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Abstract. The problem of convective heat transfers of Eyring-Powell conveying Copper (Cu) coupled with alumina (Al2O3) are 
employed as the combination of particles, along with water as the base fluid over a vertical Riga plate is numerically addressed. 
The performance of heat transmission is influenced by the electromagnetohydrodynamic (EMHD) imposed produced from the Riga 
plate, and it could be used to postpone boundary layer separation. A model in the form of Partial Differential Equations (PDEs) is 
introduced to describe the physical behavior of the proposed problem. With the inclusion of relevant equation variables, this 
collection of PDEs is transformed into Ordinary Differential Equations (ODEs) which are in a less complex form. Then the bvp4c 
solver was employed to solve the respective equations. The characteristics of fluid velocity and temperature are investigated 
graphically. It is found the buoyancy assisting and opposing flows offered dual solutions whereas the purely forced convection flow 
gives a unique solution. Through an investigation of flow stability, the first solution is confirmed as the physical one. In essence, 
the volumetric concentration of Cu increases the heat-transferring ability for assisting and opposing flows. The higher suction 
imposed at the boundary causes a decrease in the heat transfer rate under the shrinking case. 

Keywords: Mixed convection; hybrid nanofluid; Eyring-Powell; Riga plate; stagnation point flow. 

1. Introduction 

Convection refers to the transfer of heat from one place to another by fluid motion. Forced convection occurs when an external 
source drives fluid motion. However, natural convection occurs when buoyant forces due to density variations alone drive fluid 
motion. Mixed convection occurs when both forced and natural convection mechanisms are at work. The study of mixed convection 
flow is essential in various manufacturing processes that involve fluid flow. The presence of dual solutions in computation is a topic 
of interest among researchers. For example, Merkin [1] investigated the convective flow towards a vertical plate in a porous medium. 
Merkin [2] discovered dual solutions in his study. Lok et al. [3] observed similar problems for the stagnation micropolar fluid, which 
led to the extension of this study to the stagnation flow problem. Ishak et al. [4] discovered that non-unique solutions are also 
possible for the assisting flow as opposed to the opposing flow. Additionally, Subhashini et al. [5], Harris et al. [6], Rosca et al. [7], 
and Khashi'ie et al. [8, 9] are also working on determining the dual solutions specifically for the case of mixed convection flow. 

Over the past several years, plenty of studies have been carried out on the development of enhanced heat transfer fluids. Such 
fluids like Ethylene glycol, oil, and water are among the regular fluids that are frequently utilized in engineering and manufacturing 
industries. However, these fluids' delayed heat transfer rate is a result of their poor thermal conductivity. To cover up for this 
shortcoming, a substance known as "nanofluid" is applied to the fluids in a single nanoparticle. A hybrid nanofluid is then created 
to improve the standard nanofluid's thermal capabilities. The work by Turcu et al. [10] and Jana et al. [11] were among the pioneers 
who used hybrid nano-composite particles. Such fluid was an advanced fluid entailing a combination of particles with a base fluid 
that improvised the rate of heat transfer (Sarkar et al. [12]). According to Devi & Devi [13], Cu-Al2O3 /water hybrid nanofluids 
transferred heat more rapidly than the nanofluid (Cu-water) when a magnetic field was utilized (magnetohydrodynamics MHD). 
The adapted thermophysical parameters described were in exceptional agreement with the previously collected work done by 
Suresh et al. [14]. They modified the model by Tiwari and Das [15] to include these new thermophysical features. Meanwhile, using 
a Cu- Al2O3/water hybrid nanofluid, Nadeem et al. [16] investigated stagnation flow embedding with thermal slip over a circular 
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cylinder. A model was also created by Sajid & Ali [17] and Esfe et al. [18] to forecast the conductivity, especially in carbon nanotubes. 
Thermal materials, field emission, conductive qualities, energy storage, CNT-based molecular electronics and control of thermal 
conductivity are just some of the possible applications of carbon nanotubes. Due to their high molecular weight, they are virtually 
impermeable in any known solution (He & Abd Elazem [19]). Alumina and copper are commonly used together in theoretical and 
practical research on hybrid nanofluids. The irreversibility analysis of Al2O3-water nanofluid flow with changeable characteristics, 
carried out by Kumar et al. [20], is one of the most recent advances in nanofluids. Muhammad et al. [21] research on hybrid 
nanoparticles of CuO and CNTs in engine oil, taking into account viscous dissipation. Other scholars, such as Hanafi et al. [22], have 
further investigated the uses, development, and thermophysical characteristics of hybrid nanofluids. 

Research related to heat transfer in fluids has always been of great interest to scientists, especially in discovering ways to 
enhance them. However, the selection of fluid based on factors such as homogeneity, compressibility, fluid type, and phases plays 
a crucial role in determining the fluid characteristics. These characteristics become the main properties in preparing the improvised 
heat transfer rate. Non-Newtonian fluids, such as those that resemble blood or shampoo, cannot be modeled using the Navier-
Stokes equations that are related to Newtonian fluids due to their complex equations. Powell-Eyring (1944) has produced some 
methods for the viscosity relaxation theory of prevalent non-Newtonian fluids. Javed et al. [23] examined the research on an Eyring-
Powell fluid's stretching flow. The Keller-box technique was used to numerically develop a locally similar solution. It was found that 
non-Newtonian characteristics have a greater effect on the velocity magnitude compared to a similar Newtonian fluid. Jalil et al. 
[24] examined the flow of Eyring-Powell over a moving permeable surface by considering the effects employed the Keller-box 
method. Ali & Zaib [25] conducted an analytical examination of the model of Eyring-Powell nanofluid over a stretching sheet with 
convective boundary conditions while the numerical examination was taken care of by Aljabali et al. [26-28]. Additionally, Rashad 
et al. [29] recently embedded the heat generation and porosity in the flow field. 

A magnetic field is an important factor in analyzing the thermophysical properties of fluids. Electromagnetic force can be used 
to monitor fluid movement in highly conductive fluids. The Riga plate, which is a magnetic bar with alternating electrodes and 
permanent magnets, can be used as an external constraint to enhance fluid electricity. Gailitis [30] used this type of plate to reduce 
the hydrodynamic resistance of an electrolyte. Meanwhile, Iqbal et al. [31] employed the Keller-box scheme to assess the effects of 
stagnation flow on a Riga plate and confirmed the decay of temperature distribution due to melting heat transfer while improvised 
by the radiative circumstance. Rasool and Zhang [32] studied the second-grade nanofluidic flow across a convectively heated vertical 
Riga plate, while Nasrin et al. [33] investigated the laminar and incompressible Casson fluid flows over a horizontal Riga plate. 
Khashi’ie [34, 35] presented a convection hybrid nanofluid flow and stagnation point over a vertical Riga plate with a suction effect. 
Other valuable investigations of the Riga plate include those by Goud [36] and Akaje [37].  

The current study aims to analyze the flow of Eyring-Powell fluid towards a porous Riga plate affected by conveying the hybrid 
nanofluid. Accordingly, buoyancy assisting and opposing flow regions are explored for dual solutions under suction and EMHD 
parameters. Water is used as the base fluid along with Cu and Al2O3. The Devi & Devi [13] correlation is used while the Eyring-Powell 
model is adopted from Javed et al. [23]. The reduced ODEs are then solved by the bvp4c method. 

2. Mathematical Model 

The Eyring-Powell fluid conveying Cu- Al2O3/ water on the Riga plate is considered as laminar, stable, and incompressible NH as 
thermal boundary condition where the Riga plate is composed of electrodes with magnets having the same width p, S. N  (north) 
and S  (south) represent the magnet's polarity, while the Riga plate's electromagnetic field produces the Lorentz force. Since b  is a 
positive constant, then the free stream velocity is defined by ( ) .eu x bx=  Depending on whether the x− direction is positive or 
negative, the Lorentz force either assists or opposes the flow. The physical model's assumptions are also addressed. The physical 
model's assumptions are also addressed. When the mixed convection occurrence is present, the ambient temperature ,T∞  is a 
constant, while the variable wall temperature is 0( ) ;wT x T T x∞= +  0T  is temperature term that 0 0 ( )wT T T∞> >  is specified for 
assisting flow and 0 0 ( )wT T T∞< <  is for opposing flow. The Riga plate is non-static; hence, stretching/shrinking velocity is treated 

( ).wu u xε=   
Under the presumptions outlined above and undergoing boundary layer and Boussinesq approximation, the Cartesian 

coordinate of the Eyring-Powell hybrid nanofluid with boundary conditions are presented in Eqs. (1) to (4). The idea on the system 
of equations is adopted from [13, 23, 38]. 

 

Fig. 1. Physical geometry of flow. 
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Table 1. Thermophysical of regular and hybrid nanofluids (Takabi and Salehi [39], Tiwari and Das [15], Devi and Devi [13], Rostami et al. [38]). 

Properties Regular Nanofluid Hybrid Nanofluid 
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Density (1 )
nf f s
ρ φ ρ φρ= − +  

1 1 2 2
(1 )

hnf f s s
ρ φ ρ φ ρ φ ρ= − + +  

Heat Capacity ( ) (1 )( ) ( )
p nf p f p s

c c cρ φ ρ φ ρ= − +  
2 2 1 1

( ) (1 )( ) ( ) ( )
p hnf p f p s p s

c c c cρ φ ρ φ ρ φ ρ= − + +  

Thermal Expansion ( ) (1 )( ) ( )
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( ) (1 )( ) ( ) ( )
T hnf T f T s T s
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Table 2. Thermophysical properties of the base fluid and nanoparticles (Oztop and Abu-Nada [41]). 

Thermophysical Properties Water Al2O3 Cu 

3( / )kg mρ  997.1 3970 8933 

( / )
p

c J kgK  4179 765 385 

( / )k W mK  0.6130 40 400 

1( )
T

Kβ
−

 21×10-5 0.85×10-5 1.67×10-5 

( / )s m  5.5×10-6 35×106 59.6×106 
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The associated boundary condition (NH) is as follows: 

1 /2( ),   ( ) ,   ,     at   0,

,     as  .

w w w sf hnf

e

T
u u x v v S b T T k h T y

y

u u T T y
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∞

∂
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 (4) 

The terms u  and v  are the velocity in x− and y− directions, respectively. The x− axis is assessed correspondence to the 
surface, whereas y− axis is upright to it, 1

0xβ β −=ɶ  and 0c c x=  are the parameters referring to Eyring -Powell model, hnfρ  is the 
density, hnfµ  is the dynamic viscosity, ( )p hnfcρ  is the heat capacitance, hnfk   is the thermal conductivity, ( )T hnfβ  is the thermal 
expansion coefficient for hybrid nanofluid, and pc  is the specific heat at constant pressure. In addition, g  is gravitational 
acceleration, 0 1M M x=  is a magnetic characteristic, while the breadth of magnets as well as electrodes are indicated as p. Moreover, 

1/2( )w fv S aν=−  denotes the constant mass velocity while 0j  is current density. The term 0S>  links to the suction while 0S<  is 
for injection. 

Table 1 summarizes the thermophysical of regular and hybrid nanofluids, where the density, and heat capacity are given by 
, .cρ ρ  The dynamic viscosity, thermal conductivity, and thermal expansion are represented by ,µ  ,k  and ,Tβ  respectively. 

Meanwhile, the subscript terms , , ,f nf hnf  and s  are for the base fluid, nanofluid, hybrid nanofluid, and nanoparticle, respectively, 
where 1s  and 2s  stand for different types of particles. Additionally, 1φ  (first particle) and 2φ  (second particle) are used to denote 
the solid volume fractions of nanoparticles. The first nanoparticle in the current work is alumina (Al2O3), the second nanoparticle 
is copper (Cu), and water is utilized as the fluid’s base. Table 2 captures the thermophysical characteristics of the selected 
nanoparticles and base fluid. 

The continuity Eq. (1) is fully satisfied. However, the following relevant similarity transformations is introduced: 

1/2
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Hence, by adopting Eq. (5) to Eqs. (2) to (4), the following ODEs are attained 

2 2
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The simplified boundary condition is as follows: 
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where the fluid parameters are *1 / fM cµ β= ɶ  and 3 2
0/ 2 .fB a c υ=  The term 2/ RexGrλ =  refers to the mixed convection. The 

quantities of 0λ >  is analogous to assisting flow, 0λ <  is equivalent to the opposing flow, and 0λ =  denotes the pure forced 
convective flow. Furthermore, 3 2( ) ( ( ) ) /T wf fGr g T x T xβ υ= −


   is the Grashof number and 2Re /x fbx υ=  is the local Reynolds number 

based on the elongated velocity, ( ) .eu x bx=  Additionally, 2
0 1 / 8 fZ j M bπ ρ=    defines the modified Hartmann number at which the 

0Z >  signifies the intensity of assisting flow ( x− direction) (Khashi’ie et al. [9, 34] and Ahmad [40]). / /fd b pπ υ=    is correlated 
with the width of magnets and electrodes, while the Prandtl number is represented by Pr ( ) /p f fc kµ=  and /s fh aγ υ=−  is the 
conjugate parameter. 
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3. Stability Analysis 

To determine the stable solutions, the scrutiny of flow stability is decisive. Equations (6) and (7) subject to Eq. (8) produce similar 
solutions. Salleh et al. [42] discussed the stability of nanofluids in detail. Following Merkin's research [2], the unsteady case is 
originally viewed as:  
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and attained the following equation: 
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Table 3. Numerical (0)f ′′ values at 20,η
∞
= 1, 0.5Z dε = = = and Pr = 5. 

Existing Literature Model  
Boundary 
Condition 

Limiting 
Cases 

Value of

(0)f ′′  

Present Study 
(bvp4c solution) 

( )

( )

2

2
( )

1 0.
( )

hnf

f

hnf T hnf d

f T f

f Mf BM f f

ff f ze η

µ

µ

ρ ρβ
λθ

ρ ρβ

−

′′′ ′′′ ′′ ′′′+ −

′′ ′+ − + + + =

 

(0)

 (0)

( ) 0

f S

f

f

ε

=

′ =

′ ∞ =

 
1 2

0

0

0

B M

S

φ φ

λ

= =

= =

= =

 
1.53946 

 

Ahmad et al. [40] (shooting and bvp4c 
solution) 

2 ( ) 1 0.d

r
f ff f N f ze η

λ θ
−′′′ ′′ ′+ − + − + + =  

(0) 0

 (0) 1

( ) 0

f

f

f

=

′ =

′ ∞ =

 1 2
0

0S

φ φ

λ

= =

= =
 1.53947 

Khashi'ie [9] (bvp4c solution) 

2
/

/

( ) / ( )
1 0.

/ /

hnf f hnf

hnf f f

T hnf T f d

hnf f hnf f

f ff f

z
e η

µ µ µ

ρ ρ µ

ρβ ρβ
λθ

ρ ρ ρ ρ

−

′′′ ′′ ′+ −

+ + + =

     

               

 

(0)

 (0)

( ) 0

f S

f

f

ε

=

′ =

′ ∞ =

 1 2
0

1, 0S

φ φ

ε

= =

= =
 1.53947 

Table 4. Comparative study of (0)f ′′ when
11 12

, 0M B Z d S λ φ φ= = = = = = = for various values ε  

 

ε  

 

Rosca et al. [43] (Keller box) Present (bvp4c) 

First Sol. Second Sol. First Sol. Second Sol. 

-1.20 0.932473 0.233649 0.932457 0.233638 

-1.15 1.082231 0.116702 1.082230 0.116700 

-1.00 1.328816 0.000000 1.328809 0.000000 

0.00 1.232587 - 1.232578 - 

0.50 0.713294 - 0.713286 - 

1.00 0.000000 - 0.000000 - 

 

Table 5. Comparison values of 1 /2Re
f x

C when
11 12

0,Z d S λ φ φ= = = = = = and 1ε = (stretching case) for numerous M and B. 

M 
Javed et al. [23] (Keller box) Present (bvp4c solution) 

B = 0 B = 0.2 B = 0.4 B = 0 B = 0.2 B = 0.4 

0 -1.0000 -1.0954 -1.1832 -1.0000 -1.0954 -1.1832 

0.1 -1.0000 -1.0924 -1.1784 -1.0000 -1.0924 -1.1784 

0.4 -1.0000 -1.0894 -1.1735 -1.0000 -1.0893 -1.1734 

Using the perturbation 0 0

0 0( , ) ( ) ( ),  ( , ) ( ) ( ), f f e F e Gγ τ γ τη τ η η θ η τ θ η η− −= =+ +  the linearized eigenvalue equations relevant to the 
problem are: 

( )2
0 0 0 0 0 0 0

( )
2 2 0,

( )
Thnf hnf hnf

Tf f f

F MF BMf F BMf f F f F f F F f F G
µ ρ ρβ

γ λ
µ ρ ρβ

′′ ′′ ′′′ ′′′′′ ′′′ ′′′ ′′ ′ ′ ′+ − − + + + + =    (17) 

0 0 0 0 0

/1
0.

Pr ( ) / ( )
hnf f

p phnf f

k k
G f G F f G F G

c c
θ θ γ

ρ ρ
′ ′′′ ′ ′+ + − + =  (18) 

Nonetheless, the linearized condition in Eq. (19) is used for this problem: 

( )

( )

(0) 0,   (0) 0,   (0) 1 ,   (0) 0,

( ) 0 ,   ( ) 0  at  .

replaced

relaxed

F F F G

F Gη η η

′ ′′= = = =

′ → → →∞
 (19) 

The resulting eigenvalue will determine the type of solution (real or unreal). 

4. Results and Discussion 

The formulations of the problems were constructed mathematically and solved using the bvp4c solver; the similarity solutions 
are obtained by solving Eqs. (6) to (8). The values 120, 0.1η φ∞ ==  and Pr 6.2=  are considered constant for the entire computation. 
The error tolerance is set as 10-10. As it goes on, the quantity of volume fraction (copper) and values of parameter fluid, EMHD, mixed 
convection, and stretching/shrinking, are chosen appropriately. However, it is necessary to select the initial guesses to suit the 
values of the parameters involved to demonstrate the effectiveness of the results.  

A direct comparison was made on the Riga plate surface between the output documented by Ahmad et al. [40] (two-phase 
nanofluid, permeable ( ),wv v=  static ( 0),u=  shooting method, and bvp4c solver) and Khashi'ie [9] (one-phase hybrid nanofluid;  
impermeable ( 0);v=  static ( 0);u=  bvp4c solver), as well as those of the current study (one-phase hybrid nanofluid; 
stretching/shrinking plate ( );wu uε=  bvp4c solver). Table 3 shows a strong agreement between the present model with the 
established outputs. Tables 4 and 5 present the reduced non-Newtonian Eyring- Powell model with Javed et al. [23] and compare the 
values from Rosca et al. [43], considering the stretching/shrinking case when 0Z d= =  (flat plate without EMHD), 0S=  
(impermeable), 0λ =  (pure forced convective flow), 1 12 0φ φ= =  (pure water), and , 0.M B=   
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Table 6. 
1 / 2Re

x x
Nu −

values when
1

0.1, 1, 0.5 3            0,0, 0. .1,M Sd BZφ γ= = == == = for different λ ([ ] indicates the second solution). 

λ
 

S  
2
φ  

0.05 0.1 0.3 

-0.5 

0 
1.673318 1.683598 1.966838 

[-2.043318] [-2.113405] [-2.353237] 

0.3 
2.777521 3.029818 3.23234 

[-7.113018] [-7.344355] [-8.034972] 

0.005 

0 
1.698420 1.709531 2.077141 

[5.113014] [5.353611] [6.041009] 

0.3 
3.007596 3.029818 3.23234 

[9.333603] [9.695550] [10.472857] 

0.5 

0 
1.782474 1.954562 2.141140 

[4.592103] [4.903567] [5.671205] 

0.3 
3.816182 3.836115 4.053732 

[8.330176] [8.710000] [9.481147] 

 

  
Fig. 2. Variations of 1 /2Re

f x
C for various M. Fig. 3. Variations of

1 / 2Re
x x

Nu −
for various M. 

  
Fig. 4. Variations of 1 /2Re

f x
C for various

2
.φ  Fig. 5. Variations of

1 / 2Re
x x

Nu −
for various

2
.φ  

 
Table 6 shows that, for both flow instances, two solutions are possible where the first solution offered a better heat transfer rate. 

In reality, the assisting flow has a wall temperature that is greater than the fluid temperature. This shows the transferring of heat 
takes place direct from wall while the opposing flow has a negative impact. As a result, it can be deduced that an assisting flow 
always transfers more heat than an opposing flow. Based on the current observation, the greater amount of 2φ  increases heat 
transfer rate for 0S=  and  0.3.S=  
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Fig. 6. Variations of ( )f η′ for various .λ  Fig. 7. Variations of ( )θ η for various .λ  

  

Fig. 8. Variations of ( )f η′ for various S.  Fig. 9. Variations of ( )θ η for various S. 

Figures 2 and 3 display the graph of skin friction and the Nusselt number concerning the fluid parameter, M, in the shrinking 
environment. Evidently, when M  increases, 1/2RexfC  values decrease and 1/2Rex xNu −  contributions increase. Physically, the greater 
values of M produce obstacles that slow down the rate of shear-thinning and reduce the attachment between fluid and surfaces, 
thus generating a small drag. However, the increase in ε  significantly boosts the values of 1/2Re .xfC  For 0,M=  on the other hand, 
it is observed that the value of 1/2RexfC  only increases to a certain value of ε  and thereafter exhibits a declining trend. Additionally, 
the dual 1/2RexfC  and 1/2Rex xNu −  solutions reach a certain critical level of .ε  The critical values also reach up to 

1 21.1249, 1.0811c cε ε=− =−  and 3 1.0338cε =−  for 0,0.1,0.2,M =  respectively. Nevertheless, no other solutions have been achieved 
beyond the above-mentioned critical values. 

The graph of 1/2Re ,xfC  and 1/2Rex xNu −  for  1φ   and various values of 2φ  are highlighted in Figs. 4 and 5. The improvement of 2φ  
and 1φ  results in increasing heat transport. For these figures, the sheet is assumed to be stretching ( 1),ε=  and it is clear that at 
constant 1,φ  the value of 1/2RexfC  decreases with a greater value of 2φ  but behaves inconsistently in 1/2Re .x xNu −  Notably, the 
presence of significant 1φ  decreases the value of 1/2RexfC  while enhancing 1/2Re .x xNu −  Alternatively, the fluid devoid of 
nanoparticles 1 12( 0)φ φ= =  has been discovered to provide a greater value of 1/2RexfC  and a lower value of 1/2Rex xNu −  than the fluid 
that includes nanoparticles. The results show the presence of Cu and Al2O3 nanoparticles has a substantial influence on the fluid 
properties. Physically, the drag force decreases as the concentration grows. As a result, the concentration of nanoparticles resisted 
the drag force, led to lowering skin friction. The base fluid's enhanced thermal conductivity is also influenced by the rising 
nanoparticle concentration. Additionally, the fluid flow's particles impacting with one another lose energy at a faster pace and raise 
the ambient temperature. In comparison to conventional nanofluids (single particles), it is well-expected the heat transference of 
hybrid nanofluids will increase exponentially. 

Figures 6 to 9 demonstrate the velocity and temperature distribution under different λ  and S. The asymptotic fulfillment of the 
far field boundary condition by all profiles validates the accuracy of the current solutions. The increase in λ  (from opposing to 
assisting flow) lead to lessening temperature and enhance in fluid’s velocity. The fluid velocity is increased due to extra kinetic 
energy compare to opposing flow. While the temperature profile shows the opposite trend, both the first and second solutions 
increase as suction develop. Suction builds the flow neighboring to the Riga plate by reducing the width of the momentum boundary 
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layer. Furthermore, the bvp4c solver is used to resolve the linearized eigenvalue problem in Eqs. (17) to (19). The flow stability 
improves under initial drop of disturbance in time; if 0 0,γ   then this phenomenon occurs. Expected from initial development of 
the disturbance with time 0(e γ τ− →∞  as 0 0γ   and ),τ→∞  the flow is unstable under 0 0.γ   As can be seen in Fig. 10, the 
quantities of 0γ  are positive on first solutions on the upper branch; however, the values become negative for the second solutions 
on the lower branch. Additionally, when cε ε→  occurs, the 0γ  values for both branches get nearer zero. This result indicates that, 
in contrast to the second solution, the physically stable outcome lies on the first solution. Besides, it is assumed that the bifurcation 
of solutions occurs at .cε ε=  

 
Fig. 10. Smallest eigenvalues

0
( )γ of first and second solutions toward .ε  

The way forward for this research is to apply the theory of conservation laws in fractal space. This is because such laws will give 
the new physical insight to the particles of fluid flow. One of the theories in fractal space is two-scale fractal theory which able in 
analyzing the systems exhibiting the fractal properties for microscale as well as macroscale. Since the nanofluid containing the 
particles which will significantly enhance the fluid properties, understanding its complex interactions at multiple scales able to 
bring new knowledge to the flow field. Incorporating the fractal elements in Navier Stokes equation need details investigation since 
its formulation involve the emphasizing of scale-invariant structures. Embedding the fractal geometry and fractional calculus in 
modelling able to improvise the accuracy of develop models demonstrating the complex fluid systems which crucial engineering 
and industrial applications. The discussion on this topic was also documented in [44]. 

5. Conclusions 

The current investigation focused on the flow over a permeable stretching/shrinking Riga plate of Eyring-Powell with Cu-
Al2O3/water driven by buoyancy. The conclusions are as follows: 

 Cu-Al2O3/water on Eyring-Powell fluid exhibits improved thermal conductivity.  
 In comparison to pure water and the alumina-water nanofluid, the composition of Cu-Al2O3/water exhibits a higher skin 

friction coefficient and heat transfer rate. 
 The dual solutions are achieved on assisting and the opposing flow cases in a given range of the buoyancy parameter, and 

the region of the opposing flow is where the separation point is situated. 
 For the assisting flow situation compared to the opposing flow situation, the reduced skin friction coefficient and heat 

transfer rate are greater. 
 The improvement of the suction and mixed convection parameters results in an increase in the velocity profile and a decline 

in the temperature profile. 
 For both assisting and opposing buoyancy flows, an upsurge in Cu volumetric concentration, suction, and EMHD parameters 

increases the heat transfer rate. 
 The upper branch (first solution) is stable, according to the stability study, but the lower branch (second) solution is not. 
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