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Abstract. The purpose of the Diffie-Hellman key exchange is to establish 
a shared secret key given that the protocol works in an abelian group setting.  
In this paper, conditions are presented to attain a shared secret key over a 
nonabelian group for the well-known Diffie-Hellman method. To attain the 
shared secret key, a subgroup of a nonabelian group will be presented in the 
abelian configuration by incorporating group theory concept such as normal 
subgroup and cyclic subgroup. The protocol introduced on the nonabelian 
group, namely the special linear group, addresses the conjugacy search 
problem, aiming to enhance the security of the existing protocol. Examples 
in special linear group SL(2,3)  are presented to illustrate the 
implementation of Diffie-Hellman key exchange protocol. 

1 Introduction 
Essentially, the study of public key cryptography is based on the algebraic structure of abelian 
groups. One of the common public key cryptography implementing the abelian structure is 
the Diffie-Hellman key exchange which was introduced by Diffie and Hellman in 1976 [1]. 
The security of the Diffie-Hellman key exchange relies on the difficulty of solving a discrete 
logarithm problem where the exponents commute. As stated in [2], the security of the 
cryptographic scheme is based on the one-way function where computing the function ( )f x  
is straight forward, yet the inverse function is computationally infeasible. It is widely known 
that the two popular one-way function used in the cryptographic scheme are the integer 
factorization and discrete logarithm problem. Likewise, in the Diffie-Hellman cryptosystem, 
given the element of g and x , it is relatively easy to compute xg  but it is infeasible to 
compute the inverse, i.e: to find x given g  and xg mod p  where p  is large enough. The 
most challenging aspect of a cryptographic scheme often lies in computing its inverse 
function. The current security of the Diffie-Hellman method relies on the difficulty of solving 
the discrete logarithm problem (DLP) in certain abelian groups. However, due to the 
emergence of the quantum computers and the escalating capabilities of computing devices, 
the security of this cryptosystem over the abelian group has become vulnerable to future 
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attacks.  Cryptosystems using nonabelian groups are actively being studied to enhance their 
future security, see [3] and [4]. Certain research has explored the use of nonabelian groups 
in public key exchange. Here, we briefly mention a few examples without going into details. 
The authors in [5], [6] and [7] propose to use the braid group for their respective protocols 
as the platform group. In their work [3], the suggested cryptosystem is based on the 
automorphism defined by the conjugation operation. They highlight the challenge of 
identifying the conjugate element in finite nonabelian groups as a basis for security in their 
scheme. In [8], a finite nonabelian group namely the Thompson group is used to develop a 
public key cryptosystem model. 

 In this paper, the Diffie-Hellman key exchange protocol over nonabelian groups are 
considered with some conditions presented to gain the common shared secret key. The 
special linear group SL(2,3)  is suggested as the platform for the execution of the protocol. 
The nonabelian nature of the elements imply the inequality ( ) ( )y xx ya a  presenting a 
challenge to attain the common Diffie-Hellman key. While growing computational power 
requires larger key sizes for security, finding methods to decrease key sizes that have more 
complex algebraic structure is crucial. Hence, the use of conjugation instead of 
exponentiation in Diffie-Hellman key exchange protocol serves as a more complex problem 
in finding the secret key. The conjugacy search problem will be the basis for the key 
agreement scheme as suggested in [9] and the Diffie-Hellman protocol will be studied over 
the nonabelian group as proposed in this paper. The Conjugacy Search Problem can be 
defined as follows: 

Conjugacy search problem: Given a recursive presentation of a group ,G  two elements 
, xg g G  are randomly picked. Find element x G  such that 1.−=xg xgx  

The fundamental concepts for the research are presented in the paper’s preliminary 
section. In the following section some conditions necessary for the existence of the shared 
secret key are presented. Finally, the last section presents as our concluding remarks. 

2 Preliminaries 
The Diffie-Hellman key exchange protocol can be generalised by using the conjugacy 
relation in this way: 

1−=xg xgx  for any element , .g x G  
1. Two parties which are Alice and Bob agree on a group G and public elements 

, , .x yg g g G   
2. The private element x and y are selected by Alice and Bob respectively. 
3. Alice computes 1xg xgx−=  and sends the element to Bob and similarly Bob 

computes 1yg ygy−=  and sends the element to Alice. 
4. Alice computes secret key, 1−= y

aK xg x  and Bob computes secret key, 
1.−= x

bK yg y  
 
Since ( ) ( ) ,

y xx yg g=  then the shared secret key, K  where it is also expressed as 

= =a bK K K  being the same key. 

Subsequently, some conditions along with the proofs are provided based on the 
generalization of the above protocol to attain the common shared secret key for suggested 
special linear group SL(2,3) .  

Additionally, some important notions and basic definitions used in the study are 
presented. The definition of the special linear group is defined as follows: 

 
Definition 2.1 [10]: The special linear group, denoted by SL (2, ),pZ  is the multiplication 
group of 2 2  over the field p¢  with the determinant equal to 1and has the presentation: 
 

 

This paper focuses on the special linear group, SL(2,3) with entries of { 1,0,1}−  as the 
example for the Diffie-Hellman protocol. 
 
Figure 1 below illustrates the lattice of subgroups for the group SL(2,3) .  
 

 
Fig. 1. Lattice of subgroups for SL(2,3)  

The elements of SL(2,3)  in Figure 1 are denoted as follows:  
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In Figure 1, it is given that the subgroups 1 2 3 4,  ,  ,  Z Z Z Z  and 6Z  are all cyclic except for 

8 ,Q the subgroup that is isomorphic to the quaternion group. 
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The definition of centre and the order of a group are defined in Definition 2.2 and Definition 
2.3 respectively as follows. 

Definition 2.2 [11]: The set of all elements of ( )Z G  that commute with each element of G  

is the centre of the group G, that is 

 ( ) :   =  =  Z G a G ax xa x G . 

The centre ( )Z G  is a normal subgroup of .G  For SL(2,3)G = , the elements of ,e e  are the 
only elements that commute with all the other elements. In Figure 1, 2Z  is identified as the 
normal subgroup for the group SL(2,3) . 

Definition 2.3 [12]: The order of  SL (2, )p¢  is ( 1)( 1)p p p− + . 

From Proposition 2.3, it can be deduced that the order of SL (2,3) is 24.  

Next, Propositions 2.1 and 2.2 in [13] state the conditions for a private key to achieve the 
same shared secret key for a nonabelian group.  

Proposition 2.1 [13]: Suppose G is a nonabelian group in the Diffie-Hellman protocol 
where , x y G  are the private keys and using the Conjugacy Search Problem. If the 

condition =xy yx is satisfied, then the secret key is the same.  

Proposition 2.2 [13]: Suppose G is a nonabelian group in the Diffie-Hellman protocol where
, x y G  are the private keys and using the Conjugacy Search Problem. If the condition 

1( ) ( )−=xy yx  is satisfied, then the secret key is the same.  

In the next section, the conditions necessary for the group to be satisfied in achieving the 
same shared secret key are provided.  

3 Results and analysis 
Some propositions are given in this section which must be satisfied for the nonabelian group 
G  to achieve the same shared secret key for the Diffie-Hellman key exchange protocol. 
 
Proposition 3.1: Suppose private keys ,x y H  where H G  and H  is cyclic, then the 
secret key generated is the same.  

 
Proof: Consider the public keys computed by Alice and Bob be 1−=xg xgx  and 1−=yg ygy

respectively. Then, xg  will be handed to Bob to generate the common secret key 

( ) ( )1 1 1.− − −= = =
y yx

bK g xgx yxgx y  Since ,x y  are from the same cyclic group satisfying the 
commutativity property ,xy yx=  the shared secret key generated by Alice is 

1 1( ) ( )− −=aK xy g y x  1 1( ) ( )− −= = byx g x y K which is equivalent to Bob’s secret key. 
 
Proposition 3.2: Let G  be a group and 1 2,H H G . We suppose the private keys 1,x H

2y H  where 1H  is cyclic and 1 2H H , then the secret key generated is the same.  
 

Proof: Suppose 1x H  and any element of 1H commutes with every element in 2y H  such 
that xy yx= , then the shared secret key generated by Alice and Bob are equivalent which 
are 1 1( ) ( )AK xy g y x− −= 1 1( ) ( ) Byx g x y K− −= = . 
 
Proposition 3.3: Suppose private keys ,x y G  are taken from any normal subgroup of ,H  
then the shared secret key exists.  
 
Proof: From Definition 2.2, given that the set of all the elements in normal subgroup ( ),Z G  
is centre of the group and commute with every element of .H  For any , ( ),x y Z G

( ) ( )y xx yg g=  hence the shared secret key exists.  

Subgroup 8Q  is selected as an additional example due to its nonabelian structure and 
given its group presentation of 8Q 4 2 2 1, | , , .a b a e a b ba a b−= = = =  The elements denoted 

with the bar are inverses, e.g: g  in 8Q  is the inverse for g  except for e  and e  where their 
inverses are themselves.  
 

Elements in 8Q  Inverse of element 

1 1

1 1
i

 
=  − 

 
1 1

1 1
i

− − 
=  − 

 

1 1

1 1
j

− 
=  
 

 
1 1

1 1
j

− 
=  − − 

 

0 1

1 0
k

− 
=  
 

 
0 1

1 0
k

 
=  − 

 

 
Theorem 3.4: Suppose private keys 8, .x y Q  Any element of g G , then the common 
shared secret key is established. 
  
Proof: Let the private key for Alice x i= , the inverse 1x i− = and for Bob y j= , the inverse

1y j− = . The public keys generated by Alice and Bob are xg igi=  and yg jgj=
respectively.  
 
Alice uses the public key yg to generate the shared secret key 

( ) ( ) 11 1 ,
xyg ijgj i ijgj i ijg ij

−− −= = =  

Bob uses the public key xg to generate the shared secret key 

( ) ( ) 11 1 .
yxg jigi j jigi j jig ji

−− −= = =  
 
From Proposition 2.2, it is stated that 1( )ij ji −= , thus giving us ( ) ( )1 1

ijg ij jig ji
− −= . Hence, 

they will generate the same shared secret key .A BK K=  
 
Proposition 3.5: Any private keys , ,x y G  such that 2 2x y e= = −  where e  is the identity, 
will generate the same shared secret key .A BK K=  
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Proof: According to Proposition 2.2, we know that 1 1xy x y− −=  gives 2 2 1 1 ,x y xx y y− −=  
which means 2 2 1,x y =  Since 2x e= −  and 2 ,y e= − thus satisfying the equation 1,e e− − =

then .A BK K=  
 
Proposition 3.6: Let G  be a group. Any private key , ,x y G  such that 4 4n nx y e= =  where 
e  is the identity, will generate the same shared secret key.  
 
Proof: From Proposition 2.2, since 2 2 1x y = , it follows that 3 3x y xy=  and 4 4 2 2 1.= =x y x y

From this result one can conclude that 2 2 1n nx y = . Now consider 4nx e=  and 4 .=ny e

Halving the exponent will give 2nx e= −  and 2ny e= −  satisfying the condition 2 2 1.n nx y =
Thus, we can say that for any ,x y  with order of 4n , the same shared secret key =A BK K

will be generated. 
 
Example: Let 1,n =  with element ,x y  of order 4 such that 4 ,x e= 4 ,y e= then let 

,x i y j= =  and .g n=  The public key xg ini=
1 1

1 0

 
=  − 

 and yg jnj=
0 1

1 1

 
=  − 

.  Then 

the shared secret keys generated for Alice and Bob are y
AK ig i=

1 0

1 1

− 
=  − − 

 and 

x
BK jg j=

1 0

1 1

− 
=  − − 

 respectively which shows that the common shared secret keys are 

equivalent.  

4 Conclusion 
Here we have considered the well-known Diffie-Hellman protocol generalised to the 
nonabelian group. The conditions that must be satisfied to attain the same shared secret for 
the nonabelian group were presented. The subgroups in this paper are the cyclic group, 
normal subgroup and the subgroup that is isomorphic to quaternion group. However, this 
study is primarily focused on exploring the abelian properties within the subgroup of the 
nonabelian group. Future research could expand upon this by investigating the noncyclic 
subgroup or normal subgroup with a nilpotency class n , offering broader insights into the 
group’s characteristics. 
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nonabelian group. The conditions that must be satisfied to attain the same shared secret for 
the nonabelian group were presented. The subgroups in this paper are the cyclic group, 
normal subgroup and the subgroup that is isomorphic to quaternion group. However, this 
study is primarily focused on exploring the abelian properties within the subgroup of the 
nonabelian group. Future research could expand upon this by investigating the noncyclic 
subgroup or normal subgroup with a nilpotency class n , offering broader insights into the 
group’s characteristics. 
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