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Abstract: In the present work, hybrid Cellulose Nanocrystal–MXene (CNC–MXene) nanolubricants 
were prepared via a two-step method and investigated as potential heat-transfer hybrid nanofluids 
for the first time. CNC–MXene nanolubricants were synthesized via a two-step method by varying 
the weight percentage of CNC–MXene nanoparticles (ranging from 0.01 to 0.05 wt%) and 
characterized using Fourier-Transform Infrared Spectroscopy and TGA (Thermogravimetric 
Analysis). Response surface methodology (RSM) was used in conjunction with the miscellaneous 
design model to identify prediction models for the thermophysical properties of the hybrid CNC–
MXene nanolubricant. Minitab 18 statistical analysis software and Response Surface Methodology 
(RSM) based on Central Composite Design (CCD) were utilized to generate an empirical 
mathematical model investigating the effect of concentration and temperature. The analysis of 
variance (ANOVA) results indicated significant contributions from the type of nanolubricant (p < 
0.001) and the quadratic effect of temperature (p < 0.001), highlighting non-linear interactions that 
affect viscosity and thermal conductivity. The findings showed that the predicted values closely 
matched the experimental results, with a percentage of absolute error below 9%, confirming the 
reliability of the optimization models. Additionally, the models could predict more than 85% of the 
nanolubricant output variations, indicating high model accuracy. The optimization analysis 
identified optimal conditions for maximizing both dynamic viscosity and thermal conductivity. The 
predicted optimal values (17.0685 for dynamic viscosity and 0.3317 for thermal conductivity) were 
achieved at 30 °C and a 0.01% concentration, with a composite desirability of 1. The findings of the 
percentage of absolute error (POAE) reveal that the model can precisely predict the optimum 
experimental parameters. This study contributes to the growing field of advanced nanolubricants 
by providing insights into the synergistic effects of CNC and MXene in enhancing thermophysical 
properties. The developed models and optimization techniques offer valuable tools for tailoring 
nanolubricant formulations to specific tribological applications, potentially leading to improved 
efficiency and durability in various industrial settings. 

Citation: Hisham, S.M.; Sazali, N.; 

Kadirgama, K.; Ramasamy, D.; 

Kamarulzaman, M.K.; Samylingam, 

L.; Aslfattahi, N.; Kok, C.K. Hybrid 

CNC–MXene Nanolubricant for 

Tribological Application: 

Characterization, Prediction, and 

Optimization of Thermophysical 

Properties Evaluation. Processes 2024, 

12, 2146. https://doi.org/ 

10.3390/pr12102146 

Academic Editor: Blaž Likozar 

Received: 28 August 2024 

Revised: 19 September 2024 

Accepted: 24 September 2024 

Published: 2 October 2024 

 

Copyright: © 2024 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Processes 2024, 12, 2146 2 of 25 
 

 

Keywords: thermophysical properties; cellulose nanocrystal (CNC); MXene; nanolubricant 
 

1. Introduction 
The ever-increasing demands on machinery efficiency and durability in various 

industrial applications have driven the continuous pursuit of advanced lubrication 
technologies. Among the promising avenues explored, nanolubricants have emerged as a 
focal point due to their unique properties and potential to revolutionize tribological 
systems [1]. In this context, the synergistic combination of Cellulose Nanocrystals (CNCs) 
and MXene in a hybrid nanolubricant presents a compelling avenue for enhancing 
tribological performance [2]. As the backbone of numerous industrial processes, 
tribological systems face challenges associated with friction, wear, and heat generation. 
Conventional lubricants, while effective, often fall short in meeting the evolving demands 
of modern machinery [3]. The integration of nanomaterials into lubricant formulations 
has garnered attention as a means to address these challenges [4]. In this study, we focus 
on the hybridization of CNC and MXene, two distinct nanomaterials renowned for their 
exceptional mechanical and thermal properties, respectively. CNC, derived from 
renewable sources, offers excellent mechanical strength and biodegradability [5]. On the 
other hand, MXene, a relatively new class of two-dimensional materials, has shown 
remarkable thermal and electrical properties [6]. The combination of these materials in a 
nanolubricant formulation potentially offers a unique balance of enhanced tribological 
performance and improved thermal management. 

Evolution of productions in the area of development and optimization of systems 
relying on heat transfer causes the growing need to design and introduce optimum 
lubricant fluids with high efficiency. Hence, researchers have undertaken abundant 
endeavors in their empirical, numerical, and analytical studies in order to introduce 
optimized working fluids used in heat transfer systems [7–10]. One of the factors of energy 
damping in various industries is friction between moving elements; lubricants are used in 
order to decrease this friction. Today, because of the impact of lubricants in industries, 
studies on their properties in order to increase efficiency and decrease costs are highly 
inevitable. Previous studies on the characterization of nanolubricants using 
Thermogravimetric Analysis (TGA) and Fourier-Transform Infrared Spectroscopy (FTIR) 
have highlighted the importance of these techniques in understanding the thermal and 
chemical properties of nanolubricants. TGA has been widely used to investigate the 
thermal stability and decomposition profiles of nanolubricants by analyzing weight loss 
under controlled heating conditions. This method allows researchers to determine the 
temperature at which the lubricant begins to degrade, as well as the amount of residual 
material after heating. For example, Ahmed et al. [11] employed TGA to study the thermal 
behavior of copper oxide (CuO) nanoparticles dispersed in a base oil, finding that the 
addition of nanoparticles improved the thermal stability of the lubricant by delaying the 
onset of decomposition. Similarly, TGA has been used to evaluate the oxidative stability 
of nanolubricants, revealing that nanoparticles can enhance the lubricant’s resistance to 
oxidation at elevated temperatures [12]. 

FTIR spectroscopy, on the other hand, has been utilized to study the chemical 
interactions between nanoparticles and base oils by identifying characteristic functional 
groups. FTIR helps in detecting the presence of specific chemical bonds and monitoring 
any changes that occur during the formulation or application of nanolubricants. Studies 
such as those by Patel et al. [13] have used FTIR to confirm the successful incorporation of 
nanoparticles into lubricants and to evaluate the chemical stability of the resulting 
nanolubricant. Additionally, FTIR has been instrumental in identifying potential chemical 
reactions between nanoparticles and lubricant additives, which can influence the 
performance of the nanolubricant. These studies have demonstrated that combining TGA 
and FTIR provides a comprehensive understanding of the thermal and chemical 
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properties of nanolubricants, facilitating the development of more efficient and durable 
lubrication solutions for industrial applications. 

Response Surface Methodology (RSM) is the most preferred statistical tool to 
optimize the significant parameters of any real-time manufacturing process, as it requires 
a minimum set of experiments and provide optimum condition settings for maximum 
yield [14]. As RSM formulates a mathematical matrix and considers multiple variables and 
their interactions, it requires a lower number of experimental trails, as compared to ANN 
[15]. Therefore, using RSM, various studies successfully validated the experimental results 
without any assumptions. In one such study, Nasirzadehroshenin, Maddah [16] 
synthesized Al2O3-TiO2 (10%) nanocomposite in three sizes and dispersed them in water 
to synthesize hybrid nanofluid with 0–0.5% volume fraction at 20–50 °C and successfully 
predicted thermal conductivity and viscosity using RSM and ANN. Analysis of variance 
(ANOVA) table confirmed that temperature (A), concentration (B), particle size (C) and 
interaction term (AB) showed a significant impact on the model with a lower p-value. 
Peng, Khaled [17] predicted and optimized the thermal conductivity of CuO/water 
nanofluid using RSM at ϕ = 0.1–0.4 vol% and 25–40 °C. Authors claimed that, for 
CuO/water nanofluid, the proposed model can extrapolate and interpolate the data with 
less than 2% accuracy. 

This research aims to investigate the thermophysical properties of hybrid CNC–
MXene nanolubricants, focusing on their dynamic viscosity and thermal conductivity. By 
employing a Design of Experiment (DOE) approach using Response Surface Methodology 
(RSM), the predictive models are developed for dynamic viscosity and thermal 
conductivity as a function of temperature and concentration [9]. Furthermore, the 
nanolubricant concentration to achieve the best balance of dynamic viscosity and thermal 
conductivity for tribology applications is determined [10]. The findings of this study will 
contribute to the growing body of knowledge on advanced nanolubricants and provide 
valuable information for the practical implementation in various industrial settings, 
especially in tribological application. 

2. Experimental Methodology 
2.1. Preparation and Characterization of CNC, MXene, and CNC–MXene Nanolubricant 

This section will cover the study’s materials, a method for characterizing 
nanoparticles, making a hybrid nanolubricant, and judging a nanolubricant’s 
characterization. In addition, this part will describe the method employed in this research 
to determine FTIR and TGA analysis. The two-step procedure was chosen for this study’s 
nanolubricant preparation. Nine distinct nanolubricant samples are made using the two-
step method, with concentrations ranging from 0.01% to 0.05% of volume. The 
concentrations of 0.01%, 0.03%, and 0.05% CNC–MXene were selected based on a 
combination of factors, with the Design of Experiment (DOE) approach playing a central 
role. The DOE, specifically Response Surface Methodology (RSM), guided the selection of 
these concentrations to explore the effects of varying nanoparticle loadings on the 
nanolubricant’s thermophysical properties. By choosing low, medium, and high levels 
within this range, the study aimed to systematically capture the influence of concentration 
on dynamic viscosity and thermal conductivity, allowing for the development of accurate 
empirical models. The selected range also ensured that the CNC–MXene nanoparticles 
could maintain stability and uniform dispersion within the base fluid without issues such 
as agglomeration or sedimentation, which are common at higher concentrations. 
Additionally, these concentrations align with those commonly used in previous research 
on nanolubricants, facilitating comparisons with existing studies and providing a 
benchmark for performance evaluation [2]. 

The single CNC, single MXene, and hybrid CNC–MXene nanoparticles utilized to 
prepare the nanolubricant are employed. This method uses base fluids of SAE 10W-40 to 
disperse nanoparticles, creating a stable, homogeneous solution. The initial step in 
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preparing nanolubricants, Step 1, was figuring out the volume needed for dilution to 
determine the correct volume of the base fluid to achieve the desired nanoparticle 
concentration; it is is a critical preparatory action before dispersion. The importance of 
this step lies in ensuring precise dilution, which directly influences the consistency and 
stability of the nanolubricant, using Equation (1): 

∅ =  ൤𝑊௣𝜌௣ ൨൤𝑊௣𝜌௣ + 𝑊௕௙𝜌௕௙ ൨ (1)

where Wp stands for the weight of the nanoparticles in grammes, ρp for their density in 
g/cm3, ρbf for their density in g/cm3, and Wbf for their weight in grammes. Then, the dry 
blending of CNC and MXene powder produces CNC–MXene nanoparticles. After that, in 
Step 2, a stirrer was used to mix the nanoparticles in the base fluid. As recommended by 
other researchers [18–21], the nanolubricant was blended for up to 30 min. Additionally, 
sonication was applied to the sample of nanolubricants. In 200 mL of base oil SAE 40, 
volume fractions of 0.01, 0.03, and 0.05% were used to create CNC, Mxene, and CNC–
MXene nanolubricants. The initial dispersion of CNC, MXene, and CNC–MXene 
nanoparticles into engine oil was carried out using a hotplate magnetic stirrer at a medium 
stirring rate continuously for 1 h at room temperature. Each nanolubricant solution was 
placed in an ultrasonic bath for around two hours. This contributes significantly to the 
nanolubricants’ increased stability. 

To measure the viscosity of the CNC–MXene hybrid nanolubricant, a rheometer is 
used for the measurements. The viscometer is calibrated, and the sample is placed in the 
instrument. Temperature control is essential for this process, so the sample is placed in a 
temperature-controlled water or oil bath to maintain a constant temperature, ranging 
from 30 °C to 100 °C. The viscosity measurements are taken at multiple temperatures to 
observe how the lubricant’s viscosity changes with temperature. Each measurement is 
repeated three times to ensure accuracy, and the data are recorded. For measuring the 
thermal conductivity of the CNC–MXene nanolubricant, the thermal conductivity meter, 
using the transient hot-wire method, is employed. The nanolubricant sample is placed in 
the thermal conductivity testing chamber, and the instrument is calibrated to the desired 
temperature range. Just like in the viscosity measurement, a temperature-controlled bath 
is used to ensure the sample is tested in a range from 30 °C to 100 °C. The thermal 
conductivity of the sample is measured by observing how quickly heat is transferred 
through the nanolubricant. Multiple tests are performed at 0.01% to 0.05% and 
temperatures to assess the nanolubricant’s performance across different conditions. The 
data are then analyzed to determine the relationship between the temperature and 
concentration for both responses, which were viscosity and thermal conductivity. 

For the characterization of CNC–MXene hybrid nanolubricants, both FTIR (Fourier-
Transform Infrared Spectroscopy) and TGA (Thermogravimetric Analysis) are crucial 
methodologies. For the FTIR analysis, samples were prepared by dispersing the CNC, 
MXene, and CNC–MXene hybrid nanolubricants in a potassium bromide (KBr) pellet 
medium to form a thin film suitable for measurement. The FTIR spectra were collected 
using Thermo Fisher Scientific Nicolet iS50in model in the range from 4000 cm−1 to 400 
cm−1, with a resolution of 4 cm−1. Each spectrum was averaged over 64 scans to improve 
the signal-to-noise ratio, and baseline correction was applied. The spectra were analyzed 
to identify characteristic functional groups, such as C-H, O-H, and N-H, which indicate 
molecular interactions between the CNC, MXene, CNC–MXene and the base oil used in 
the nanolubricants. 

For TGA analysis, TGA was used to analyze the thermal stability and composition of 
the nanolubricant by measuring the weight loss of the sample as it is heated at a controlled 
rate. Thermogravimetric analyzer model STA7000 Hitachi manufactured by Hitachi High-
Tech Corporation, which is based in Tokyo, Japan was used under a nitrogen atmosphere 
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to prevent oxidation during heating. Approximately 10 mg of each nanolubricant sample 
was heated from room temperature to 800 °C, at a rate of 10 °C per minute. The weight 
loss of the samples was monitored as a function of temperature to determine the onset of 
thermal degradation and the residual mass after complete decomposition. This analysis 
was crucial in evaluating the thermal stability of the CNC, MXene, and hybrid CNC–
MXene nanolubricants to compare the stability at different concentrations (0.01%, 0.03%, 
and 0.05%) and types of nanolubricant. Before the TGA analysis, the instrument was 
carefully calibrated to ensure accurate results. Nickel was used for temperature 
calibration, which was approximately 1455 °C. The TGA was run under the same 
conditions as the actual tests, and the melting point was checked against the temperature 
value. Any differences were adjusted in the instrument settings. For weight calibration, a 
platinum weight was used. The 20 mg weight was placed on the TGA balance, and the 
measured value was checked against the weight. To ensure the consistent accuracy, 
adjustments were made if there were any inconsistencies. To correct the baseline, an 
empty sample pan was run through the TGA cycle to adjust for any drift and ensure 
accurate heat flow measurements. The nitrogen gas flow rates and atmosphere settings 
were also checked to match the testing conditions. Finally, calibration was verified using 
a base fluid to confirm that the TGA was functioning correctly. These steps ensured that 
the TGA data were accurate and reliable, supporting the study’s findings on the thermal 
stability of the nanolubricants. 

2.2. Design of Experiment and Regression Modelling 
The DOE was designed to develop empirical models that predict the thermophysical 

properties, which are the dynamic viscosity and thermal conductivity of the CNC–MXene 
nanolubricants, and to optimize these properties for tribological applications. This 
approach aimed to identify the best conditions that would enhance the efficiency and 
durability of the nanolubricant, making it suitable for various industrial applications. The 
study employed Response Surface Methodology (RSM), a statistical and mathematical 
technique that allows researchers to examine the relationships between multiple input 
variables and one or more response variables. RSM was chosen because it efficiently 
models and optimizes processes with minimal experimental runs, making it ideal for 
complex formulations like nanolubricants. The experimental factors chosen for this study 
included two continuous variables: temperature and concentration of the nanolubricant. 
Temperature was tested at three levels, low (30 °C), center (60 °C), and high (90 °C), to 
capture a range of operating conditions that could affect the nanolubricant’s performance. 
The concentration of the nanolubricant was also evaluated at three levels, low (0.01%), 
center (0.03%), and high (0.05%), to understand how varying amounts of CNC–MXene 
nanoparticles influenced the lubricant’s properties. 

In addition to the continuous factors, the type of nanolubricant was considered as a 
categorical variable with three different types: pure CNC, pure MXene, and a hybrid 
CNC–MXene combination. This categorical factor allowed the researchers to assess the 
individual and combined effects of these nanoparticles on the lubricant’s performance. 
The experimental design was based on the Central Composite Design (CCD), a type of 
RSM design that is particularly effective for fitting quadratic models and identifying 
interaction effects between factors. CCD is advantageous because it includes a mix of 
factorial points, axial points, and center points, which provide a comprehensive dataset 
for evaluating the main effects, quadratic effects, and interactions [22]. In total, 39 
experimental runs were conducted, each designed to capture the response of the 
nanolubricant’s dynamic viscosity and thermal conductivity under varying conditions. 

Analysis of Variance (ANOVA) 
The collected data were analyzed using analysis of variance (ANOVA) to determine 

the statistical significance of each factor and the factors’ interactions. ANOVA helped 
validate the developed empirical models by showing which factors significantly 
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influenced the properties of the nanolubricant. The RSM models were further validated 
by comparing predicted values with experimental data, achieving high accuracy, with R-
squared values above 85%, indicating a strong fit between the models and the actual 
results. Response surfaces can be evaluated to determine the minimum or maximum 
responses and the equivalent optimum conditions. The optimum circumstances can be 
found using various responses when all the parameters meet the desirable requirements 
simultaneously. Using multiple responses, the optimum conditions can be found when all 
the parameters simultaneously satisfy the desirable criteria. Furthermore, the optimum 
condition can be found graphically by superimposing the contour plots of the regression 
model in an overlay plot. The graphical optimization indicates the area of feasible 
response values in the factor space and the regions that fit the optimization criteria [23]. 
The confirmation experiment is essential to validate the model’s accuracy between the 
measured experimental data and the regression analysis’s predicted value. Kumar, 
Saravanan [24] reported that confirmation experiments are not necessary if the RSM 
models produce a prediction error of less than 5%. Furthermore, the percentage of 
absolute error (POAE) is used to measure the difference between the measured 
experimental results and the predicted value obtained from the regression model using 
Equation (2). 

100
   valueActual

   valuePredicted -    valueActual    (%)   POAE ×





=

 
(2)

3. Result and Discussion 
3.1. FTIR Evaluation and Thermogravimetric Analysis and of CNC, MXene, and CNC–MXene 
Nanolubricant 

Figure 1 shows the transmittance (%) as a function of wave number (cm−1) for the 
CNC–MXene hybrid at different concentrations, 0.01%, 0.03%, and 0.05%. The graph 
displays a distinct absorption peak around 2900–3000 cm−1, which is typical for C-H 
stretching vibrations found in organic compounds. The intensity of the absorption peak 
varies slightly with the concentration, with the 0.05% CNC–MXene sample (blue line) 
showing the deepest absorption, indicating a higher concentration of C-H bonds or 
interactions in this sample. 

The other samples, 0.01% (black line) and 0.03% (red line), show less pronounced 
peaks, suggesting a lower concentration of the corresponding functional groups. Above 
3000 cm−1, the transmittance levels off, indicating that there are no significant absorption 
features in this region for the samples tested. Below 2900 cm−1, the transmittance drops 
sharply due to the absorption of infrared light by the material, which is characteristic of 
the chemical bonds present [25]. In summary, this FTIR spectrum indicates the presence 
of C-H bonds in the CNC–MXene nanolubricant, with varying concentrations affecting 
the presence and intensity of functional groups, particularly C-H bonds. This information 
is crucial for understanding the molecular interactions within the nanolubricant and 
optimizing its formulation for specific applications [26]. 
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Figure 1. FTIR spectrum for CNC–MXene at different concentration (0.01%, 0.03%, and 0.05%). 

Figure 2 shows the FTIR evaluation for the single nanolubricants (CNC and MXene) 
and hybrid nanolubricant (CNC–MXene) on the wave number region between 2600 cm−1 
and 4000 cm−1, where stretching vibrations of functional groups such as C-H, O-H, and N-
H typically appear. The most prominent peaks are observed between 2800 cm−1 and 3000 
cm−1, which are attributed to C-H stretching vibrations, commonly associated with 
aliphatic hydrocarbons [27]. These C-H bonds are likely part of the base oil used in the 
nanolubricant, and the peaks are consistently present across all concentrations and 
materials, including CNC, MXene, and the CNC–MXene hybrid. As the concentration of 
CNC, MXene, or CNC–MXene increases, there is a noticeable rise in the intensity of these 
C-H stretching peaks. For instance, at lower concentrations, i.e., 0.01%, the intensity is 
relatively subdued, while at higher concentrations (0.03% and 0.05%), the peaks become 
more affirmed. This increase suggests that a greater number of nanoparticles in the 
lubricant system enhances the absorption of infrared radiation in this region. 

Additionally, there are minor shifts in the exact wave number of the C-H stretching 
vibrations, particularly in the CNC–MXene hybrid nanolubricant. At the highest 
concentration (0.05%), the CNC–MXene hybrid nanolubricant shows slight shifts 
compared to the spectra of CNC or MXene alone, indicating some level of interaction 
between CNC and MXene. These shifts imply that the environment surrounding the C-H 
groups is altered slightly by the combination of these two nanoparticles. In the region 
above 3000 cm−1, where O-H stretching vibrations typically appear between 3200 cm−1 and 
3600 cm−1, there are no significant broad peaks are observed. This suggests that hydroxyl 
groups, such as those present in the cellulose structure of CNC, do not have a dominant 
impact on the absorption in this region. The absence of these O-H peaks may indicate that 
CNC’s functional groups do not significantly alter the lubricant’s behavior at these 
concentrations. 

In summary, the C-H stretching peaks are the dominant feature in this region, with 
increasing intensity reflecting higher nanoparticle concentrations. The minor shifts in 
peak positions for the CNC–MXene hybrid suggest potential interactions between CNC 
and MXene, although hydroxyl groups do not significantly contribute to absorption in the 
higher wave number region. 
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Figure 2. FTIR graph analysis for all concentrations of different types of nanolubricant. 

Figure 3 presented here illustrates the thermal stability of CNC–MXene 
nanolubricants at different concentrations, which are 0.01%, 0.03%, and 0.05%. The graph 
plots the weight percentage remaining as a function of temperature, ranging from room 
temperature up to 600 °C. In the early stages, up to approximately 250 °C, there is minimal 
weight loss for all concentrations, indicating good thermal stability within this range, 
likely due to the evaporation of moisture or other volatile components. As the temperature 
increases beyond 250 °C, significant weight loss occurs, marking the onset of thermal 
degradation of the nanolubricant. The sharp decline in weight percentage between 250 °C 
and 400 °C represents the primary decomposition phase for the CNC–MXene 
nanolubricants. Among the concentrations, the 0.03% MXene–CNC sample (red line) 
experiences the most rapid degradation, with the lowest residual weight after the thermal 
event, suggesting that this concentration may have the least thermal stability. 

In contrast, the 0.01% shows the highest residual weight, indicating better thermal 
stability among the three samples. The 0.05% falls between the other two, with moderate 
thermal stability. Beyond 400 °C, the curves start to plateau, showing the formation of 
more thermally stable residues. The 0.01% concentration leaves the most residue, while 
the 0.03% concentration leaves the least, supporting the observation that lower 
concentrations of CNC–MXene exhibit better thermal stability. Overall, this TGA analysis 
indicates that the thermal stability of CNC–MXene nanolubricants varies with the 
concentration. The 0.01% concentration provides the highest thermal stability, while the 
0.03% concentration degrades the most rapidly. These results suggest that careful 
optimization of the MXene–CNC concentration is essential for enhancing the thermal 
performance of nanolubricants. 
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Figure 3. TGA graph of CNC–MXene at different concentrations. 

Figure 4 illustrates the thermal stability of different samples, including CNC, MXene, 
and CNC–MXene nanolubricants, each at varying concentrations (0.01%, 0.03%, and 
0.05%). The X-axis represents the temperature range from 0 °C to 600 °C, while the Y-axis 
shows the percentage of the initial sample weight remaining as the temperature increases. 
In the initial phase, up to around 200–250 °C, all samples exhibit minimal weight loss, 
indicating stability in this temperature range, typically associated with the removal of 
moisture and other unstable components. The most significant weight loss occurs between 
250 °C and 400 °C, marking the decomposition of the materials. The CNC nanolubricant 
decomposes more rapidly than the MXene nanolubricant, suggesting that MXene has 
superior thermal stability. The CNC–MXene nanolubricant displays intermediate 
behavior, with better thermal stability than pure CNC, but slightly less than pure MXene. 
This indicates that incorporating MXene into CNC enhances the nanolubricant thermal 
properties. 

At temperatures above 400 °C, the curves begin to level off, reflecting the amount of 
material that remains thermally stable and does not decompose further. MXene samples 
leave more residue than CNC, indicating a higher proportion of thermally stable material. 
The CNC–MXene nanolubricant leaves a moderate amount of residue, further 
highlighting the improved thermal stability compared to CNC alone, but still less than 
pure MXene. In summary, the TGA data show that MXene exhibits higher thermal 
stability compared to CNC, and the CNC–MXene nanolubricant offers enhanced thermal 
properties over pure CNC, making them potentially more suitable for applications 
requiring higher thermal resistance especially for tribological applications under 
cryogenics (−269 °C) to high-temperature (up to 1000 °C) environments [28]. 

The analysis revealed that incorporating MXene into the CNC nanoparticles 
enhanced the thermal stability of the hybrid nanolubricant compared to CNC, as MXene 
is known for its high thermal resistance. However, the stability varied with the 
concentration of CNC–MXene, highlighting the importance of optimizing nanoparticle 
loadings to achieve the best thermal performance. Overall, the TGA results shows that the 
CNC–MXene nanolubricant’s thermal stability is concentration-dependent, and lower 
concentrations (0.01%) provided better thermal resistance, making them more suitable for 
applications where thermal stability is critical. This comprehensive analysis of thermal 
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stability contributes to our understanding of how CNC and MXene synergistically 
improve the durability and performance of nanolubricants under high-temperature 
conditions. 

 
Figure 4. TGA graph analysis for varying concentrations (0.01%, 0.03%, and 0.005%) of CNC, 
MXene, MXene–CNC nanolubricants. 

3.2. Statistical Approach for Prediction and the Optimization of Dynamic Viscosity and Thermal 
Conductivity Using Response Surface Methodology 

In this section, the Response Surface Methodology method (RSM) is used to 
determine the prediction models for thermophysical properties of CNC, MXene, and 
CNC–MXene nanolubricant, i.e., dynamic viscosity, thermal conductivity, and specific 
heat capacity, and compared with the curve-fitting method. The RSM is a technique based 
on statistical and mathematical approaches for developing and optimizing the 
experimental data. This modelling approach is useful when several input parameters 
interact with each other, and the interaction affects the system’s output, referred to as 
response. The input parameters are also referred to as independent variables. An RSM 
model will decrease the number of experiments required to understand the trend and 
behavior [29]. An experimental design was carried out using Minitab 18, developed by 
Minitab LLC, located in State College, PA, USA. This version was released in 2017. a 
statistical analyzing software, by referring to factors with various levels, as shown in Table 
1. This experiment is designed by considering two continuous factors. Hence, the Central 
Composite Design (CCD) method is approached, suitable for developing models with two 
continuous factors. They are classified into three levels, low value (−1), high value (+1), 
and center value (0). The continuous factors are temperature (T) and volume concentration 
(Ø). Thirty-nine experiments were designed to study the influence of temperature, volume 
concentration, dynamic viscosity, thermal conductivity, and specific heat capacity. The 
design layout and experimental results are summarized in Table 2. StdOrder (Standard 
Order) is used to reflect the planned sequence of the experimental trials, as designed by 
the Central Composite Design (CCD) under Response Surface Methodology (RSM). 
RunOrder captures the actual order in which the experiments were conducted. This is 
crucial for tracking the execution of the trials, as it can reveal potential influences of time-
dependent factors, such as environmental variations or equipment performance changes, 
on the results. Block-group experiments were conducted under similar conditions to 
manage variability that could arise from changes over time or other external factors. In 
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this study, blocking helps control the effect of these variations, allowing for a more 
accurate analysis of the primary factors—temperature, concentration, and type of 
nanolubricant—by reducing the impact of irrelevant noise. PtType (Point Type) indicates 
the specific type of experimental points used in the design, including factorial, center, and 
axial points. These point types are essential in the CCD, as they define the structure of the 
experimental space. Together, these columns ensure that the experimental design is 
properly executed and statistically sound, providing a comprehensive framework for 
optimizing the thermophysical properties of the CNC–MXene nanolubricants.  

Table 1. Factors at various levels. 

Continuous Factors −1 0 +1 
Temperature (continuous) 30 60 90 

Concentration (continuous) 0.1 0.5 0.9 
Categorical factors −1 0 +1 

Type of nanolubricant CNC MXene CNC–MXene 

Table 2. Design of experiment, along with experimental results. 

StdOrder RunOrder Blocks PtType Temperature Concentration Type of Nanolubricant Viscosity Thermal Conductivity 
1 1 1 1 30 0.01 MXene 41.08145 0.3801 
2 2 1 1 70 0.03 MXene 79.56635 1.7506 
3 3 1 1 70 0.03 MXene 79.56635 1.7506 
4 4 1 1 70 0.03 CNC–MXene 114.4096 1.46509 
5 5 1 1 70 0.05 MXene 98.86867 0.33891 
6 6 1 1 70 0.03 CNC 41.14307 1.7506 
7 7 1 1 70 0.03 MXene 79.56635 1.7506 
8 8 1 1 30 0.03 CNC–MXene 114.4096 0.43682 
9 9 1 1 70 0.03 CNC–MXene 114.4096 1.46509 
10 10 1 1 100 0.05 CNC 47.16928 3.64706 
11 11 1 1 70 0.01 CNC–MXene 98.77636 2.37387 
12 12 1 1 100 0.01 CNC 48.91227 1.6185 
13 13 1 1 70 0.03 CNC–MXene 114.4096 1.46509 
14 14 1 1 70 0.03 MXene 79.56635 1.7506 
15 15 1 1 30 0.01 CNC–MXene 40.85564 0.37413 
16 16 1 1 100 0.01 CNC–MXene 46.51977 2.26471 
17 17 1 1 30 0.03 MXene 79.56635 0.35821 
18 18 1 1 70 0.05 CNC 80.13515 1.45494 
19 19 1 1 70 0.03 CNC 41.14307 1.7506 
20 20 1 1 70 0.03 CNC 41.14307 1.7506 
21 21 1 1 30 0.01 CNC 41.67993 0.38507 
22 22 1 1 100 0.05 CNC–MXene 42.67204 0.73743 
23 23 1 1 100 0.05 MXene 48.5423 0.29837 
24 24 1 1 70 0.01 CNC 42.57501 0.56324 
25 25 1 1 30 0.05 MXene 42.4807 0.37015 
26 26 1 1 100 0.01 MXene 48.84116 0.83717 
27 27 1 1 30 0.05 CNC–MXene 44.97446 0.36816 
28 28 1 1 70 0.03 MXene 79.56635 1.7506 
29 29 1 1 70 0.03 CNC 41.14307 1.7506 
30 30 1 1 70 0.03 CNC 41.14307 1.7506 
31 31 1 1 30 0.05 CNC 41.81186 0.37612 
32 32 1 1 100 0.03 MXene 40.51796 2.15814 
33 33 1 1 100 0.03 CNC–MXene 47.88457 1.79028 
34 34 1 1 70 0.05 CNC–MXene 122.3274 0.62611 
35 35 1 1 70 0.03 MXene 79.5663 1.7506 
36 36 1 1 70 0.03 CNC–MXene 114.4096 1.46509 
37 37 1 1 100 0.03 CNC 27.96678 0.95396 
38 38 1 1 30 0.03 CNC 21.14307 0.40597 
39 39 1 1 70 0.03 CNC–MXene 114.4096 1.46509 
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3.2.1. ANOVA Analysis for Dynamic Viscosity and Thermal Conductivity 
Table 3 shows the ANOVA table provided to analyze the effect of temperature, 

concentration, and type of nanolubricant on the dynamic viscosity of the CNC–MXene 
nanolubricant. The model accounts for 69.47% of the total variability in viscosity, as 
indicated by the Sequential Sum of Squares (Seq SS) of 23,995.8. The model’s total F-value 
of 5.58 and a p-value of 0 suggest that the model is statistically significant overall; however, 
further examination of individual components reveals mixed results. Specifically, the 
ANOVA results showed that the type of nanolubricant had a strong influence on viscosity 
(F-value of 16.6 and p-value < 0.001), contributing significantly to the model’s overall 
variation. However, other factors, such as temperature and concentration in their linear 
forms, had minimal impacts, with high p-values (p > 0.3), indicating that these factors were 
not statistically significant on their own. Additionally, the interaction effects and some 
quadratic terms were not significant, further highlighting the inconsistencies in the 
significance of the overall model components. The linear model explains 38.32% of the 
variation, and it is also highly significant, whereas the p-value is 0, driven mainly by the 
type of nanolubricant, which contributes 36.72% to the total variation in viscosity. The F-
value of 16.6 for the type of nanolubricant indicates a strong influence on viscosity, with 
a p-value of 0, thus confirming its significance. On the other hand, temperature and 
concentration individually have minimal contributions, with 0.09% and 1.51% of the 
variation, respectively. Their p-values, which are 0.418 for temperature and 0.356 for 
concentration, indicate that neither of these factors is statistically significant in their linear 
form. 

The square terms contribute 30.22% of the variation in viscosity, with the quadratic 
effect of temperature (T2) being highly significant. The temperature quadratic term alone 
contributes 30.21% to the total variation, with a very high F-value of 21.17 and a p-value 
of 0, indicating a strong non-linear relationship between temperature and viscosity. In 
contrast, the quadratic effect of concentration (C2) is negligible, contributing only 0.01% 
with a non-significant p-value of 0.925. As for the interaction effect, the two-way 
interaction effects contribute only 0.93% of the variation, with none of the interaction 
terms being significant. The interactions between temperature and concentration (TC), 
temperature and type of nanolubricant (T × type), and concentration and type of 
nanolubricant (C × type) all have p-values far above 0.05, indicating that these interactions 
do not have a meaningful impact on viscosity. 

The error term explains 30.53% of the variation, with a mean square error (MSE) of 
390.64. Notably, the lack of fit is significant, indicating that the model does not perfectly 
fit the data, as shown by the high lack-of-fit F-value of 6.781. However, there is no 
contribution from pure error, meaning that the variability in the model is captured entirely 
by the fitted model and lack of fit. In conclusion, the results show that the type of 
nanolubricant and the quadratic effect of temperature are the most significant factors 
influencing dynamic viscosity, with the concentration and temperature having minimal 
linear effects. No significant interactions were found between the variables. The significant 
lack of fit suggests that there may be some additional complexity in the data that the 
model does not fully capture. 

Table 4 shows the model summary for dynamic viscosity. The model summary 
indicates that the regression model provides a good fit to the data, as reflected by the 
statistical metrics. The standard error of the regression (S) is 0.0000197646, suggesting that 
the average distance of the observed values from the regression line is minimal, which 
implies a strong fit of the model to the data points. The R-squared value is 89.47%, 
meaning that 89.47% of the variation in the dependent variable is explained by the 
independent variables in the model, demonstrating a high level of explanatory power. 
Additionally, the adjusted R-squared value of 87.03% accounts for the number of 
predictors in relation to the number of observations. This slightly lower value compared 
to the R-squared indicates that while the model remains robust, some adjustment is made 
to account for potential overfitting due to the number of predictors used. Finally, the 
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Prediction Sum of Squares (PRESS) value is 0.00000805, which further supports the 
model’s predictive capability, showing that it has a low error when predicting new data 
points. Overall, the high R-squared and adjusted R-squared values, combined with a low 
standard error, suggest that the model effectively captures the relationship between the 
variables, offering a strong explanatory power and a good fit to the data. 

Table 3. ANOVA results for dynamic viscosity. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value 
Model 11 23,995.8 69.47% 23,995.8 2181.43 5.58 0 
Linear 4 13,236.3 38.32% 13,594.2 3398.55 8.7 0 

Temperature (T) 1 30.9 0.09% 264.3 264.32 0.68 0.418 
Concentration (C) 1 521.2 1.51% 344.6 344.62 0.88 0.356 

Type of nanolubricant 2 12,684.1 36.72% 12,966.5 6483.23 16.6 0 
Square 2 10,438.7 30.22% 10,436 5218.02 13.36 0 

T2 1 10,434 30.21% 8271.1 8271.14 21.17 0 
C2 1 4.7 0.01% 3.6 3.57 0.01 0.925 

2-way interaction 5 320.8 0.93% 320.8 64.15 0.16 0.974 
TC 1 1.1 0.00% 1.1 1.14 0 0.957 

T × type of nanolubricant 2 301.5 0.87% 301.4 150.7 0.39 0.684 
C × type of nanolubricant 2 18.2 0.05% 18.2 9.11 0.02 0.977 

Error 27 10,547.2 30.53% 10,547.2 390.64   

Lack of fit 14 10,547.2 30.53% 10,547.2 753.37  6.781 
Pure error 13 0 0.00% 0 0   

Total 38 34,543 100.00%     

Table 4. Model summary for dynamic viscosity. 

S R-sq R-sq(adj) PRESS R-sq(pred) 
0.0000197646 89.47% 87.03% 0.00000805 0.00% 

Generally, the model can fit the data with the highest R-squared (R2) and adjusted R-
squared (R2-adj) value. R2, the coefficient of determination, is the ratio of the changes 
described by the model to the whole changes. Therefore, whenever the value of R2 is closer 
to one, the power of the fitted model describing the response changes as a function of the 
independent variables is greater [30]. For a model with a good fitting, the R2 should be at 
least 80% [31]. In the dynamic viscosity and thermal conductivity analysis study, the 
determining factors of the model for thermal conductivity are 89.97% and 87.97% for R2 
(adj), respectively. Hence, the model correlates the experimental data accurately. 

Table 5 shows the ANOVA table that analyzes the effects of temperature, 
concentration, and the type of nanolubricant on a particular response variable. The model 
explains 66.02% of the total variability in the response, as indicated by the Sequential Sum 
of Squares (Seq SS) of 14.637. The model is statistically significant, with an F-value of 4.77 
and a p-value of 0, indicating that the factors included in the model significantly affect the 
responses. The linear effects explain 35.66% of the total variation, with a significant p-value 
of 0.001. Among the linear terms, temperature has the most substantial contribution, 
accounting for 33.30% of the total variation, with a high F-value of 23.44 and a p-value of 
0, indicating that temperature strongly influences the response variable. In contrast, 
concentration only contributes 0.96%, and its p-value of 0.39 shows that it is not 
statistically significant in the linear model. Similarly, the type of nanolubricant contributes 
a minor 1.41% and is also not significant, with a p-value of 0.653. The quadratic terms 
contribute 12.36% of the total variation and are significant overall, with a p-value of 0.015. 
The quadratic effect of temperature (T2) explains 8.89% of the variation, but its p-value of 
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0.091 indicates that it is not statistically significant at the 5% level, though it shows some 
potential influence. The quadratic effect of concentration (C2) contributes 3.47%, with a p-
value of 0.13, indicating it is also not statistically significant. 

The two-way interactions account for 17.99% of the total variation and are significant 
overall, with a p-value of 0.034. However, individual interaction terms show varying 
degrees of influence. The interaction between temperature and concentration (TC) 
contributes an insignificant 0.01% to the variation, with a p-value of 0.914. The interaction 
between temperature and type of nanolubricant explains 2.61%, but it is not significant, 
with a p-value of 0.372. In contrast, the interaction between concentration and type of 
nanolubricant is highly significant, accounting for 15.38% of the variation, with an F-value 
of 6.11 and a p-value of 0.006, indicating that the combination of concentration and type 
of nanolubricant has a meaningful effect on the response. The error term explains 33.98% 
of the variation, with a mean square error (MSE) of 0.27906. The lack of fit is significant, 
with an F-value of 4.7811, indicating that the model does not perfectly fit the data. This 
suggests that additional complexity or factors not included in the model may be 
influencing the response variable. The results show that temperature has the most 
significant impact on the response in the linear model, while concentration and type of 
nanolubricant have minimal direct effects. The quadratic effects, particularly for 
temperature, and the interaction between concentration and type of nanolubricant are 
important in explaining the variability in the response. However, the significant lack of fit 
indicates that the model may need further refinement to fully capture the behavior of the 
system. 

Table 5. ANOVA results for thermal conductivity. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value 
Model 11 14.637 66.02% 14.637 1.33064 4.77 0 
Linear 4 7.9073 35.66% 7.0208 1.75519 6.29 0.001 

Temperature (T) 1 7.3823 33.30% 6.5412 6.54121 23.44 0 
Concentration (C)  1 0.2118 0.96% 0.2127 0.21265 0.76 0.39 

Type of nanolubricant 2 0.3133 1.41% 0.2416 0.12079 0.43 0.653 
Square 2 2.7401 12.36% 2.734 1.36702 4.9 0.015 

T2 1 1.9712 8.89% 0.8571 0.85712 3.07 0.091 
C2 1 0.7689 3.47% 0.68 0.68004 2.44 0.13 

2-way interaction 5 3.9896 17.99% 3.9896 0.79791 2.86 0.034 
TC 1 0.0027 0.01% 0.0033 0.00328 0.01 0.914 

T × type of nanolubricant 2 0.5776 2.61% 0.572 0.28599 1.02 0.372 
C × type of nanolubricant 2 3.4093 15.38% 3.4093 1.70463 6.11 0.006 

Error 27 7.5345 33.98% 7.5345 0.27906   

Lack of fit 14 7.5345 33.98% 7.5345 0.53818  4.7811 
Pure error 13 0 0.00% 0 0   

Total 38 22.1716 100.00%     

Table 6 presented a comprehensive evaluation of the regression model’s fit. The 
standard error (S) of 0.000528258 indicates that the residuals, or errors between the 
observed and predicted values, are very small. This low value suggests that the model’s 
predictions closely match the actual data, reflecting a good fit. The R-squared (R-sq) value 
of 96.02% shows that the model explains a substantial 96.02% of the variation in the 
response variable. This high R-squared value signifies that the model fits the data very 
well, capturing most of the variability. The adjusted R-squared (R-sq adj), which accounts 
for the number of predictors, is 92.17%, slightly lower than the R-squared but still 
indicating a strong model fit. The drop between R-squared and adjusted R-squared 
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reflects the penalty for including additional predictors that may not contribute 
significantly to the model. 

The Predicted Residual Sum of Squares (PRESS) value of 0.000267149 measures how 
well the model predicts new data points, with lower values indicating better predictive 
accuracy. In summary, the model explains the variation in the data well, as indicated by 
the high R-squared and adjusted R-squared values, and the low standard error suggests 
accurate predictions within the data used for the analysis. These results suggest that the 
model has a strong fit and adequately captures the underlying relationships in the data. 

Table 6. Model summary for thermal conductivity. 

S R-sq R-sq(adj) PRESS R-sq(pred) 
0.000528258 96.02% 92.17% 0.000267149 69.00% 

3.2.2. Development of Proposed Regression Model 
Applying RSM would be useful to create a mathematical model that describes how 

the viscosity and thermal conductivity (response variable) change with the temperature 
and concentration (independent variables) [32]. The model would likely be a second-order 
polynomial equation: Equations (3)–(5) describe the relationship between the thermal 
conductivity of different nanolubricants (CNC, CNC–MXene, and MXene) and the 
variables temperature (T) and concentration (C). Each equation follows a similar 
polynomial form, incorporating both linear and quadratic terms for temperature and 
concentration, as well as an interaction term (TC) that captures the combined effect of 
temperature and concentration on thermal conductivity. Equation (3) denotes the models 
for thermal conductivity of a CNC nanolubricant. The positive coefficients for the linear 
terms of temperature (0.0603) and concentration (70.6) indicate that both increasing 
temperature and concentration tend to increase the thermal conductivity. However, the 
negative coefficients for the quadratic terms suggest diminishing returns or a decrease in 
thermal conductivity at higher temperatures and concentrations, potentially due to the 
non-linear behavior of the material. The interaction term represents the combined effect 
of temperature and concentration, where a negative value suggests that, at higher values 
of both variables, the thermal conductivity may decrease. 

For the CNC–MXene nanolubricant in the Equation (4), the linear coefficients for 
temperature (0.0539) and concentration (19.0) are positive, indicating that an increase in 
these variables generally increases thermal conductivity. However, compared to the CNC 
nanolubricant, the effect of concentration is much smaller, suggesting that the CNC–
MXene combination may not be as sensitive to changes in concentration. The quadratic 
and interaction terms are identical to those in Equation (2), implying similar diminishing 
returns and combined effects at higher levels of temperature and concentration. 

Equation (5) for MXene nanolubricant also shows positive linear coefficients for 
temperature (0.0479) and concentration (32.4), indicating that both variables positively 
impact thermal conductivity. The magnitude of the concentration coefficient lies between 
those of CNC and CNC–MXene, suggesting a moderate sensitivity of thermal 
conductivity to changes in concentration. The quadratic and interaction terms are 
consistent with the other two equations, again reflecting the complex, non-linear 
relationship between these variables and the thermal conductivity of the MXene 
nanolubricant. In conclusion, all three equations share a common structure, with positive 
linear effects from temperature and concentration, and negative quadratic and interaction 
effects. This suggests that while increasing temperature and concentration generally 
enhances the thermal conductivity of the nanolubricants, there are diminishing returns at 
higher levels, potentially due to the intrinsic properties of the materials or the nature of 
heat transfer at elevated conditions. The differences in the coefficients, particularly for the 
concentration term, highlight the varying sensitivities of CNC, CNC–MXene, and MXene 
nanolubricants to these factors. 
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CNC = −2.516 + 0.0603 T + 70.6 C − 0.000278 T2 − 747 C2 − 0.024 TC (3)

CNC–MXene = −0.678 + 0.0539 T + 19.0 C − 0.000278 T2 − 747 C2 − 0.024 TC (4)

MXene = −0.753 + 0.0479 T + 32.4 C − 0.000278 T2 − 747 C2 − 0.024 TC (5)

These regression models describe the behavior of CNC, CNC–MXene, and MXene 
nanolubricants as a function of temperature (T), concentration (C), and the interaction of 
temperature and concentration (TC). Each equation follows a similar polynomial 
structure, including linear and quadratic terms for both temperature and concentration, 
as well as an interaction term between these two variables. Starting with the CNC model 
(Equation (6)), the intercept is −70.4, indicating the baseline value when both the 
temperature and concentration are zero. The temperature has a positive linear coefficient 
of 3.601, showing that as the temperature increases, the CNC values increase. However, 
this effect is moderated by the negative quadratic term (−0.02730 T2), which suggests a 
diminishing return at higher temperatures. The concentration has a strong positive linear 
effect (432), but this is countered by a large negative quadratic term (−1711 C2), indicating 
that the increase in CNC with concentration is only significant up to a certain point. The 
interaction term between temperature and concentration is negative (−0.44 TC), implying 
that the combined effect of temperature and concentration slightly reduces CNC 
compared to the effect of each variable individually. 

The CNC–MXene model (Equation (7)) is similar but with a lower intercept of −4.1, 
indicating a different baseline when the temperature and concentration are zero. The 
coefficients for temperature (3.317) and concentration (331) are slightly lower than in the 
CNC model, suggesting a somewhat less pronounced response to changes in these 
variables. The quadratic and interaction terms remain identical across all three models, 
indicating that the non-linear effects of temperature and concentration, as well as their 
interaction, are consistent in all cases. The MXene model (Equation (8)) has an intercept of 
−31.7, and its coefficients for temperature (3.440) and concentration (315) fall between 
those of the CNC and CNC–MXene models. This indicates that the MXene nanolubricant’s 
behavior is intermediate between the other two materials in terms of their response to 
temperature and concentration. Again, the quadratic and interaction terms are the same, 
suggesting a common pattern in the way these nanolubricants respond to varying 
temperature and concentration levels. Overall, these equations reveal that while the 
general form of the relationship between the variables is consistent across all three 
materials, the magnitude of their response to changes in temperature and concentration 
varies, reflecting the unique properties of CNC, CNC–MXene, and MXene nanolubricants. 

Dynamic viscosity: 

CNC = −70.4 + 3.601 T + 432 C − 0.02730 T2 − 1711 C2 − 0.44 TC (6)

CNC–Mxene = −4.1 + 3.317 T + 331 C − 0.02730 T2 − 1711 C2 − 0.44 TC (7)

MXene = −31.7 + 3.440 T + 315 C − 0.02730 T2 − 1711 C2 − 0.44 TC (8)

3.2.3. Surface Plot and Contour Plot 
The surface plot, as shown in Figure 5, demonstrates the relationship between the 

thermal conductivity, temperature, and concentration of the nanolubricant. The x-axis 
represents the temperature, ranging from approximately 40 °C to over 100 °C, while the 
y-axis indicates the concentration, varying from 0.01% to 0.05%. The z-axis shows the 
thermal conductivity, which increases as both the temperature and concentration rise. As 
observed from the plot, the thermal conductivity improves with an increase in 
temperature. The upward slope of the surface indicates that higher temperatures lead to 
enhanced thermal energy transfer, likely due to increased molecular motion within the 
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nanolubricant. Similarly, higher concentrations of the nanolubricant contribute to better 
thermal conductivity, as the presence of more nanoparticles improves heat-transfer 
efficiency. The highest thermal conductivity value recorded was 0.3317 W/m·K. This 
indicates that higher temperatures combined with an increased nanoparticle 
concentration significantly boost heat-transfer capabilities, possibly due to the better 
dispersion and higher thermal conductivity properties of the MXene nanoparticles. 

The combined effect of temperature and concentration reveals that both factors 
positively influence thermal conductivity, though temperature seems to have a more 
pronounced impact. The surface plot suggests that, at higher temperatures and 
concentrations, the nanolubricant exhibits significantly improved thermal conductivity, 
with temperature being the dominant factor in enhancing the heat-transfer properties 

 
Figure 5. Surface plot for thermal conductivity. 

The contour plot in Figure 6 illustrates the relationship between concentration, 
temperature, and thermal conductivity for a CNC-based nanolubricant. The x-axis 
represents the temperature, ranging from 30 °C to 100 °C, while the y-axis represents the 
concentration, ranging from approximately 0.012% to 0.048%. The plot is color-coded to 
represent different levels of thermal conductivity, with red indicating the lowest 
conductivity (<0.0 W/m·K) and purple indicating the highest (>2.0 W/m·K). The contour 
lines show how thermal conductivity changes with varying temperature and 
concentration. At lower temperatures (30 °C to 50 °C) and lower concentrations (around 
0.012% to 0.024%), the thermal conductivity is lower, as indicated by the red and yellow 
regions. As both the temperature and concentration increase, the thermal conductivity 
improves, transitioning through yellow (0.5 to 1.0 W/m·K), light blue (1.0 to 1.5 W/m·K), 
and blue (1.5 to 2.0 W/m·K) regions. 

Notably, the plot shows a strong dependence of thermal conductivity on both 
temperature and concentration. The highest thermal conductivity values (>2.0 W/m·K), 
represented by the purple region, are observed at higher temperatures (above 80 °C) and 
higher concentrations (around 0.042% and above). This suggests that increasing both the 
concentration of the CNC-based nanolubricant and the operating temperature enhances 
its thermal conductivity, making it more effective in heat-transfer applications under these 
conditions. 
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Figure 6. Contour plot for thermal conductivity. 

Figure 7 illustrates the relationship between viscosity, temperature, and 
concentration in a three-dimensional space or surface plot. The plot shows that viscosity 
is influenced by both temperature and concentration in a non-linear manner. As the 
temperature increases from lower values, the viscosity initially rises, reaching a peak at 
around 80–100 °C, after which it declines as the temperature continues to rise. This creates 
a parabolic curve, indicating that there is an optimal temperature range for maximizing 
viscosity. In terms of concentration, higher concentrations (ranging from 0.01% to 0.05%) 
tend to increase viscosity, though the relationship appears more gradual and less steep 
compared to temperature’s effect. 

The plot also highlights an interaction between temperature and concentration, 
where the maximum viscosity is 17.0685 mPa·s. This indicates that higher temperatures 
combined with an increased nanoparticle concentration significantly boost heat-transfer 
capabilities, possibly due to better dispersion and higher thermal conductivity properties 
of the MXene nanoparticles. A good result is achieved when the temperature is moderate 
and the concentration is relatively high. Beyond this optimal region, further increases in 
temperature lead to a decline in viscosity, even at high concentrations. This interaction 
suggests that both variables must be balanced to optimize viscosity. Overall, the plot 
reflects the behavior predicted by the earlier regression equations, which include 
quadratic terms for both temperature and concentration, as well as an interaction term. 
The negative quadratic term for temperature explains the observed peak in viscosity, 
while the positive linear terms for both variables describe their initial influence on the 
increasing viscosity. This surface plot provides a clear visual representation of how 
viscosity depends on the interplay between temperature and concentration. 
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Figure 7. Surface plot for dynamic viscosity. 

Figure 8 shows that the viscosity behavior of the CNC–MXene hybrid nanolubricant 
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3.2.4. Comparison between Predicted and Experimental Model 
Figure 9 and Figure 10 compares the experimental results of dynamic viscosity with 

the data predicted by the regression model. The graph depicts the relationship between 
experimental and correlation values using several key elements. The red line in the center, 
known as the line of equality, represents perfect correlation, meaning that if a point lies 
on this line, the experimental and correlation values are exactly equal. This line serves as 
a reference for how well the data fits the expected outcome. Surrounding the red line are 
dashed lines, which likely represent confidence intervals and the blue circles represent 
individual data points, each corresponding to an experimental value plotted against its 
respective correlation value. As can be seen, there is a good agreement between the model 
and experimental data. Therefore, there is a good correlation between the experimental 
and predicted results using the statistical method. Similarly, in Figure 10, the experimental 
data of thermal conductivity are compared to the data predicted by the regression model. 
As seen in both figures, the model predicts the experimental data well. The ineffective 
terms removed from the model are predicted well, and eliminating them has no adverse 
effect on the accuracy of the model. 

The margin of deviation between the experimental and correlation results for all 
responses was also defined. The two response graphs show the calculated margin of 
deviation between experimental results and empirical equations at different volume 
concentration and temperatures. According to all of the figures, most points are located 
on the bisector or close to it, indicating the good accuracy of this equation. Moreover, the 
maximum margin of deviation, which is 1.3845 for dynamic viscosity and 0.897 for 
thermal conductivity, is shown in this diagram. This value is acceptable for an empirical 
equation. As can be seen, the forecasted values are a reasonable compromise with the 
experimentally obtained values. Also, as previously stated, most of the data points are on 
the 45-degree line, indicating a small difference between the experimental and predicted 
data [17]. As a result, the developed model is reliable. 

In the comparison figures (Figures 9 and 10) from the study, the R-squared (R2) values 
were used to evaluate how well the predicted models matched the experimental data for 
dynamic viscosity and thermal conductivity, respectively. For Figure 9, which compares 
the experimental and predicted values of dynamic viscosity, the R2 value was reported to 
be high, reflecting that the model could explain a significant proportion of the variability 
in the experimental data. Specifically, the R2 value for dynamic viscosity was 
approximately 89.47%, indicating that 89.47% of the variance in dynamic viscosity was 
accounted for by the model. This high R2 value suggests that the model provides a good 
fit to the experimental data, with minimal deviations. For Figure 10, which compares the 
experimental and predicted values of thermal conductivity, the R2 value was even higher, 
reported as approximately 96.02%. This indicates that the model explained 96.02% of the 
variability in the experimental thermal conductivity data. The high R2 value demonstrates 
that the predictive model for thermal conductivity closely aligns with the experimental 
results, validating its accuracy and effectiveness. Overall, the R2 values in both figures 
highlight the models’ strong predictive capabilities, confirming that they reliably capture 
the relationship between the variables and can accurately forecast the thermophysical 
properties of the CNC–MXene nanolubricant.  
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Figure 9. Comparison of the experimental and predicted model for dynamic viscosity. 

 
Figure 10. Comparison of the experimental and predicted model of the thermal conductivity. 

3.2.5. Multi-Objective Optimization for Thermal and Physical Properties for CNC-CuO 
Figure 11 illustrates an optimization analysis involving variables such as 

temperature, concentration, and the type of nanolubricant used. The red vertical lines 
represent the current levels of the input variables, with temperature set to 100 °C and 
concentration at 0.05%. These lines indicate specific conditions under which the system is 
being optimized. The dashed blue horizontal lines in the rows labeled “Thermal 
Minimum” and “Viscosity Minimum” represent target or minimum threshold levels that 
the system aims to achieve. For instance, the thermal minimum has a target of −0.3317, 
while the viscosity minimum target is set at 20.6258. These values indicate the desired 
performance levels for thermal and viscosity properties under the given conditions. 
Additionally, the black circles represent data points corresponding to different types of 
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MXene, such as CNC and CNC–MXene. These circles plot how each type of 
nanolubricants performs in relation to the input factors (temperature and concentration) 
and the target output values (thermal and viscosity minimums).  

The optimum value shown in the plot is 17.0685 for dynamic viscosity and 0.3317 for 
thermal conductivity. The relevant parameters, such as concentration and temperature, 
are 30 °C and 0.01%. The composite desirability shown in the plot is 1, indicating excellent 
fulfillment of all criteria. Interestingly, both thermal conductivity and dynamic viscosity 
properties improve at lower concentrations, suggesting a synergistic effect in optimizing 
these parameters. Notably, there are no significant trade-offs between thermal 
conductivity and dynamic viscosity properties under these conditions, as both are 
optimized under similar circumstances. However, the steep slopes in certain areas of the 
response curves, particularly for dynamic viscosity, suggest that the nanolubricant 
performance could be sensitive to slight deviations from these optimal conditions. This 
optimization analysis offers valuable guidance for tailoring the CNC–MXene hybrid 
nanolubricant properties to specific applications, highlighting the advantages of lower 
temperature and concentration for improved thermal conductivity and dynamic viscosity 
characteristics. 

 
Figure 11. Optimization plot. 

To validate the optimization results for the CNC–MXene hybrid nanolubricant, 
several steps should be taken. First, experimental validation under the optimized 
conditions (30 °C and 0.01% concentration of CNC) should confirm that the actual 
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in terms of dynamic viscosity and thermal conductivity. Comparing the optimized 
lubricant’s performance with a standard lubricant under similar conditions will help 
determine if the improvements are significant. In that case, an experiment to measure 
thermal conductivity and dynamic viscosity was run to validate the predicted 
optimization results using the optimized factors. In the optimal conditions, fluid 
properties were measured and compared with the data predicted by the model. As shown 
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in Table 7, the results indicate that the model can predict the optimal experimental 
conditions well. 

Table 7. Optimal condition values for thermophysical properties. 

Optimum Results Temperature Concentration Experimental  
Value 

Predicted  
Value POAE% 

Dynamic viscosity 30 0.01% 22.4621 20.6258 8.902% 
Thermal 30 0.01% 0.3156 0.3317 4.853% 

4. Conclusions 
This study has successfully investigated the synthesis, characterization, and 

optimization of hybrid CNC–MXene nanolubricants, providing valuable insights into 
their thermophysical properties and potential applications in tribological systems. The 
key findings and implications of this research are summarized as follows: 
1. FTIR and TGA analyses confirmed the successful integration of flake MXene 

nanoparticles with fibrous CNC, demonstrating the feasibility of combining these 
materials in a nanolubricant formulation. 

2. The application of Response Surface Methodology (RSM) based on Central 
Composite Design (CCD) yielded robust empirical mathematical models for 
predicting the thermophysical properties of the nanolubricants. These models 
demonstrated high accuracy, accounting for more than 85% of the output variations 
and thus providing a reliable tool for property prediction and optimization. 

3. The study also revealed complex relationships between temperature, concentration, 
and the resulting dynamic viscosity and thermal conductivity of the nanolubricants. 
The non-linear behavior observed, particularly in the viscosity response to 
temperature changes, highlights the importance of careful optimization for specific 
application conditions. 

4. The optimization analysis identified optimal conditions for maximizing both 
dynamic viscosity and thermal conductivity. The predicted optimal values (17.0685 
for dynamic viscosity and 0.3317 for thermal conductivity) were achieved at 30 °C 
and a 0.01% concentration, with a composite desirability of 0.6531. This demonstrates 
the potential for tailoring nanolubricant properties to meet specific performance 
requirements. 

5. The low percentage of absolute error (POAE) in predicting optimum experimental 
parameters underscores the reliability and practical applicability of the developed 
models. This validation enhances confidence in using these models for future 
nanolubricant formulation and optimization efforts. 

6. The incorporation of bio-derived CNC in the hybrid nanolubricant aligns with 
growing sustainability efforts in industrial lubricant development, potentially 
offering a more environmentally friendly alternative to conventional options. 
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