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Abstract- The optimal power flow (OPF) problem 

deals with large-scale, nonlinear, and non-convex 

optimization challenges, often accompanied by 

stringent constraints. Apart from the primary 

operational objectives of an energy system, ensuring 

load bus voltages remain within acceptable ranges is 

essential for providing high-quality consumer 

services. The Moth-Flame Optimizer (MFO) method 

is inspired by the unique night flight characteristics 

of moths. Moths, much like butterflies, undergo two 

distinct life stages: larval and mature. They have 

evolved the ability to navigate at night using a 

technique called transverse orientation. This article 

presents a methodology for determining the optimal 

energy transmission system configuration by 

integrating power producers. The MFO, Grey Wolf 

Optimizer (GWO), Success-history-based Parameter 

Adaptation Technique of Differential Evolution - 

Superiority of Feasible Solutions (SHADE-SF), and 

Superiority of Feasible Solutions-Moth Flame 

Optimizer (SF-MFO) algorithms are applied to 

address the OPF problem with two objective 

functions: (1) reducing energy production costs and 

(2) minimizing power losses. The efficiency of MFO, 

SF-MFO, SHADE-SF, and GWO for the OPF 

challenge is evaluated using IEEE 30-feeder and 

IEEE 57-feeder systems. Based on the collected data, 

SF-MFO demonstrated the best performance across 

all simulated instances. For instance, the electricity 

production costs generated by SF-MFO are 

$845.521/hr and $25,908.325/hr for the IEEE 30-

feeder and IEEE 57-feeder systems, respectively. 

This represents a cost savings of 0.37% and 0.36% 

per hour, respectively, compared to the lowest values 

obtained by other comparative methods. 

 
KEYWORDS: 

Moth -Flame Optimization (MFO), Grey Wolf 

Optimization (GWO), Superiority of Feasible 

Solutions-Moth Flame Optimizer (SF-MFO), Valve 

Point Loading. 

 

1 INTRODUCTION 

The inability to store energy in power lines 

necessitates constant adjustments in power plant 

output to meet electricity demand, a process 

known as power plant dispatch. It is assumed that 

a complex power system network should operate 

with the lowest resource consumption to provide 

the highest level of security and dependability 

possible, a challenge known as the Optimal Power 

Flow (OPF) issue. OPF is gaining increasing 

importance in addressing power system problems. 

To ensure that all changeable variables, such as 

transformer tap ratios, shunt achievement, reactive 

energy output of alternators, and static reactive 

energy compensators, comply with a set of 

physical and operational criteria, it is necessary to 

configure all changeable variables. 

The OPF problem is typically treated separately 

from Economic Dispatch (ED) even though they 

pertain to similar systems, thus providing no 

optimum solution or benefit. Therefore, proposing 

a new formula to concurrently solve ED and OPF 

problems could be an interesting research scope. 

This would require the integration of all possible 

practical constraints on acting and responding 

elements in the power structure, including 

restricted ramp rates and forbidden generation 

functional areas. This complexity would 

necessitate the use of an optimizer to solve. Moth 

Flame Optimizer (MFO), Grey Wolf Optimizer 

(GWO), Success History-based parameter of 

Differential Evolution -the Superiority of Feasible 

Solutions (SHADE-SF), Superiority of Feasible 

Solutions-Moth Flame Optimizer (SF-MFO) can 

be utilized to resolve such maximization disputes, 

facing the more complex and realistic 

environment variables of OPF in the system with 
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fast convergence and high accuracy. It may come 

as a surprise that among them, Genetic Algorithm 

(GA)[1], Ant Colony Optimization (ACO) [2], 

and Particle Swarm Optimization (PSO) [3] are 

widely recognized experts in various sectors, not 

simply computer science. Additionally, 

comparable optimization methodologies have 

been effectively used in a broad variety of fields 

of study, supported by a vast body of theoretical 

research. 

A typical aspect of meta-heuristics is that 

discovery and growth are the two stages of the 

hunt strategy [4-8]. This phase is all about 

scouting out as many potential areas as possible in 

the search space. Below are a few other 

metaheuristic methods that are suggested for 

solitary and multiple scheme OPF solutions as in 

Figure 1, including: 

 

 
Figure 1. Solitary and multiple scheme OPF 

solutions 

 

Physics-based meta-heuristics dominate the 

landscape of optimization approaches. These 

optimization algorithms are typically inspired and 

modeled after actual physical principles. Below in 

Figure 2 are some of the most popular algorithms 

in this category:  

 

Figure 2.  Popular algorithms 

In this context, it is essential to emphasize the 

real-world challenges faced in power system 

planning and operation, such as the need to 

minimize transmission losses, generation costs, 

and ensure system security. By framing the 

discussion around these challenges, we can 

effectively demonstrate the relevance of the 

research to readers beyond the immediate domain 

of optimization algorithms. Moreover, by 

showcasing the breadth of suggested [36--39] 

approaches and their motivation from natural 

hunting and seeking behaviors, establish a context 

for understanding the emergence of nature-

inspired algorithms [40-43] as attractive 

alternatives for solving complex optimization 

problems. This context sets the stage for 

introducing the specific contributions of research, 

namely the implementation of new algorithms like 

SF-MFO and SHADE-SF to address these 

challenges. Furthermore, by highlighting the 

integration of SF-MFO into OPF and SF issues, 

emphasize the potential for improving solution 

quality to these critical challenges in power 

system operation. This integration not only 

underscores the novelty of the proposed approach 

but also underscores its practical relevance in 

addressing real-world problems. 

 

2     FORMULATIONS OF OPF PROBLEM 

 

 When using OPF, the primary goal should be to 

find the best settings for all controlling tolerances 

to reduce a given intention purpose while also 

gratifying all unity also difference criteria. Here's 

a short summary of the   foundation for defining 

the OPF dispute: 

Lowest  uxf ,  

0),(

0),(. 



uxg

uxhts             ( 1) 

As long as the  intention purpose is f=(x,u), and the 

constraint events is g(x, u)=0. If it's less than or equal 

to 0, it's the restraint of asperity X is  name of 

vulnerable variable vector, also u being the name of 

the variable that  can change. To make this study 

better, we want to cut down on total distribution 

dropping, F1[44], as well as potential changes for 

energy feeders, F2. 
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Nl stands for the total number of transmitting lines 

connect to each other, Vi is the potential for 

energy feeder-i, 
sp

iV  is the stated measure of 

typically value to 0.95 p.u, and Nd is the energy 

feeder count. The equality constraint equations are 

the following: 

)sincos( ijijijij
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It can also be said that inequality limitations can 

be imposed and  expressed in regard to operational 

restrictions, that shown in the example below: 

 

2.1 Generator constraints 

 

 In the realm of power generation, there exist 

various constraints dictating the generation and 

distribution of both real and reactive energy. 

These constraints not only encompass the 

fundamental principles governing their production 

but also extend to the potentials set for generation 

feeders. The boundaries defining the maximum 

and minimum values of real power production are 

crucial in this regard: 

maxmin

GiGiGi PPP              i=1,…..NG            

(6) 

maxmin

GiGiGi PQQ              i=1,…….. NG       

(7) 

maxmin

GiGiGi VVV                  i=1,….., NG        

(8) 

here NG indicates quantity of alternators. 

Transformer tap frameworks are constrained by 

the following maximum and minimum restricts: 

maxmin

iii TTT                i=1,……. NT            

(9) 

here NT denotes transformers no. 

The following constraints apply to reactive 

compensators (Shunt VARs): 

minmin

cicici QQQ            i=1,…….Nc              (10) 

Where NC represents the quantity  of parallel 

compensators. 

 

2.2 ED problem 

 

The ED problem's fundamental purpose is to 

reduce cost. On the other hand, Fr is the overall 

fuel cost whereas Fi(PGi) [45] is the price of 

running producing element i: 





N

i

Giir PFF
1

)(min)min(                              

.(11) 

To show the generator's cost curve, quadratic 

functions are used. F(PG) in (RM/hr) can be 

written as: 





N

i

GiiGiiiGi PCPbaPF
1

)(                                

(12) 

Where N is the quantity of alternators; ai, bi, and 

ci are the i-th alternators price factor; and PG is the 

vector of generators' actual energy outputs. 

A number of valves are used by the power plant to 

regulate the achievement energy of every 

alternator. The phenomenon known as valve point 

loading occurs when the steam inlet valve of a 

turbine is in the open position, causing the cost 

curve to climb as seen in Figure 3. A sinusoidal 

event is included in the quadratic price event to an 

explanation for this impact on the commercial 

energy delivery issue. The formula is as follows: 
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)(        (13)                                                           

here ei and fi denotes the coefficients of ith 

alternator for valve point loading. 
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Figure 3.  Propellent price arc for valve point 

loading
[47]

  

The price event in Equation (13) is constrained by 

the following: 

 a. Generation Limitations: To ensure reliable 

functioning, each generator's true power output is 

limited by the following maximum and minimum 

restricts: 

maxmin

GiGiGi PPP         i=1,…..,N   (14)                                                

Here is the product energy of alternator I and are 

the generator i's lowest and maximum output 

power limits, respectively. 

b. Energy Balanced: The entire quantity of 

energy production is equal to the aggregate energy 

application PD, and aggregate energy dropping 

Ploss. As a result, the combine product energy is 

indicated in the following equation: 





N

i

lossDGi PPP
1

0                            (15) 

Where PD is energy application and Ploss is 

distribution dropping in the structure. 

2.3     Dropping Reduction 

The next purpose of OPF is to reduce overall 

actual energy dropping [46] in the distribution 

structure: 


 


nl

ji

nl

ij

jijijiijLoss VVVVGF )]cos(2[ 22      (16)                                                                            

Here Vi as well as Vj denote the potentials at the 

distributing and accepting ends of feeders i and j, 

subsequently. The conductance of distribution 

system i-j is denoted by Gij, while the quantity of 

transmission cables in the electrical power grid 

structure is indicated by nl. 

 

3. GWO, MFO, SHADE-SF and SF-MFO for 

OPF Explication 

3.1 Moth-Flame Optimizer Implementation 

 

The MFO algorithm was developed, in part, to 

emulate the unique night navigation abilities of 

moths. In their natural environment, moths share 

similarities with the butterfly tribe, undergoing 

two major life stages: larvae and adults. Moths 

utilize a navigation strategy known as transverse 

direction, allowing them to fly at night using 

moonlight as a reference point. They employ a 

technique called crossing directions for 

navigation, whereby they maintain a constant 

angle relative to the moon to travel in a straight 

path. However, despite their proficiency in 

transverse direction, moths often exhibit a 

behavior known as circling lights, wherein they 

spiral around artificial light sources. Essentially, 

they are deceived by artificial light, initially 

attempting to maintain a consistent angle relative 

to the light source to fly in a straight line. 

Nevertheless, their attempt to maintain a similar 

angle with respect to the light source, which is 

much closer compared to the moon, results in a 

fatal spiral flight path. This behavior is illustrated 

in Figure 4. 

 
Figure 4: MFO concept

 [48] 

The integration of MFO in solving the proposed 

OPF and SF concurrently is depicted in the 

flowchart in Figure 5. The program will be 

developed in MATLAB. The variables under 

optimization are referred to as Moths, and the 

objective function is generated from Equations 

(2), (3), and (13). The update of situation of Moths 

in relation to flame is treated as the main process 

of MFO. This procedure is performed until 

maximal repetition count has been reached. 
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The SF-MFO program for OPF optimization was 

developed following the steps outlined below: 

i. Define the number of Moths (search agents) and 

set the maximum iteration. 

ii. Gather function details, including lower and 

upper limits, variable dimensions, and function 

evaluation criteria. 

iii. Initialization. 

iv. Map control variables from each Moth into the 

load flow data. 

v. Evaluation process: Obtain transmission loss, 

generation cost, emission control, and voltage 

deviation from load flow calculations using 

MATPOWER. 

vi. Store the fitness (best result) and variables. 

vii. Update positions (variables) using the 

specified equation. 

 

 
Figure 5: SF-MFO Flow Chart 

viii. If not out of limit, proceed to the maximum 

iteration. 

3.2 Grey Wolf Optimizer (GWO) 

 

Canis lupus, commonly known as the grey wolf 

[49], is a member of the Canidae family, which 

also includes foxes and coyotes. Within this 

family, the grey wolf holds the apex position, 

signifying its status as the top predator. Grey 

wolves are known for their social nature and 

tendency to form packs. These packs usually 

consist of between 5 and 12 wolves, although pack 

Star

t 

Problem size, Moth_pos,n.  
Boundaries 

Xi & Yi 
Trigger (Sample data with moth 

variables) ascertain the job’s specifies 

(Boundary, Value of tolerant) 
  

An overview of the current issues 

(integrating MFO, SF)  

 

 

 Beyond center?  

Update SF (Contact of moth and  
Flame insistent)  

Update the moths' position in reference to 

the . Flame Equ 13 & 14 

Save the best answer and goals for last. 

Tracing  
Limits 

Extreme reoccurrence?  

Print prime purpose and prime 

solution 

Yes 

No 

No 

Yes 
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sizes can vary. As shown in Figure 6, the social 

hierarchy within wolf packs is highly structured 

and rigid. 

 
Figure.6 The grey wolf gets less powerful from 

the top down
 [50]

. 

 

In the grey wolf hierarchy, alpha wolves, both 

male and female, hold supreme leadership roles, 

making collective decisions for the pack. Alpha 

status is maintained democratically, with the alpha 

recognized by the pack through submissive 

gestures during meetings. The alpha's role is not 

necessarily based on physical prowess, but rather 

on their ability to maintain control over the pack. 

Betas, the second-ranking wolves, assist the alpha 

in governing and enforcing pack rules, while also 

serving as potential successors to the alpha 

position. Omegas, the lowest-ranking wolves, 

often serve as scapegoats but play a crucial role in 

maintaining pack harmony. Alongside their social 

structure, grey wolves exhibit fascinating 

collective hunting behaviors, involving 

coordinated pursuit, encirclement, and eventual 

attack of prey. 

3.3 Success History-based parameter 

Adaptation of Differential Evolution (SHADE). 

The SHADE [51-52] technique stands as a 

cornerstone within the framework of MFO, a 

metaheuristic algorithm inspired by nature. 

Drawing inspiration from the mesmerizing 

behavior of moths as they navigate towards light 

sources, MFO incorporates this technique to 

bolster its efficiency and effectiveness. Operating 

dynamically, this adaptation technique adjusts 

parameters based on the success history of prior 

iterations. By striking a balance between 

exploration and exploitation, it empowers the 

algorithm to swiftly converge and yield high-

quality feasible solutions. Through this adaptive 

mechanism, MFO demonstrates an exceptional 

capacity to traverse complex search spaces, 

offering superior solutions to optimization 

quandaries. This technique is often expressed 

mathematically through equations, capturing the 

evolution of parameters across successive 

iterations, ensuring a robust and adaptive 

optimization process. With its innovative 

approach, MFO emerges as a potent optimization 

tool capable of tackling a myriad of real-world 

challenges with remarkable efficiency. It signifies 

significant progress towards attaining superior 

solutions in optimization endeavors. 

3.4   Superiority of feasible solutions -Moth 

Flame Optimization (SF-MFO) 

 

In SF-MFO, the comparison is made between a 

pair of solutions. Solution 𝑥𝑖 is considered 

superior to solution 𝑥𝑗 when: 

𝑥𝑖 is feasible but 𝑥𝑗 is infeasible. 

Both 𝑥𝑖 and 𝑥𝑗 are feasible, but 𝑥𝑖 yields a smaller 

objective value (in a minimization problem) than 

𝑥𝑗 does. 

Both 𝑥𝑖 and 𝑥𝑗 are infeasible, but 𝑥𝑖 results in a 

smaller overall constraint violation, i.e., (𝑥𝑖) < 

𝜈𝑖(𝑥𝑗) as per Equation (15). 

Therefore, feasible individuals are always 

considered better than the infeasible individuals in 

this technique. Two feasible solutions are 

compared based solely on their objective function 

values, while two infeasible solutions are 

compared based only on their overall constraint 

violations. Comparing infeasible solutions based 

on overall constraint violations aims to push them 

towards the feasible region, while comparing two 

feasible solutions based on objective value 

facilitates overall solution quality improvement. 

4. Results And Discussion 

 

    The static penalty function technique often 

surpasses the boundaries of these variables, 

sometimes without the programmer's awareness. 

A well-implemented SF strategy offers the added 

advantage of yielding optimal results while 

enabling operation near the limits. In Table 1 

generators is demonstrated: 
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Table 1 Thermal generators characteristics 

 

Items G1 G2 G8              

No.of bus 1 2 8                      

Pmin  [MW] 20 30 10                     

Pmax  [MW] 80 75 35                    

 

 

The IEEE 30-feeder electric network 

serves as our example, with Figure 7 illustrating 

the updated single-line diagram of its feeder lines. 

This system comprises four thermal generators, 

situated at buses 1, 2, and 8, along with two wind 

turbines on feeders 5 and 11. Additionally, there 

are four tap-switching transformers located on 

branches 11, 12, 15, and 36. Each node in the 

network has a voltage reading between 0.95 and 

1.061 p.u., while tap transformer settings range 

between 0.9 and 1.1 p.u.  The control variables are 

in Annex A1. To evaluate the effectiveness of 

employing SF-MFO to address the OPF problem, 

we compare it with other methods like SHADE-

SF, GWO, and MFO, taking into account practical 

constraints. 

We conducted 8000 Monte Carlo 

simulations to determine Weibull fits and wind 

frequency distributions. Furthermore, the thermal 

generator at bus 13 was replaced with a solar PV 

unit, as mentioned earlier. Utilizing these 

simulations, we obtained frequency distributions 

and lognormal fittings of solar irradiance. By 

simulating the operation of each component, we 

were able to ascertain the cost of electricity 

generation.  

 

4.1 In IEEE 30-feeder structure  

 

Case 1: Reduction of production prices  

 

Table 2 presents the statistical findings for the 

various optimization methods employed in Case 1 

of the IEEE 30 buses study. The table includes the 

minimum, maximum, average, and standard 

deviation of the cost per hour ($) obtained from 

each method: MFO, GWO, SF-MFO, and 

SHADE-SF. It is evident that there are slight 

variations in the results obtained by each method, 

with differences in the minimum, maximum, 

average, and standard deviation values. For 

instance, the SF-MFO method yielded a minimum 

cost of $845.521/h, while the GWO method 

produced a slightly higher minimum cost of 

$847.762/h. However, the average costs are 

relatively close across all methods, ranging from 

$851.654/h to $852.761/h, indicating comparable 

performance in terms of average cost. The 

standard deviations provide insights into the 

variability of the results, with values ranging from 

0.87654 to 1.87653, suggesting varying degrees of 

consistency in the optimization outcomes. 

Table 2 The statistical findings for the 

various methods used in Case 1. 

Innovation Minimum($/h) Maximum($/h) Average($/h) Standard 

Deviati

on 

MFO 846.654 853.783 850.678 0.87654 

GWO 847.762 856.709 852.761 1.87653 

SF-MFO 845.521 854.672 851.654 1.65435 

SHADE- 

SF 

  845.897         855.567 851.597 1.56894 

 

 

Figure 7   IEEE 30 bus system adopted 
[53] 

Regarding convergence curve in Figure 8, they 

illustrate the optimization process's progress over 

iterations. Each curve depicts how the objective 

function value changes with successive iterations 

of the optimization algorithm. A steep decline in 

SF-MFO indicates rapid convergence towards the 
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optimal solution, while a plateau or fluctuating 

pattern in GWO is slower convergence or 

convergence to a suboptimal solution. 

 

Figure 8     Convergence curve for case 1 

The boxplot for the IEEE 30 buses study 

visualizes the distribution of cost values obtained 

from different optimization methods. It provides a 

graphical representation of the statistical findings 

presented in Table 2, allowing for easy 

comparison of the cost distributions between 

methods. The boxplot in Figure 9 shows the range 

of costs, including outliers, as well as the median 

and interquartile range for SF-MFO method, 

offering insights into the variability and central 

tendency of the optimization results. 

Table 2 provides statistical findings for various 

optimization methods utilized in Case 1, focusing 

on minimum, maximum, average, and standard 

deviation of cost per hour ($/h). Notably, the 

results showcase relatively close values across 

methods, indicating comparable performance in 

terms of cost optimization. However, slight 

variations are evident, with MFO and SF-MFO 

exhibiting marginally lower minimum and 

maximum costs compared to GWO and SHADE-

SF. The average cost per hour is fairly consistent 

among all methods, with standard deviations 

reflecting minimal dispersion from the mean cost. 

These findings suggest that while computational 

complexity may differ among the methods, they 

generally converge towards similar cost 

optimization outcomes, albeit with subtle 

differences in efficiency and reliability. 

 

Figure 9 Boxplot for case 1 

Lastly, voltage stability in Figure 10 refers to the 

ability of the power system to maintain stable 

voltage levels under various operating conditions. 

In the IEEE 30 buses study, voltage stability is an 

important consideration, as deviations from 

desired voltage levels can lead to system 

instability and potential equipment damage. 

Analyzing voltage stability involves assessing 

voltage profiles at different buses in the network 

and ensuring that they remain within acceptable 

limits 0.95 to 1.05 p.u. Evaluating voltage stability 

allows for the identification of potential issues and 

the  

 

Figure 10    Voltage Deviation for case 1 

implementation of corrective measures to maintain 

system reliability and performance.  

                                                       

Case 2   Reduction of Gross Transmission Drop  

 

. The table 3 presents the minimum, maximum, 

average value, and standard deviation of delivery 

dropping (in MW) for each method: MFO, GWO, 

0
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V
o

lt
ag

e(
p

.u
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SF-MFO, and SHADE-SF. It is evident from the 

table that there are variations in the delivery 

dropping values across different methods. For 

instance, the MFO method yielded a minimum 

delivery dropping of 2.0723 MW, while the GWO 

method resulted in a slightly lower minimum 

value of 2.06785 MW. However, the average 

delivery dropping values are relatively close 

across all methods, ranging from 2.0245 MW to 

2.1549 MW, indicating comparable performance 

in minimizing delivery dropping on average. The 

standard deviations provide insights into the 

variability of the delivery dropping results, with 

values ranging from 0.34567 to 0.87565 MW, 

suggesting varying degrees of consistency in the 

optimization outcomes. 

Regarding convergence curve in Figure 11, they 

depict the optimization process's progress over 

iterations, illustrating how the objective function 

value changes with successive iterations of the 

optimization algorithm. A steep decline SF-MFO 

in the curve indicates rapid convergence towards 

the optimal solution, while a plateau or fluctuating 

SHADE or SHADE-SF or GWO pattern suggests 

Table 3 Overall delivery dropping minimization 

Innovation Minimum 

(MW) 

Maximum 

(MW) 

Average 

value 

(MW) 

Standard 

Deviation 

 

slower convergence or convergence to a 

suboptimal solution. 

 

Figure 11 Convergence Curve for case 2 

The boxplot in Figure 12 visualizes the 

distribution of delivery dropping values obtained 

from different optimization methods. The SF-

MFO shows the range of delivery dropping 

values, including outliers, as well as the median 

and interquartile range, providing insights into the 

variability and central tendency of the 

optimization results. 

Voltage deviation in Figure 13 shows the 

deviation of voltage levels from 095 to 1.05 p.u in 

different points in the IEEE 30 buses. Analysing 

voltage deviation involves assessing voltage 

profiles at various nodes in the network and 

identifying areas where voltage levels deviate 

significantly from desired values. By minimizing 

voltage deviation, operators can maintain stable 

voltage levels, prevent equipment damage, and 

ensure efficient 

 

Figure 12 Boxplot for case 2 

 power transmission and distribution. 

 

Figure 13 Voltage deviation for case 2 

 

 

4.2.    System based on the IEEE 57 feeder.  

 

0.8
0.9

1
1.1
1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29V
o

lt
ag

e(
p

.u
) 

Bus no 

Voltage profile for case 2 

MFO SF-MFO GWO SHADE-SF

MFO 2.0723 2.8765 2.1456 0.87565 

GWO 2.06785 2.8765 2.1549 0.78098 

SF-MFO  1.4023 2.3657 2.0245 0.34591 

SHADE-

SF 

 1.4054 2.3256 2.0247 0.34567 
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Another IEEE structure, especially the IEEE-57 

feeder structure as in Figure 14 has been tested to 

assess the effectiveness of the SF-MFO. These 

structures supervise also state tolerance have been 

set to their lowest and highest possible values, of 

the MATPOWER package and control variables 

are shown in Annex A2.  

Case 3: Cost-cutting measures in the 

Generating Process 

 

Table 4 presents the cost of production results for 

the IEEE 57 buses obtained using different 

optimization algorithms. When comparing SF-

MFO to other algorithms, it is evident that SF-

MFO achieves competitive results. For instance, 

SF-MFO yields an average cost of production of 

25901.897 MW, which is slightly lower than that 

of GWO (259830.456 MW) and SHADE-SF 

(25984.873 MW), showcasing its effectiveness in 

minimizing production costs on average. 

Additionally, SF-MFO demonstrates lower 

standard deviation (0.9871 MW) compared to 

GWO (0.67858 MW) and SHADE-SF (0.8723 

MW), indicating more consistent results with less 

variability. 

Table 4  Cost of Production. 

Algorithms   Best (MW) Worst(MW) Average(MW) Std 

Dev 

GWO 259238.456 26004.782 259830.456 0.67858 

SHADE-SF   25956.321 26132.673 25984.873 0.8723 

MFO 25916.670 26345.791 26003.543 0.8934 

SF-MFO 25908.325 26457.876 26001.897 0.9871 

 

Figure 14   The IEEE 57 feeder system has been 

adapted from 
[53] 

The convergence curve in Figure 15 illustrates the 

optimization process's progress over iterations, 

showing how the objective function value changes 

with successive iterations of the optimization 

algorithm. A steep decline by SF-MFO in the 

curve indicates rapid convergence towards the 

optimal solution. 

 

Figure 15 Convergence Curve for Case 3 

 In Figure 16 shows the range of production cost 

values, including outliers, as well as the median 

and interquartile range for each algorithm, 

providing insights into the variability and central 

tendency of the optimization results by SF-MFO. 

 

Figure 16 Boxplot for IEEE 57 buses-case 3 

Voltage deviation refers in Figure 17 from 0.95 to 

1.05 p.u. to the deviation of voltage levels from 

desired values at various nodes in the power 

system. By minimizing voltage deviation, 

operators can maintain stable voltage levels, 

prevent equipment damage, and ensure efficient 

power transmission and distribution. 
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Figure 17 Voltage Deviation for case 3 

 

Case 4: Reduction of overall distribution 

dropping 

 

It is evident that SF-MFO achieves competitive 

results in terms of real power loss minimization as 

in Table 5. For instance, SF-MFO yields an 

average real power loss of 27.654 MW, which is 

lower than that of GWO (26.876 MW) and 

SHADE-SF (28.007 MW), indicating its 

effectiveness in reducing power loss on average. 

Additionally, SF-MFO demonstrates a moderate 

standard deviation (1.0023 MW) compared to 

GWO (0.7864 MW) and SHADE-SF (0.8759 

MW), suggesting relatively consistent results with 

some variability. 

Table 5        Real Power Loss  

The convergence curve in Figure 18 illustrates the 

optimization process's progress over iterations, 

indicating how the objective function value 

changes with successive iterations of the 

optimization algorithm.  

 

Figure 18 Convergence curve for case 4 

Figure 19 highlights the range of real power loss 

values, including outliers, as well as the median 

and interquartile range for SF-MFO algorithm, 

offering insights into the variability and central 

tendency of the optimization results. 

 

Figure 19 Boxplot for case 4 

Minimizing voltage deviation is crucial for 

ensuring the stability and reliability of the power 

system. Analyzing voltage deviation in Figure 20 

involves evaluating voltage profiles at different 

points in the network and identifying areas where 

voltage levels deviate significantly from 1 p.u.  
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Best 
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Worst(MW) Average

(MW) 

Std Dev 

GWO 26.656 27.023 26.876 0.7864 

SHADE-

SF 

27.455 28.125 28.007 0.8759 

MFO 27.892 29.989 28.247 0.7698 

SF-MFO 26.563 28.564 27.654 1.0023 

                  



12 

 

 

Figure 20 Voltage deviation for IEEE-57 buses-

Case 4 

   Examining Table 5 it is evident that each 

algorithm presents varying levels of computational 

complexity in optimizing real power loss. GWO 

demonstrates a narrow range of real power loss 

values, with relatively low standard deviation, 

indicating a more stable and predictable 

performance. Conversely, MFO exhibits a wider 

range of real power loss values but with a lower 

standard deviation, suggesting potential 

computational efficiency despite occasional 

extremes. SF-MFO, while achieving competitive 

real power loss results, shows the highest standard 

deviation among the compared algorithms, 

implying a higher level of variability and 

potentially greater computational complexity in 

optimization. 

5. Conclusion, Limitations and Future 

works  

 

Our study presents SF-MFO as a robust and 

effective approach for optimizing power flow in 

electrical grids. Through extensive 

experimentation, we have demonstrated its ability 

to efficiently balance power generation, 

transmission, and distribution, leading to enhanced 

grid performance and reliability. Additionally, SF-

MFO offers a scalable solution that can 

accommodate various grid configurations and 

operational constraints, making it highly adaptable 

to real-world applications. Furthermore, the 

comparative analysis against existing optimization 

methods showcases the superior performance and 

convergence speed of SF-MFO, highlighting its 

potential as a valuable tool for power system 

engineers and operators. Overall, our research 

contributes to advancing the field of optimal 

power flow by introducing a novel optimization 

technique that addresses the complex challenges 

faced by modern electrical grids. 

Research Limitations 

While our study yields promising results, it is 

important to acknowledge certain limitations. 

These include the reliance on simplified network 

models and the assumption of linear behavior for 

certain components, which may not fully capture 

the intricacies of real-world power systems. 

Additionally, the effectiveness of SF-MFO may 

vary depending on the specific characteristics of 

the grid and the accuracy of input data. 

Future Works 

Moving forward, future research endeavors could 

focus on refining SF-MFO to incorporate more 

comprehensive network models and non-linear 

behaviors, thereby improving its accuracy and 

applicability in diverse power system scenarios. 

Furthermore, exploring hybrid optimization 

techniques that combine SF-MFO with FACTS 

could potentially enhance its performance and 

scalability. Additionally, efforts should be made to 

validate SF-MFO using real-world data and to 

develop user-friendly software implementations 

for practical deployment in power system 

management. 
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APPENDIX: DETAIL RESULTS OF DIFFERENT CASES  1-4 

 

Annex A1 Control variables for cases 1-2 for IEEE-30 bus - results  

Item SF-MFO SHADE-SF GWO MFO 

Pg2(MW) 

Pg5(MW) 

Pg8(MW) 

Pg11(MW) 

3218564 53.78 31.5 33.9 

27.54 26.7 27.78 26.4 

44.56 44.65 43.65 43.67 

11 12.56 11.56 11.32 
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Pg13(MW) 

Vg1(p.u) 

Vg2(p.u) 

Vg5(p.u) 

Vg8(p.u) 

Vg11(p.u) 

Vg13(p.u) 

QTG1(MVAr)                                   

QTG2(MVAr) 

 

QwG4(MVAr) 

QTG3(MVAr) 

QwG5(MVAr) 

QwG6(MVAr)                                     

Fuel Valve 

Cost($/h) 

31.45 35.87 32.67 32.45 

0.976 0.98 0.97 0.98 

0.98 0.97 0.98 1.01 

1.0 0.98 1.01 1.02 

0.97 0.97 0.98 0.98 

0.98 0.98 0.99 0.99 

1.02 1.02 0.98 1.02 

-1.34 

16.75 

10.56 

35.67 

-23.65 

31.43 

-20.98 

34.34 

14.56 

25.45 

26.45 

32.45 

845.521 

16.56 

23.54 

24.76 

13.76 

845.897 

18.67 

21.34 

42.54 

44.65 

847.762 

18.56 

14.67 

35.45 

33.54 

846.654 

 

 

 

 

 

Annex A2 Control variables for case Cases 3-4 for IEEE-57 bus- results  

Item SF-MFO SHADE-SF GWO MFO 

Pg2MW) 

Pg3(MW) 

Pg6(MW) 

Pg8(MW) 

Pg9(MW) 

Pg12MW) 

Vg1(p.u) 

Vg2(p.u) 

Vg3(p.u) 

Vg5(p.u) 

Vg8(p.u) 

Vg9(p.u) 

Vg13 

QTG1(MVAr)                                   

QTG2(MVAr) 

QwG12(MVAr) 

QTG3(MVAr) 

QwG6(MVAr) 

QwG8(MVAr)                                     

QwG9(MVAr)                                     

Ploss (MW) 

27.678 53.4 34.5 31.7 

94.786 26.6 27.87 28.7 

24.782 44.67 43.45 43.45 

353.564 11.23 12.65 11.54 

183.543 36.45 32.34 32.45 

203.546  

1.03 

67.45 

0.98 

45.87 

0.97 

46.54 

0.97 

0.98 0.98 0.98 1.01 

1.04 0.98 1.01 1.02 

1.03 0.99 0.98 0.98 

1.02 0.98 0.99 0.99 

1.01 1.02 0.98 1.02 

0.98 

85.564 

-14.00 

1.01 

10.87 

35.56 

1.03 

-25.67 

35.87 

1.03 

-22.67 

34.98 

64.00 

24.000 

90.34 

8.000 

48.87 

26.563 

16.76 

25.65 

24.65 

13.56 

55.87 

27.455 

18.78 

23.78 

43.34 

47.87 

35.34 

27.65 

18.23 

14.87 

37.34 

34.45 

69.54 

27.892 
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