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Abstract – Wireless Sensor Networks (WSNs) are composed of 

collaborative nodes that perform environmental monitoring and 

control tasks, but their functionality is constrained due to the 

limited energy of each node. The structural design of WSNs 

include the arrangements of nodes into clusters, the appointment 

of a Cluster Head (CH) for each cluster, and the optimization of 

energy usage. The process of selecting CHs is influenced by a 

variety of factors, including the node's remaining energy, the 

cost of communication, the density of nodes, mobility, and the 

size of the cluster. Inadequate CH selection can result in 

inefficient energy use. Furthermore, in the two-step 

communication process from nodes to the base station (BS), a 

significant amount of energy is expended. To mitigate this, a 

novel strategy that integrates various input parameters with a 

method based on distance thresholds has been developed to 

improve the selection of CHs and relay nodes. This strategy 

considers factors such as the Received Signal Strength Indicator 

(RSSI), the remaining energy of nodes, and their centrality. It 

employs fuzzy logic for the selection of CHs, and relay nodes are 

chosen based on their proximity to the BS. The determination of 

the optimal number of relay nodes is achieved through the K-

Optimal and K-Means methods, ensuring that every CH is 

connected to at least one relay node for efficient data 

transmission. The proposed protocol, named Energy Efficient 

Cluster Heads and Relay Nodes (EECR), surpasses both the 

Multi-Layer Protocol (MAP) and Stable Election Protocol (SEP) 

in performance by extending the lifespan of the network by 43% 

and 33%, respectively. 

Index Terms – Fuzzy Logic, Energy Efficient, Cluster Head, 
Network Optimization, Multi-hop Strategies, Wireless Sensor 

Network. 

1. INTRODUCTION 

Wireless Sensor Networks (WSNs) are defined by some of 

resource restrictions, including limitations in transmission 

range, computing power, and energy availability. Within these 

limitation, energy depletion and transmission range are 

prominent issues [1]. To overcome these constraints, Cluster 

Based Routing (CBR) were proposed for enhancing the 

efficiency of data routing in WSNs. The presence of multiple 

nodes concurrently transmitting data leads to interference, 

resulting in a weakened received signal strength. However, 

CBR addresses this issue by enabling sensor nodes to 

efficiently self-organize into several clusters. One Cluster 

Head (CH) will be formed by each cluster. These CHs collect 
information from nodes within their respective clusters and 

relay combined data to the base station, thus minimizing long-

distance transmissions and conserving valuable energy. The 

clustering process itself involves two critical steps: CH 

selection and cluster formation. Furthermore, CBR facilitates 

communication within clusters (intra-cluster) and between the 

BS and the CHs (inter-cluster). In the realm of WSNs, 

transmission methods can typically be categorized as either 

single-hop or multiple-hop, with the choice depending on the 

specific application requirements. Previous CBR protocols 

employ single-hop transmission for communication within the 

cluster. The examples of CBR protocols that have gained 
popularity previously, such as CRSC, LEACH, and SEP. 

They all share the common goal of extending the operational 

lifespan of sensor nodes [2], [3], [4], [5]. These protocols 

have been designed to address the critical challenge of 

enhancing the network lifetime of sensor nodes. Besides, 

previous research has shown that in cases where the 

proportion of transmission loss is large, multiple-hop 

interaction between CHs and sensor nodes proves to be better 

than single-hop interaction in terms of energy efficiency. This 

holds particularly true when sensor nodes are deployed in 

densely populated areas, as multiple-hop communication 
effectively sent data to the BS without losing the signal. 
Energy consumption and its availability constitute critical 
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concerns in WSNs [6]. The primary objective of nodes is to 

ensure sustained longevity of information collection, spanning 

from successor nodes to CHs and ultimately reaching the base 

station. However, the limitations imposed by restricted battery 

life and the low information rates of sensor nodes can pose 
challenges to achieving optimal performance, especially in 

demanding environments. To address these challenges, some 

researchers have explored the fuzzy logic application to 

reduce energy consumption. 

Some of the approaches combine input parameter to 

efficiently select the CHs and conserve the sensor’s battery 

consumption. Moreover, fuzzy logic type 2 approach is still 

infancy in selecting the CHs to increase the network's 

lifespan. The fuzzy logic type 2 is more robust as compared to 

fuzzy type 1 to select the CHs that can prolong the network 

lifetime [7]. This approach utilizes some input parameters to 
select the best CHs. Moreover, unoptimized path selection can 

cause an imbalance in the energy consumption of the network 

among the nodes. Therefore, it is crucial to employ intelligent 

approach to select the most suitable CHs and multi-hop 

communication. In this research, we have introduced an 

analysis of energy consumption in Multi-layer Wireless 

Sensor Networks, with a specific focus on achieving Energy 

Efficiency in Relay Node and Cluster Head (EECR) 

management. Our EECR model has been designed that 

includes remaining energy, centrality, and Received Signal 

Strength Indicator (RSSI) as crucial inputs for the process of 

choosing Cluster Heads (CHs) through the application of a 
fuzzy logic approach. The EECR model dynamically forms 

the clusters during iterative processes, thereby optimizing 

energy utilization in a 2-layer network. An essential feature of 

our work is the expansion of the energy model to 

accommodate and support multi-hop communication within 

EECR, effectively extending the operational lifespan of the 

network. The results highlight the increased effectiveness of 

our stated approach in compared to existing MAP and SEP 

protocols across various critical dimensions, including First 

Node Dies (FND), Last Node Dies (LND), and the energy 

balance. The proposed approach stands out by significantly 
reducing energy consumption for all sensor nodes, 

encompassing both relay nodes and CHs, when compared to 

other established protocols. This paper's contributions are 

outlined as follows: 

1)  EECR Model Advancement: We introduce the 

EECR model, which utilize three distinctive combinations of 

input variables, namely remaining energy and centrality 

(ResCen), remaining energy and RSSI (ResRSSI), and 

remaining energy, centrality, and RSSI (ResCenRSSI). This 

approach is designed to increase the network's lifetime. We 

employ a fuzzy logic type 2 method to identify the most 

suitable nodes to serve as CHs. 

2)  2-Layer Network Design: We have designed a 2-

layer network that establishes connections between relay 

nodes and the CHs for efficient data transmission. This 

architectural enhances the network's efficiency and 

performance. 

3)  Empirical Validation: Through a series of 

simulations, we demonstrate that the relay selection approach 

is not just theoretical but has practical implications. It 

significantly extends the network's lifespan while 

concurrently reducing energy usage among sensor nodes.  

The remainder of the paper is structured as follows. Section 2 

covered the relevant works. In Section 3, EECR protocol 

mechanism is presented. Then, the cluster formation is 

presented in Section 4. Next, we presented the performance 

evaluation in Section 5. Section 6 brought this paper to 

conclude. 

2. RELATED WORK 

The first protocol was presented by Heinzelman, known as 

LEACH (Low-Energy Adaptive Clustering Hierarchy) [8], 

utilizing straight communication from Cluster Heads (CHs) to 

the Base Station (BS). LEACH operates on the principle of 

remaining energy, distinguishing between two stages: the 

setup and the steady states [9]. During setup phase, the 

protocol undertakes the selection of CHs, whereas the steady-

state phase occurs during transmission of data. Then, sensor 

nodes establish connections with CHs. Given that the 

selection of CHs is determined by a chance mechanism, the 

outcome might result in the selection of either a single CH or 
none. The decision threshold T(x) is calculated using equation 

(1): 

T(x) = {

z

1−z(i mod 
1

z
)

     if x ∈  F  

0                       
                  (1) 

Here z is the proportion of CHs in number from the total of 

nodes at any iteration i, the number of nodes is x, and F is the 

nodes set that is not chosen to be the CH (non-CH) in the first 

z rounds. Specifically, if the value of F is 0, no nodes will be 

selected as the CH. The non-CH nodes check the availability 

to become CH by comparing their random number (assigned 
for each node) ranging from 0 to 1 with the threshold value 

T(x). If the generated random number is less than the 

threshold value, the nodes get the chance to be selected as 

CHs. With this, the LEACH protocol balances the strain on 

the network because all the nodes get the chance to be CHs. 

However, there are several disadvantages with the 

probabilistic method in LEACH. Firstly, such method cannot 

guarantee the nodes with a random number less than the 

threshold value will be selected as CHs in each round. 

Secondly, the CHs that are selected might be close to one 

another, which could lead to overlapping of the clusters and 

hence deplete the energy in the network. Thirdly, the random 
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number generation and the calculation of threshold value in a 

single iteration consume more CPU processing. The 

clustering method was used to enhance energy efficiency in 

WSNs. During this approach, the network is segmented 

through multiple clusters, every cluster led by a CH [10]. 
Each sensor node in a cluster sends data to the specified CH, 

which then aggregates and compresses this data prior to 

convey it all the way to Base Station (BS). Consequently, 

choosing right Cluster Head is vital due to the diverse tasks it 

must handle, including data aggregation and forwarding. 

Furthermore, the total count of CHs influences how many 

clusters will be established in the network. There are some 

related works that efficiently used energy through proposed 

clustering techniques. For instance, the works in [11] 

employed their technique to optimize the number of clusters. 

The finding in their work showed that too high and too low 
numbers of clusters consumed high energy consumption. 

Work in [12] proposed a Fuzzy Clustering Method (FCM) for 

partitioning nodes into clusters. The authors used Euclidean 

distance to figure out the ideal clusters number. While the 

clusters were evenly distributed across the network, achieving 

an optimal cluster count was not assured due to the inadequate 

categorization of the Euclidean distance weight values for 

varying node counts in the simulation. Another technique 

known as Self-Organizing Map (SOM) addresses the energy 

balancing problem with neural network-based clustering 

algorithm [13]. The experiment showed that the technique 

could reduce energy use and provide energy balancing 

between the sensor nodes. However, unsuitable selection of 
dataset in SOM could result in an inaccurate decision for the 

clustering process. The technique of multi-layer clustering 

divides the field network area into n-layers for execution. 

Such approach can reduce the routing overhead, which is a 

common issue in traditional multi-hop communication of 

WSNs. In addition, it offers scalability among sensor of node 

due to the number of nodes placed inside sensing region that 

may be numerous hundreds, thousands. The works that 

discussed multi-layer clustering were in [14]. Specifically, the 

technique utilized the routing protocol known as in a 2-layer 

network. Recent work on clustering has been discussed in 
[15] who suggested a routing protocol that is hierarchical and 

uses the k-d tree algorithm. The 2-d space is composed to 

organize nodes into a cluster. The approach allows creating 

divisions in the square area with the mean of the data of one 

of its dimensions. For example, a rectangle is divided into a 

smaller rectangle, and the process is repeated x times, to 

obtain successive smaller areas. 

 

Figure 1 Visualization of the k-d Algorithm 

The simulation results showed that the offered procedure, k-d 

tree enhances delay and jitter by 60% and 95% as compared 

to LEACH and LEACH-C, while keeping the same energy 

usage as LEACH [16]. Although the improvements have been 

made towards QoS in terms of throughput, delay, and jitter, 

the energy consumption is still considered high as it is unable 

to meet the real requirement of WSNs. Hence, there is a need 

for a better clustering technique to reduce energy 

consumption and scale well with many sensor nodes. The 
consumption of energy within nodes of WSNs is governed by 

three components: the sensing units, the communication 

transceivers, and the process of data transmission, with the 

latter being identified as the most substantial energy drain 

[17]. The mechanism of data transmission necessitates the 

source node to relay data packets towards the destined node, 

culminating in a notable depletion of battery life. Within this 

context, the CH, which is tasked with the aggregation of data 

from all constituent nodes within its cluster prior to 

forwarding this combined information to the Base Station 

(BS), emerges as a pivotal entity. Accordingly, the efficacy of 

CH selection mechanisms is directly correlative to the 

longevity and energy efficiency of the WSNs. The CH 
selection pose a significant challenge within the domain of 

WSN research. Several research in WSNs that discussed 

about CH selection can be found in the literature [18], [19]. 

The primary objective of these works is to lower the amount 
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of energy used across sensor nodes. The integration of fuzzy 

logic input parameters facilitates the optimization of CH 

selection, thereby contributing to a reduction of sensor 

batteries usage. For instance, the modifications to the LEACH 

protocol in [9], which incorporate considerations of remaining 
energy, centrality, and the adjacency of neighboring nodes, 

prioritize the selection of CHs based on a high neighbor count 

and remaining energy. However, this methodology does not 

account for the proximity between sensor nodes and CHs, 

potentially accelerating the energy consumption rate. 

Moreover, the approach in [20], proposing a cluster-based 

dynamic routing, an energy-efficient adjustment for WSNs 

with mobile sinks, bases CH selection predominantly on 

remaining energy. This strategy involves the mobility of the 

sink around the coverage area's perimeter to collate data from 

CHs. Nonetheless, the exclusive reliance on remaining energy 
for CH selection in the presence of mobile sinks might permit 

the preservation of physical resources by the nodes, such as 

computational and battery power. Subsequent work will 

explore the existing scholarly contributions concerning CH 

selection, an important aspect of network lifespan and the 

diminution of energy consumption [21]. The strategic 

selection of input parameters, to be employed as fuzzy 

descriptors, has a crucial part in the identification of CHs 

towards energy efficiency. The methodologies for CH 

selection can be categorized into centralized and distributed 

frameworks. The centralized approach, which utilizes a global 

knowledge base of the network for CH selection, contrasts 
with the distributed approach that relies on local information 

for CH identification.  Despite the centralized approach being 

generally preferred due to the computational intensity and 

memory requirements of fuzzy logic-based CH selection, the 

distributed strategy may entail increased expenditure in terms 

of energy and bandwidth, particularly when the 

communication is facilitated through the sensor nodes 

themselves. Besides, multi-hop communication that assisted 

with the relay nodes can lower the network energy use. A 

work in [7] investigated the total number of deployed relays 

by using Artificial Bee Colony (ABC). The authors 
discovered that the deployment cost could be minimized if a 

smaller number of relays was deployed. A novelty in this 

work was that it considered a heuristic method for searching 

the global optima to guarantee the network connectivity was 

maintained in short range communication. An ideal separation 

between the BS and relay nodes was considered. However, a 

smaller quantity of relay nodes could cause quick energy 

depletion of the relay nodes. In addition, a high number of 

relay nodes could not guarantee the life longevity of relay 

nodes. Similarly, a work in [22] proposed a Relay Node 

Cover Algorithm (RNCA) to generate all possible positions 

for relay nodes. Their aim was to find an acceptable balance 
between quantity of relay nodes, energy consumption, and 

distance of relay nodes and the BS for each node. Their 

findings suggested that multi-hop superior over single-hop in 

regarding energy efficiency. Furthermore, the results in their 

work showed that when the network became dense, the 

number of relay nodes could not be too large to achieve 

energy efficiency of the sensor nodes. However, this work 

only improved the pay-off of each sensor node. This could not 
guarantee the longevity of network lifetime and additionally, 

it could shorten the network lifetime. It is desirable for WSNs 

to prolong its network lifetime instead of the lifespan of a 

single sensor. 

Most of the energy usage in WSNs are consumed during data 

transmission [23]. In a modern radio transceiver, the 

transmitting power is adjustable so that the signal can reach 

the destination either with single-hop and multiple-hop. To 

measure the multi-hop energy consumption, the signal loss 

between sender and receiver is calculated as in equation (2): 

𝑅𝑃𝑟 = 𝑅𝑃0  × (
𝑑0

𝑑
)

𝛼

                           (2) 

Where is 𝑅𝑃0 denotes as the received power at distance 𝑑0 
from a transmitter, a is the path loss exponent, and d 

represents the separation between the transmitter and the 

receiver. From the definition in equation (2), the received 

power of single-hop, double-hop, triple-hop, quad-hop, and 

until n-hop is given by in equation (3): 

𝑅𝑃1 = 𝑅𝑃2. 2𝛼 = 𝑅𝑃3 . 3𝛼 =  𝑅𝑃4 . 4𝛼 = ⋯ = 𝑅𝑃𝑛. 𝑛𝛼      (3) 

Therefore, the received power for single-hop (𝑅𝑃1𝐻 ), double-

hop (𝑅𝑃2𝐻), triple-hop (𝑅𝑃3𝐻), quad-hop (𝑅𝑃4𝐻) and until n-

hop (𝑅𝑃𝑛𝐻) can be expressed as [24] by using equation (4), 

equation (5), equation (6), equation (7), and equation (8): 

𝑅𝑃1𝐻 = 𝑅𝑃1                                                         (4) 

𝑅𝑃2𝐻 = 𝑅𝑃2 + 𝑅𝑃2 = 2.
𝑅𝑃1

2𝛼                                 (5) 

𝑅𝑃3𝐻 = 𝑅𝑃3 + 𝑅𝑃3 + 𝑅𝑃3 = 3.
𝑅𝑃1

3𝛼                      (6) 

𝑅𝑃4𝐻 = 𝑅𝑃4 + 𝑅𝑃4 + 𝑅𝑃4 + 𝑅𝑃4 = 4.
𝑅𝑃1

4𝛼            (7) 

𝑅𝑃𝑛𝐻 = 𝑛.
𝑅𝑃1

𝑛𝛼                                                        (8) 

Based on the equation above, if the route loss exponent value 

is higher than 1, transmission over several hops will be more 

effective than transmission via one. Similarly, as the received 

power of the receiver (𝑅𝑃𝑟) is considered, the received power 

of single-hop until n-hop can be expressed as equation (9), 

equation (10), equation (11), equation (12), equation (13): 

𝑅𝑃1𝐻 = 𝑅𝑃1 + 𝑅𝑃𝑟                                               (9) 

𝑅𝑃2𝐻 = 2. (
𝑅𝑃1

2𝛼 + 𝑅𝑃𝑟)                                         (10) 

𝑅𝑃3𝐻 = 3. (
𝑅𝑃1

3𝛼 + 𝑅𝑃𝑟)                                         (11) 

𝑅𝑃4𝐻 = 4. (
𝑅𝑃1

4𝛼 + 𝑅𝑃𝑟)                                         (12) 
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𝑅𝑃𝑛𝐻 = 𝑛. (
𝑅𝑃1

𝑛𝛼 + 𝑅𝑃𝑟)                                   (13) 

The energy consumption of multi-hop communication can be 

further quantified to satisfy equation (13) by equation (14) 

showing below: 

𝑅𝑃𝑟 <  
𝑛𝛼−1−1

(𝑛−1).𝑛𝛼−1                                            (14) 

From equation (14), it can be noticed that multiple-hop 

transmission is more energy efficient due to the value of n 

that is never equal to zero. Furthermore, the receiver’s power 

consumption must be smaller than the transmitter’s energy 

consumption. By applying equation (14) with various 

numbers of α, the values of received power can be obtained as 

presented in Table 1. 

Table 1 Modelling Table 

Loss 
Exponent 

(α) 

Double-Hop Triple-Hop Quad-Hop 

2 
𝑅𝑃𝑟 <

1

2
𝑅𝑃1  𝑅𝑃𝑟 <

1

3
𝑅𝑃1  𝑅𝑃𝑟 <

1

4
𝑅𝑃1  

3 
𝑅Pr <

3

4
𝑅P1 𝑅Pr <

4

9
RP1 𝑅Pr <

5

16
RP1 

4 
𝑅Pr <

7

8
RP1 RPr <

13

27
RP1 𝑅Pr <

21

64
RP1 

5 
𝑅Pr <

15

16
RP1 RPr <

40

81
RP1 𝑅Pr <

85

256
RP1 

For multi-hop transmission to be more energy efficient, it 

depends on several factors such as the distance of the relay 

nodes with BS and reception cost [25]. For example, if the 

separation between source and BS is 100 m, and the reception 

energy corresponding to the 50 m transmission range (𝐸𝑅𝑋 =
𝐸𝑇𝑥(50)), then transmission with multiple-hop is much more 

efficient than transmission with a single-hop if the relay node 

is at around 15 m from the BS.  

Therefore, such analytical analysis demonstrates that multiple 

hops use less energy when the reception power of the 

transceiver is lower than the maximum transmitting power.  In 

general, most of the references are mainly interested in 

reducing energy consumption by using different kinds of 

variables. 

3. THE EECR PROTOCOL MECHANISM 

In this section, it is explained the network model, the process 

of fuzzy logic type-2 being used for cluster head selection, 

and cluster formation. 

3.1. Network Architecture 

The EECR architecture model employs a 2-layer network 

structure. In EECR, the BS is strategically positioned at the 

network center. The sensor nodes are set up equally in layer-1 

and layer-2 of the network. The 2-layer network of EECR is 

shown in Figure 2. 

The network’s coverage area is set to 100m^2. It forms the 

coverage area in a form of circle based on the circle geometry 

calculation, πr2.  Thus, that give the diameter of Layer 1 and 

Layer 2 as 50m and 100m respectively. As shown in Figure 3, 

the circle is divided into two areas (i.e., Layer 1 and Layer 2). 

The big circle of A is calculated as 4πr2. To calculate the area 

of the smallest circle B, we use the formula πr2, which allows 

us to derive the leftover space as 3πr2 by subtracting B from 

A, as indicated in the formula A – B. 

In the diagram referred to, sensor nodes within a designated 

zone (namely, Layer 1 and Layer 2) were shown to be in 

communication with the BS. These nodes were evenly spread 

across a 100m by 100m (x, y) square region. Every node 

placed within this network was given a distinct identification 

code. The network itself was segmented into two levels, with 

the radii for Layer 1 and Layer 2 set at 25m and 50m, 

respectively. A series of nodes, labeled as Xi, X2, X3,….  .Xnwere 

allocated within Layer 1 and Layer 2, following the circle area 

formula, πr2. This bifurcation of the network into two layers 

is illustrated in Figure 3. Assuming A represents the total area 
encompassing both Layer 1 and Layer 2, it was determined by 

the formula A = π(2r)2 , equating to 4πr2 ... With B 

representing the surface area of the initial layer (i.e., Layer 1) 

calculated as πr2 , the resultant area of Layer 2 was then 

figured as A-B= 3πr2, tripling the size of Layer 1's area. 

By dividing 100 sensor nodes into quarters, the result is 25 for 

each quarter. This division implies that Layer 2 is composed 

of 75 sensor nodes (calculated as 25 times 3), whereas Layer 

1 contains 25 sensor nodes. This configuration indicates that 

there are thrice as many sensor nodes in Layer 2 compared to 

Layer 1. Moreover, the transmission of data was conducted 

through a multi-hop process. In Layer 1, the subordinate 

nodes within each cluster transmitted their data to their 

respective CHs. These CHs then gathered the consolidated 

data from their subordinate nodes for forwarding to the relay 

nodes. Subsequently, these relay nodes transmitted the data to 

the BS. Unlike Layer 1, in Layer 2, relay nodes transmitted 
information to the Layer 1 relay nodes prior to it reaching the 

BS. The EECR’s multi-hop data transmission strategy was 

characterized by a triple-hop in Layer 1 and a quad-hop across 

Layers 1 and 2, as depicted in Figure 4 and Figure 5. 

The nodes were static with no sleep mode to analyze the 

actual energy consumption. The BS was a node with a lot of 

computing capability to receive aggregated data from the 

CHs. 
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Figure 2 The 2 Layer Network Architecture 

 

Figure 3 The Layer 2 Network Area Partition 

 

Figure 4 Triple-hop Communication in Layer 1 
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Figure 5 Quad-hop Communication in Layer 2 

3.2. Fuzzy Logic Approach 

Linguistic metrics including remaining energy, centrality, and 

RSSI serve as fuzzy descriptors for CH selection, owing to 

the adaptable crisp set of these linguistic input variables. The 

process of choosing CHs through fuzzy logic employs a 
centralized methodology. Fuzzy Type 2 Mamdani is utilized 

that consists of the Fuzzifier, Inference Engine, Rules and 

Output (Defuzzification and Type Reduction) as demonstrated 

in Figure 6. The interval of fuzzy logic type 2 is better than 

traditional fuzzy logic type 1 to handle the uncertainty in the 

wireless sensor network, Therefore, it further simplifies the 
calculation process of the interval fuzzy logic type 2 which 

more efficient in the WSNs environment. 

 

Figure 6 The Working Process of EECR Model 

3.2.1. Fuzzification 

The fuzzification process is to map individual crisp input 

value to a fuzzy set. In EECR, the fuzzifier component 

undertakes the task of mapping the crisp input vector 𝑥∗ = 

(𝑥1
∗, … . , 𝑥𝑝

∗ ) to the Type 2 fuzzy set 𝐴𝑥
∗ . To streamline the 

computation, a singleton fuzzification model is utilized. 

Specifically, for each i = 1, .... p, the membership function of 

the fuzzified input set 𝑋𝑖
∗ is delineated herein.  

The membership function is defined as a fuzzy set A in X 

which denoted by 𝜇𝐴(𝑥). Hence, the element of X can be 

shown in the following form in equation (15): 

𝑋 = {𝑥1, 𝑥2, … … . 𝑥𝑛}                          (15) 

 

In the CH selection process of EECR, three linguistic 

variables (i.e., remaining energy, centrality, and RSSI) are 

specified for each membership function, all set within a 

uniform scale from [0, 1].  

The term 'remaining energy' refers to the sensor nodes' 

remaining battery power. Nodes that have a higher level of 

remaining energy are capable of processing and sending a 

larger amount of data. These nodes, therefore, have an 

increased likelihood of being selected as CHs.  

The membership function categorizing remaining energy into 

"low," "medium," and "high" segments these at intervals from 

0 to 0.5, 0.2 to 0.8, and 0.5 to 1, respectively, as displayed in 

Figure 7. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/43                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       697 

     

RESEARCH ARTICLE 

 

Figure 7 Membership Function of Remaining Energy 

The centrality is measured with the sum distances between the 

nodes and its neighbor overall number of the nodes. In the 

EECR, the centrality measure is derived by first computing 

the separation between two nodes, node i and j, utilizing the 

Euclidean distance formula expressed in equation (16): 

d𝑖,𝑗 = √((𝑎𝑖 − 𝑎𝑗)
2

+ (𝑏𝑖 − 𝑏𝑗)2)                      (16) 

Here, (𝑎𝑖 , b𝑖) and (𝑎𝑗 , b𝑗) represent the coordinates of nodes i 

and j, respectively, placed within the network. Utilizing 

equation (16), the centrality for a given node, 𝐶𝑛 , is 

determined by equation (17): 

Centrality(𝐶𝑛) =
(∑ 𝑑𝑖,𝑗)𝑘

𝑎=1

𝑘
                           (17) 

In this formula, k signifies the total nodes within the network 

and 𝑑𝑖,𝑗  denotes the distance between nodes i and j, with 𝑑𝑖,𝑗  

being zero if the node acts as a CH. The membership function 
interval for centrality were divided into 0 to 0.4 for near, 0.1 

to 0.9 for satisfactory, and 0.6 to 1 for far as shown in Figure 

8. 

 

 

Figure 8 Membership Function of Centrality 
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Figure 9 Membership Function of RSSI 

The membership function for RSSI is divided into -45 to 10 

for low, -10 to 45 for moderate, and 30 to 80 for high signal 

strength as shown in Figure 9. 

3.2.2 Fuzzy Processing  

The preceding stage's fuzzy processing results in an output 

determined by the Mamdani fuzzy inference rules. This 

method merges membership functions and control rules to 

generate a result for selecting CHs. The likelihood of 

selection varies with the levels present in the fuzzy variables. 

The total count of rules, denoted as N, in the fuzzy logic 

controller is formulated as shown in equation (18): 

𝑁 = ∑ (∏ 𝐿𝑖
𝑛
𝑖=1 )𝑚

𝑗=1                                  (18) 

In this context, m is the number of the collection of rules, 𝐿𝑖 

denotes count of membership functions, and n denotes the 

count of the given variables within a single rule set. 

Therefore, with m set to 1,  𝐿𝑖  at 3, and n also at 3, the 

likelihood of selecting a CH was computed to be 33 = 27 is 

shown in Table 2. 

Table 2 Rules of Parameter for ResCenRSSI 

Rules Remaining energy Centrality RSSI Output 

1 Full Far Weak Moderate 

2 Full Close Weak Moderate 

3 Full Acceptable Weak Moderate 

4 Full Far Acceptable Moderate 

5 Full Close Acceptable Moderate 

6 Full Acceptable Acceptable High 

7 Full Far Strong Medium 

8 Full Close Strong High 

9 Full Acceptable Strong High 

10 Medium Far Weak Low 

11 Medium Close Weak Moderate 

12 Medium Acceptable Weak Moderate 

13 Medium Far Acceptable Moderate 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/43                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       699 

     

RESEARCH ARTICLE 

14 Medium Close Acceptable Moderate 

15 Medium Acceptable Acceptable Moderate 

16 Medium Far Strong Moderate 

17 Medium Close Strong Moderate 

18 Medium Acceptable Strong High 

19 Weak Far Weak Low 

20 Weak Close Weak Low 

21 Weak Acceptable Weak Moderate 

22 Weak Far Acceptable Low 

23 Weak Close Acceptable Moderate 

24 Weak Acceptable Acceptable Moderate 

25 Weak Far Strong Moderate 

26 Weak Close Strong Moderate 

27 Weak Acceptable Strong Moderate 

 

 

Figure 10 The Output Chances for CHs Selection 

From each of the rules, the chances can be obtained from the 

fuzzy relations shown in equation (19): 

𝑅𝑡,𝑠:     𝐼𝐹 ∶  𝑥1 𝑖𝑠 𝐴1
𝑡,𝑠  𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴2

𝑡,𝑠   𝑎𝑛𝑑 𝑥p 𝑖𝑠 𝐴𝑝
𝑡,𝑠    

𝑇𝐻𝐸𝑁: 𝑦 𝑖𝑠 𝐶𝑡,𝑠                                 (19) 

Where 𝐶𝑡,𝑠 is the 𝑠𝑡ℎ consequent part associated with the 𝑠𝑡ℎ 

output context, 𝐴𝑝
𝑡,𝑠  is the 𝑠𝑡ℎ antecedent part associated with 

the 𝑝𝑡ℎ  input variable, and 𝑠 = {1,2,3, … . , 𝑠𝑡}. In this case, 

three input variables, remaining energy, centrality and RSSI 

were used which produce 27 rules of fuzzy rules. For each of 

the rules, the fuzzy rules relations can be shown as equation 

(20): 

𝑅𝑡,𝑠 =  𝐴1
𝑡,𝑠  ∩  𝐴2

𝑡,𝑠  ∩  𝐴3
𝑡,𝑠 →  𝐶𝑡,𝑠   ,   𝑠 = 1,2,3, … . . , 𝑠𝑡     (20) 

Based on the Mamdani’s implication rules, the results 

obtained below as equation (21): 

𝜇𝑅𝑡,𝑠 =  𝜇𝐴1
𝑡,𝑠(𝑥1 ∗)  ∩ 𝜇𝐴2

𝑡,𝑠(𝑥2 ∗)  ∩ 𝜇𝐴3
𝑡,𝑠(𝑥3 ∗) ,    
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𝑖 = 1,2, … . . , 𝑠𝑡                                   (21) 

The potential results of CH selection were categorized into 

three levels: weak (W), medium (M), and strong (S), as 

illustrated in Figure 10. 

The criteria for categorizing the selection strength into weak, 

medium, and strong are defined by range values: weak from 0 

to 0.3, medium from 0.3 to 0.7, and strong from 0.7 to 1. The 

established fuzzy rules are as follows: 

𝐶𝐻𝑠𝑡𝑟𝑜𝑛𝑔 = {remaining energy = high, centrality = near, RSSI 

= good} 

Hence, nodes that exhibit the highest levels of remaining 

energy, close centrality, and good RSSI are more likely to be 

chosen as CHs. 

4. CLUSTER FORMATION 

In cluster formation, sensor nodes positioned in both Layer 1 
and Layer 2 link up with their respective CHs to enable data 

transmission. The method for establishing CHs is outlined in 

Algorithm 1. 

1. Input: i = layer level, 𝐶𝐻𝑖  = Designated Cluster Head,  

𝐶𝐻𝑖= set of nodes 

2. Begin 

3.   While (i <= 2) do 

4.       For each node in 𝑈𝑖: 

5.           If (node is CH i and operational) then 

6.         The CH establishes a cluster including the subordinate 

nodes 

7.           Else 

8.               Initiate re-clustering process 

9.           End If 

10.      End For 

11. End While 

12. End 

Algorithm 1 Formation Process for CHs 

The CHs would establish a cluster along with the successor 

nodes. The proximity of the successor nodes to their 
respective CHs was determined using the Euclidean distance 

to set up communication with the CH.  

This connection process involved two main stages. Firstly, the 

overall count of accessible links at a node is determined. 

Then, the mean distance between the successor nodes and CH 

is calculated. This calculation is to identify the nodes with a 

high centrality value relative to the CHs. 

5. PERFORMANCE EVALUATION 

The efficiency of the EECR was assessed through 

computational modeling, focusing on its impact on the 

durability of networks and formation of clusters. Furthermore, 

the dependability of the EECR approach within the suggested 
framework was benchmarked against MAP protocols and the 

Stable Election Protocol (SEP). This assessment was 

anchored on three critical functionality indicators: the 

standard deviation of remaining energy (SDRE), the First 

Node Dead (FND), and the Last Node Dead (LND). The FND 

metric gauged the duration before the initial sensor node's 

failure in the network, whereas the LND metric recorded the 

time until the demise of the final node in the network. 

5.1. Simulation Settings 

In the simulations, sensor nodes were represented as 

stationary wireless scattered in 2-layer network environment. 
The experiments based on 3 scenarios that uses 100, 200, and 

800 nodes The standard number of nodes is 100 as being used 

by another researcher. To assess scalability and compare 

energy consumption effectively, the experiment scaled up to 

include as many as 800 sensor nodes. The specific settings 

applied in these simulation trials are detailed in Table 3. 

Table 3 Parameters for the Simulation Environment 

Setting Value 

Sensor Nodes 100, 200 and 800 

Connectivity Area  100meter     x 

100meter 

Base Station Location Center (50,50) 

1st Layer Coverage 25 meters 

2nd Layer Coverage 50 meters 

Energy  1 Joule, 2 Joule 

𝐸𝑒𝑙𝑒𝑐 (Energy per bit) 50 nJ/bit 

𝜀𝑓𝑠 (Free space energy parameter) 10 pJ/bit/𝑚2 

𝐸𝐷𝐴 (Energy for data aggregation) 5 nJ/bit/signal 

5.2. Cluster Count 

During this simulation, comparisons were drawn regarding 

the count of clusters and the tally of nodes still operational 

among EECR 1 (i.e., absent of optimal nodes and the K-

Means method), SEP, and MAP.  

These protocols differentiated in their approach to CH 

selection, based on varied input parameters. 

 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/43                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       701 

     

RESEARCH ARTICLE 

 

Figure 11 Count of Surviving Nodes Relative to the Total Cluster Count Regarding Scenario 1 

 

Figure 12 Active Nodes Relative to the All-Cluster Count Regarding Scenario 2 

Figure 11, Figure 12, and Figure 13 illustrate the ratio of 

remaining nodes to the total number of cluster formations in 

each given scenario. In the first scenario, SEP created the 

most clusters, totaling 17, followed by MAP and EECR 1, 

which formed 11 and 10 clusters respectively. As depicted in 

Figure 11, MAP and EECR 1 exhibited similar patterns in the 
number of remaining nodes, attributed to their nearly identical 

total cluster counts. Consequently, the count of remaining 

nodes for both MAP and EECR 1 declined consistently as the 

number of clusters decreased. Conversely, SEP's remaining 

nodes diminished gradually, starting from a higher initial 

cluster count. In the second scenario, with an increased node 

count to 200, SEP, MAP, and EECR 1 were able to establish a 

greater number of clusters compared to the first scenario, 

forming 26, 14, and 13 clusters respectively. SEP displayed a 

more significant disparity in cluster numbers and remaining 
nodes than MAP and EECR 1, with a sharp decrease in 

remaining nodes at the 12th cluster. The remaining node 

counts for MAP and EECR 1 decreased uniformly until the 

formation of the last cluster. In the third scenario, SEP, MAP, 
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and EECR 1 produces fewer clusters, with counts of 16, 10, 

and 9 respectively. SEP's remaining nodes dropped sharply by 

the 8th cycle. The difference in the number of remaining 

nodes between MAP and EECR 1 widened, even though their 

trends were similarly downward, with EECR 1 preserving a 

higher count of surviving nodes per cluster than MAP. 

 

Figure 13 Active Nodes Relative to the All-Cluster Count Regarding Scenario 3 

The results show that EECR 1 formed the fewest clusters, 

which proved the effectiveness in CH selection and cluster 

formation. EECR 1's selection criteria that utilize remaining 

energy, centrality, and RSSI, has significant role in its CH 

selection efficiency. It prioritized nodes with the maximum 

amount of energy still present, closest centrality, optimal 

RSSI to choose CH. These input parameters resulted in fewer 
but more suitable CH selections. In contrast, MAP produced a 

higher cluster count than EECR 1, as its selection criteria did 

not consider RSSI, instead used communication cost for 

selecting the nearest CHs to the Base Station (BS). While this 

method minimizes the separation between BS and the CHs, 

ignoring RSSI can affect energy consumption. SEP's 

performance was the worse. This is due to it disregard 

centrality, RSSI, and communication cost in its clustering 

process. Also, SEP relies on a probabilistic method that 

differentiates between normal and advanced nodes, leading to 

increased energy consumption due to the formation of more 

clusters. This analysis shows that EECR 1's approach for CH 

and cluster generation significantly enhances energy 

efficiency. 

5.3. Energy Balance 

In this experiment, the energy balance of ResCenRSSI, 

ResCen and ResRSSI were evaluated with different values of 

data aggregation. The model’s situations are shown in Table 

4. 

Table 4 Simulation Situations for Energy Balance 

Parameter Scenario 1 Scenario 2 

Node Count 100 200 

Data Aggregation 5 nJ/bit/signal 10 nJ/bit/signal 

Number of bits 4000 4000 
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Figure 14 The SDRE for Scenario 1 

 

Figure 15 The SDRE for Scenario 2 

These parameter values quantified the energy consumption of 

each combination of input variable with different values of 

cost transmit and data aggregation in CHs. Therefore, the 

scenarios were divided into: 1) Normal ratio of data 
aggregation and 2) High ratio of data aggregation. In the 

evaluated scenarios, the standard deviation of remaining 

energy (SDRE) is used as a measurement that indicates the 

energy equilibrium characteristics of the combination of input 

variable. The high standard deviation in the calculations of 

remaining energy indicates the uneven efficiency of energy 

between the nodes of sensor. Thus, the low value of SDRE is 

desirable for ResCenRSSI. 

Figure 14 and Figure 15 shows the SDRE of ResCen, 
ResRSSI, and ResCenRSSI over iterations for Scenarios 1 

and 2. There were different variations in SDRE for the 

different combinations of input variables. In Scenario 1, the 

SDRE of ResCenRSSI slope tends to flatten out. At about the 

4000th iteration, there were sharp increases of SDRE for 
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ResCen and ResRSSI. ResCenRSSI showed a low SDRE 

value as compared to ResCen and ResRSSI. As the number of 

nodes increased to 200 in Scenario 2, the SDRE showed an 

upward trend. The SDRE of ResCenRSSI, ResCen and 

ResRSSI increased over iterations as compared to 100 nodes. 
It showed a similar trend with a close value of SDRE for 

ResCen and ResRSSI at the 2000th iteration. At the 3000th 

iteration, the ResCenRSSI obtained low SDRE as compared 

to ResCen and ResRSSI. ResCenRSSI outperformed ResCen 

and ResRSSI with a steady increase in SDRE. 

The ResCenRSSI has the lowest value of SDRE for both 

scenarios. This is due to the inclusion of RSSI input variable 

in ResCenRSSI. RSSI considers the distance between sender 

and receiver when estimating received signal strength. 

Therefore, the nodes forward the data to the nearest CHs, 

which have a good received signal strength. When combining 
with other factors which are centrality and remaining energy 

of the nodes, it can provide balance among the nodes. Only 

the highest remaining energy, near centrality, and good 

received signal strength of nodes can be selected as CHs. On 

the other hand, ResCen selected high remaining energy and 

near centrality nodes. However, the nodes with bad RSSI 

might get selected as CHs which consume high energy. As a 

results, imbalance energy occurs among the nodes in the 2-

layer network. Although ResRSSI selects the CHs with good 

received signal strength, exclusion of centrality can cause the 

nodes that are far from the successor nodes be selected as 

CHs. In fact, centrality is the most crucial input variable to 
maintain an equilibrium of energy between the sensor nodes. 

Centrality of the CHs offers balance energy distribution 

whereby data transmission operates in a centralized manner. 

The increasing number of nodes to 200 give high variance for 

energy distribution in the network. This leads to an increase in 

SDRE value over iterations. However, ResCenRSSI managed 

to perform better than ResCen and ResCenRSSI in Scenario 

2. Although the value of data aggregation was increased, the 

ResCenRSSI still outperform the others. Moreover, the SDRE 

of ResCenRSSI became more significant than ResCen and 

ResRSSI as compared to Scenario 1. This is because 
ResCenRSSI can select the most suitable CHs although 

several nodes were high. On the other hand, ResCen and 

ResRSSI selected unsuitable nodes, which resulted in higher 

energy consumption with 200 nodes. Thus, ResCenRSSI has 

shown the best performance of energy balance in both 

scenarios that contribute to longer network lifetime. 

6. CONCLUSION 

This paper presents the EECR strategy as a method to 

improve the energy efficiency of WSNs. A crucial aspect of 

this study is the use of a type-2 fuzzy logic approach to select 

CHs. The choice of CHs is based on three input parameters 

which are remaining energy, centrality and RSSI. Also, the 2-
layer network architecture method provides scalability of the 

sensor nodes that can help balance the energy use when 

forming the clusters. The results from experiments show that 

EECR is better than previous methods like EECR 2, MAP, 

and SEP, in many ways. EECR stands out by reducing early 

and late node deaths, saving energy, and making the network 
last longer. The combination of fuzzy logic for CH picking 

and K-Means clustering makes EECR a leading solution for 

creating wireless networks that last longer and use energy 

more efficiently. 
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