically modified for this metastasis detec-
tion purpose.37 This data cohort comprises 220 K training 
image files and 57.5 K files entitled based on the image 
identity. The train_labels.csv used here meets the purpose 
of serving the ground truth for images in the training lo-
cation. Each positive indication represents that a mini-
mum of one pixel of tumor tissues is present in the patch's 
32-by-32-pixel center.38,39

2.2  |  Model architecture

In this section, we will discuss the overall architecture of 
our proposed branch CNN-based breast cancer detection 
model. Model CNN layers, activation functions, and opti-
mization algorithms will be discussed in this subsection.

2.2.1  |  CNN layer

CNN is used primarily in computer vision as well 
as image processing tasks. It is designed to process 
and analyze grid-like structured data such as images, 
audio, and video by using a set of convolutional layers 

to identify features and patterns in the data. In several 
computer vision tasks like semantic segmentation, ob-
ject identification, and picture classification, CNNs have 
demonstrated exceptional outcomes, positioning them 
at the forefront of the field. One of the key benefits of 
a CNN-based deep learning architecture is it needs pre-
processing of the dataset or sometimes needs a very little 
bit of preprocessing. Its working principle is very similar 
to the human neuron and the learning process is very 
efficient compared to other deep learning models. The 
starting operation of a CNN model is just a convolution 
operation with filter and image.

In the CNN model, the filter is defined as the kernel. The 
convolutional layers play a crucial role in the architecture 
of CNN. In this layer, matrix multiplication is performed 
between the specific shape of the kernel and input images. 
In our proposed architecture, the main CNN layer contains 
two sub-branches: CNN branch 1, and CNN branch 2. Each 
sub-branch contains three sets of ReLU, convolution, and 
pooling layers. In the end, flattened and dense layers are 
connected. If we consider a single image output image after 
one convolution will be nA × nB × nC based on the length of 
filters, input images, and weight. The bias is represented in 
expressions (2), (3), (4), and (5), respectively.

(2)size_of_input = n
[l−1]
A

× n
[l−1]
B

× n
[l−1]
C

(3)size_of_filter = f
[l]
A

× f
[l]
B

× f
[l−1]
C

F I G U R E  2   Represents patching of 
images.
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The output layer at level l can be measured as by the 
equation (5) given below.

The measurement of nW is very similar to nA shown 
in equation (6) where s[l] and p[l] represent the stride and 
padding size respectively. We used a 3 × 3 filter size in the 
two CNN branches in each convolution layer.

2.2.2  |  Activation functions

Several activation functions can be used in CNNs. Some 
popular ones include ReLU, sigmoid, tanh, and softmax. In 
this research, the commonly used sigmoid activation func-
tion is applied. It squashes the input values within the range 
of zero to one. The mathematical expression for the sigmoid 
activation function can be expressed in equation (8).

2.2.3  |  Optimization algorithm

Optimization algorithms are used to update the weights of 
the neural network during training. Several optimization al-
gorithms can be used for CNNs. Some of the most commonly 
used ones are stochastic gradient descent (SGD), Adam, 
Adagrad, RMSprop, Adadelta, and Nesterov accelerated 
gradient (NAG). Here, we use the ‘Adam’ algorithm which 
is a very popular optimization algorithm that combines the 
advantages of the Adagrad and RMSprop algorithms. It uses 
a running average of both the first and second moments of 
the gradients to update the weights. Image moment which 
is denoted by Mij, and calculated as:

where i and j are non-negative integers denoting the order 
of the moment. x and y represent the pixel coordinates 
within the image. I(x,y) is the intensity of the pixel at co-
ordinates (x,y).

Since f(x,y) is a binary image, its value will always 
be one or zero. It is simple to observe that this equation 

assigns a value of one to each pixel in our image. In es-
sence, it determines our binary image's area. By comput-
ing the core moment, we can determine the moments for 
every single blob. Our common formula is to determine 
the central moment of a blob about any point.

where x and y are the centroid coordinates of the image, 
calculated as the mean of all pixel coordinates weighted 
by the intensity values. The Adaptive Moment Estimation 
(Adam) gradient descent algorithm is used to optimize 
the neural network. For ‘Adam’ the update rule of the 
parameter is like below. For each parameter wj; If we 
represent; η = Initial learning rate; gt = Gradient at time t 
along wj; Vt = Exponential average of the gradient along 
wj; St = Exponential average of the square of the gradient 
along wj; β1, β2 = Hyperparameters.

Then,

Again, it can be written that,

where mt and vt indicate the estimates of the 1st moment 
(i.e. mean) and the second moment (i.e. un-centered vari-
ance) of the gradient respectively.

Here for the ‘Adam’ optimizer the best fit value of 
decay rate β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

2.2.4  |  Training model

For both of the branches, we split our data for training 
and testing as 80% and 20%, respectively. We use 15% of 
our training data to validate our models. Figures 3 and 4 
represent the subbranch layers with input and output 

(4)size_of_weight =
(

f
[l]
A

× f
[l]
B

× f
[l−1]
C

)

× n
[l]
C

(5)size_of_bais = 1 × 1 × 1 × n
[l]
C

(6)nA =

n
[l−1]
A

+ 2p[l] − f [l]

S[l]
+ 1

(7)size_of_output = n
[l]
A

× n
[l]
B

× n
[l]
C

(8)f (x) =
1

1 + e(−x)

(9)Mij =
∑

x

∑

y

xiyj. I(x, y)

(10)�ij =
∑

x

∑

y

(x−x)i(y−y)j. I(x, y)

(11)Vt = �1 ∗Vt−1 −
(

1 − �1

)

∗ gt

(12)St = �2 ∗St−1 −
(

1 − �2

)

∗ g2t

(13)Δwt = − �
Vt

√

St + �

∗ gt

(14)wt+1 = wt+1 +Δwt

(15)�t+1 = �t −
n

√

v̂ + ∈

m̂t

(16)m̂t =

mt

1 − �
t
1

(17)v̂t =

vt

1 − �
t
2
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dimensions. Here, we used p = 1 and s = 1 for the general-
ized value for overall the networks. The maximum polling 
approach is used in our network. To implement the learn-
ing process of our proposed model, Google Colab is em-
ployed. Table 1 is given to show the used parameters for 
our proposed model. The overall summary of the training 
process is shown in Tables 2 and 3.

3   |   RESULTS AND DISCUSSION

In our experiment, we classified breast cancers of the IDC 
and metastatic types using a CNN model based on branch 
CNN. We divide the results section into two subsections in 

this section: one for model performance, and the other for 
a comparison of the model with the state of art models for 
classifying breast cancer.

F I G U R E  3   Framework of the proposed CNN branch 1 for IDC breast cancer classification.

F I G U R E  4   Framework of the proposed CNN branch 2 for metastasis breast cancer classification.

T A B L E  1   The values of our proposed CNN model 
hyperparameters.

Serial 
number Hyperparameters Values Notation

1 Batch size 128 -

2 Model dimension 128 dmodel
3 Epochs for branch 1 40 -

4 Epochs for branch 2 20 -

5 Dropout rate 0.02 -
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3.1  |  Model performance

In this subsection, we will analyze the brunch-wise 
model performance of our proposed research work. 
Tables 4 and 5 respectively represent the confusion matrix 
for IDC and metastatic model with a total dataset of 22,201 
and 16,000. Figures 6 and 9 show training and validation 
accuracy are relatively high concerning the corresponding 
loss for both models.

3.1.1  |  For CNN branch 1

Figure 5 and Table 4 depict the confusion matrix for IDC 
breast cancer. This represents the computational breast 
cancer hypothetical results compared with the actual 
data. The 5736 images predicted correctly the presence of 
IDC while 13,655 are identified as the absence of IDC; the 
machine anticipated result and the actual value are simi-
lar. Moreover, the false negative and false positive scores 
are 2234 and 576 respectively. This matrix is crucial for 
measuring the accuracy, precision, recall, and F1 score 
followed by the success rate of detection of IDC breast 
cancer.

Figure  6 depicts the IDC breast cancer detection ex-
periment, training accuracy, and validation accuracy both 
rose and stabilized at a certain point while training loss 
and validation loss both decreased. This denotes a model 
with the best fit—one that is neither overfit nor underfit.

3.1.2  |  For the CNN branch 2

Figure 7 and Table 5 elucidate a confusion matrix of me-
tastasis breast cancer. This demonstrates the comparison 

T A B L E  2   Summary of proposed model CNN branch 1.

Layer type
Output 
dimension # Parameters

Conv2D None, 48, 
48, 32

896

Conv2D 46 × 46 × 32 9248

Conv2D 44 × 44 × 32 9248

MaxPooling2D 22 × 22 × 32 0

Dropout 22 × 22 × 32 0

Conv2D 20 × 20 × 64 18,496

Conv2D 18 × 18 × 64 36,928

Conv2D 16 × 16 × 64 36,928

MaxPooling2 8 × 8 × 64 0

Dropout 8 × 8 × 64 0

Conv2D 6 × 6 × 128 73,856

Conv2D 4 × 4 × 128 147,584

Conv2D 2 × 2 × 128 147,584

MaxPooling2 1 × 1 × 128 0

Dropout 1 × 1 × 128 0

Flatten 128 0

Dense 256 33,024

Dropout 256 0

Dense 2 514

Total parameters: 514,306
Trainable parameters: 
514,306
Non-trainable parameters: 0

T A B L E  3   Summary of proposed model CNN branch 2.

Layer type
Output 
dimension # Parameters

Conv2D 94 × 94 × 32 896

Conv2D 92 × 92 × 32 9248

Conv2D 90 × 90 × 32 9248

MaxPooling2D 45 × 45 × 32 0

Dropout 45 × 45 × 32 0

Conv2D 43 × 43 × 64 18,496

Conv2D 41 × 41 × 64 36,928

Conv2D 39 × 39 × 64 36,928

MaxPooling2 19 × 19 × 64 0

Dropout 19 × 19 × 64 0

Conv2D 17 × 17 × 128 73,856

Conv2D 13 × 13 × 128 147,584

Conv2D 13 × 13 × 128 147,584

MaxPooling2 6 × 6 × 128 0

Dropout 6 × 6 × 128 0

Flatten 4608 0

Dense 256 1,179,904

Dropout 256 0

Dense 2 514

Total params: 1,661,186
Trainable params: 1,661,186
Non-trainable params: 0

T A B L E  4   Confusion matrix for IDC classification result.

Predicted condition
Condition 
negative

Condition 
positive

IDC absent 13,655 2234

IDC present 576 5736

T A B L E  5   Confusion matrix for metastasis type breast cancer 
classification.

Predicted condition
Condition 
negative

Condition 
positive

Metastasis absent 7629 371

Metastasis present 491 7509
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      |  9 of 14ISLAM et al.

between the theoretical computational findings for breast 
cancer and the real facts. The machine-predicted result 
and the true value are comparable; the true positive value 
is 7509, and the true negative value is 7629. Additionally, 
the scores for false positive and negative are 491 and 371, 
respectively. This matrix is essential for analyzing the 
success rate of detecting breast cancer metastases as well 
as the accuracy, precision, recall, and F1 score.

Figure 8 delineates the ROC curve for a CNN method 
used for metastasis breast cancer detection. By utilizing 
the ROC curve, the model's performance can be assessed 
in distinguishing between metastasis and non-metastasis 
breast cancer cases. The true positive rate (sensitivity) rep-
resents the proportion of true positive cases (i.e., correctly 
identified metastasis cases) out of all metastasis cases, F I G U R E  5   Confusion matrix of the proposed model for IDC.

F I G U R E  6   Training and validity 
accuracy and loss curves of our proposed 
model for IDC.

F I G U R E  7   Confusion matrix of our 
proposed model for metastasis cancer 
classification.
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10 of 14  |      ISLAM et al.

while the false positive rate (1-specificity) represents the 
proportion of false positive cases (i.e., non-metastasis 
cases incorrectly identified as metastasis) out of all non-
metastasis cases.

This graph indicates that the CNN method for detecting 
metastatic breast cancer has a high rate of correctly identi-
fying positive cases (true positives), equal to 10, and a low 
rate of incorrectly identifying negative cases as positive 
(false positives), which is equal to nearly zero. Therefore, 
the ROC curve hugs the upper left corner of the graph. The 
area under the ROC curve (AUC) is a statistic that offers a 
comprehensive evaluation of the performance of the CNN 
method, with values of 0.985 which is closer to 1 indicat-
ing better performance. Figure 9 represents our training 
and validation accuracy and loss curve for both training 
and validation accuracy of our proposed metastasis-type 

breast cancer detection. Here, Tables 6 and 7 represent the 
classification of different types of accuracy values for IDC 
and metastasis-type breast cancer detection respectively.

The box plot, shown in Figure 10 depicts the level of 
accuracy of detecting IDC and metastasis breast cancer. 
The mean success rate of detection for metastasis cancer 

F I G U R E  8   Receiver operating 
characteristic (ROC) of our proposed 
model for metastasis.

F I G U R E  9   Training and validation accuracy and loss curves of our proposed model for metastasis cancer.

T A B L E  6   The classification report for IDC prediction 
(CNN branch 1).

Criteria Precision Recall
f1-
score Support

IDC_absent 0.91 0.72 0.96 13,889

IDC_present 0.86 0.96 0.91 6312

Average/total 0.89 0.84 0.94 22,201
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      |  11 of 14ISLAM et al.

was 95% while the IDC rate was 89%. The F1 score de-
picts the average of precision and recalls in a harmonic 
manner that represents the highest level of accuracy for 
detecting metastasis tissue (MT) and IDC tissue respec-
tively, comprising 95% and 94%. The precision was 89% for 
IDC prediction, on the other hand, the precision value for 
metastasis was greater, accounting for 95%. Moreover, the 
positive cases in the data (recall) were 84% for IDC tissue 
detection, meanwhile, the rate of accuracy for metastasis 
tissue was 95%.

3.2  |  Model comparison

We obtained an average of 89% accuracy for IDC models 
and 95% accuracy for the metastasis model, indicating 
that these models are more effective. For analysis, the 
proposed model is compared with state-of-the-art models 
given in Table 8.

A comparison of the accuracy rate of CNN base IDC 
and metastasis breast cancer prediction approach with 
the other machine learning base detection method is 

Criteria Precision Recall f1-score Support

Metastasis_absent 0.94 0.95 0.95 8000

Metastasis_present 0.95 0.94 0.95 8000

Average/total 0.95 0.95 0.95 16,000

T A B L E  7   All parameters contribute 
to predictive uncertainty for metastasis 
cancer.

F I G U R E  1 0   Box plot for predictive 
uncertainty.

T A B L E  8   Comparison of the proposed CNN models with other methods.

Authors Method(s) Cancer Types Accuracy (%) ± SD

Kahya et al.19 Handcrafted features + classification Metastasis 94.54

Zhongyi et al.20 CSDCNN + multi-classification IDC 93.2

Saxena et al.21 Pre-trained network extracted traits + sSVM IDC & Metastasis 90.12

Alanazi et al.22 CNN IDC 87

Nguyen et al.24 Features concatenation network + transfer learning IDC & Metastasis 92.63 ± 1.68

Ragab et al.19 DCNN-SVM–AlexNet Metastasis 87.2

Alom et al.26 IRRCNN IDC 96.84

Gour et al.27 Transfer learning + ResHist CNN (based on ResNet-152) Metastasis 91.35 ± 2.3

Mehra et al.28 Fine-tuned pre-trained VGG16 Metastasis 92.60

Kamlesh Kumar et al.39 VGG16, InceptionV3 IDC 85.59, 82

S. Singh et al.40 ResNet-50 IDC 85.21

Sara Hosseinzadeh 
Kassani et al41

DenseNet Metastasis 83.10

Proposed Models CNN IDC & Metastasis IDC 89 and Metastasis 95
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12 of 14  |      ISLAM et al.

shown in Table 7. Kahya et al. presented a method for 
breast tumor classification using an adaptive sparse 
support vector machine that selects features, and they 
reported an average accuracy of 94.54% across all mag-
nification factors for metastasis breast cancer detection. 
Zhongyi et  al.,22 state the Complex Shifting-Dilated 
Convolutional Neural Network (CSDCNN) multi-
classification method for the identification of IDC breast 
cancer. This approach obtained an average accuracy of 
93.2% for classifying images with varying levels of mag-
nification. Alanazi et al.42 utilized advanced deep CNN 
architectures in their deep learning methods with the 
BreaKHis database for predicting IDC breast cancer, 
achieving an accuracy rate of approximately 87% while 
requiring high-end hardware resources and considerable 
training time. Moreover, Gour et  al.43 trained transfer 
learning—ResNet-152 networks with various input sizes 
for feature extraction from enhanced and preprocessed 
histopathology images. This process was able to detect 
the metastasis of breast cancer 91.35 ± 2.3 percent cor-
rectly. All of these models need high-level preprocessing 
and long training time. Patches of size 32 × 32 and 64 × 64 
were used to solve this problem and augment the train-
ing data, which were extracted from the Cancer Institute 
of New Jersey as well as the University of Pennsylvania 
biopsy images. Here, our CNN model needs very low-
level preprocessing however patch results were image 
level accuracy of an average of 89% accuracy for IDC 
models and 95% accuracy for the metastasis model, indi-
cating that our model is more effective than the state-of-
art models. We can assist physicians in detecting breast 
cancer levels by using our model in real-time medical 
diagnosis applications.

4   |   CONCLUSIONS

In this study, we aimed to automatically classify the two 
main IDC and metastatic breast cancer. Here, two types 
of customized CNN models are proposed for the predic-
tion of the cancer types separately along with comprising 
some state-of-art detection procedures and classifica-
tion accuracy. We utilized microscopic histopathological 
images from the Cancer Institute of New Jersey and the 
University of Pennsylvania to train our models. CNN 
branches 1 and 2 were customized to detect IDC and me-
tastasis breast cancer with an accuracy of 89% and 95%, 
respectively. We compared our classification accuracy 
with some state-of-the-art models and found our pro-
posed model to be functional in predicting breast cancer. 
In our future work, we integrate eXplainable Artificial 
Intelligence (XAI) techniques like Grad-CAM, and SHAP 

with our proposed model to enhance its interpretability. 
So, oncologists can use our model to identify breast can-
cer with its current level, IDC, or metastasis. The future 
research plan includes proposing a more robust and gen-
eralized model utilizing a privately collected dataset along 
with a private one.
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