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Abstract—The presence of missing values within datasets can introduce a detrimental bias, significantly impeding the predictive 

algorithm's ability to discern patterns and accurately execute prediction. This paper aims to elucidate the intricacies of data imputation 

methods, providing a more profound understanding of prevalent imputation methods, including list-wise deletion (IGN), mean 

imputation (AVG), K-Nearest Neighbors (KNN), MissForest (MF), and Predictive Mean Matching (PMM). The dataset employed in 

this study consists of financial data about S&P 500 companies in the Compustat North America database. The training and validation 

dataset encompasses 1973 instances, consisting of data during the fourth quarter of 2009, the first quarter of 2010, and the third quarter 

of 2014. Within this set, 457 missing values were identified and imputed. The test dataset comprises 197 randomly selected instances 

from the fourth quarter of 2014, equivalent to ten percent of the total instances in the training dataset. The evaluation findings 

prominently position the dataset derived from MF imputation as the leading performer among all the imputed datasets. The insights 

derived from this study are intended to assist practitioners in making informed choices when selecting the most suitable data imputation 

method, particularly in the context of predictive modeling tasks. 
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I. INTRODUCTION

Missing values refer to undesirable null entries within a 

dataset and are closely intertwined with the measurement of 

the data completeness dimension. The occurrence of missing 

values can be attributed to a broad spectrum of data-related 

activities encompassing the data collection, including 

document reviews, interviews, and questionnaires. 

Furthermore, it is worth noting that missing values can also 

be unintentionally introduced during experiments, as recorded 

data may be subject to omissions resulting from equipment 
malfunction, human errors, and faulty data transmission. 

These factors are inherently stochastic and pose significant 

challenges in terms of control. The issue of missing values is 

inescapable, persisting even when conscientious measures 

have been implemented during any data-related endeavor. 

Within a decision-making context, predictive models 

empower decision-makers to anticipate the outcomes of their 
choices. To make accurate predictions, these models require 

a complete dataset, which forms the basis for constructing a 

statistical model. Scholars [1]–[3] have emphasized the 

adverse consequences of utilizing datasets with unaddressed 

missing values, including diminished predictive model 

accuracy and biased prediction outcomes. 

The abovementioned issue extends to predictive algorithms 

such as neural networks, where missing values in the training 

dataset can introduce bias, adversely affecting pattern 

learning and prediction performance [4]. Remarkably, the 

situation worsens with many missing values, potentially 

leading to inaccurate decision-making. Given the paramount 
importance of accuracy in predictive modeling, it becomes 

imperative to employ appropriate missing values imputation 
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methods to estimate and replace missing values. However, 

before implementing any imputation method, a thorough 

analysis is essential to comprehend the missing values' 

patterns, extent, and underlying mechanisms, thereby 

facilitating the rectification of their root causes.  

The objective of this paper is to enhance comprehension of 

data imputation methodologies and conduct a comprehensive 

assessment of prevalent imputation methods, including list-

wise deletion (IGN), mean imputation (AVG), K-Nearest 

Neighbors (KNN), MissForest (MF), and Predictive Mean 
Matching (PMM). The insights derived from this study are 

intended to assist practitioners in making informed choices 

when selecting the most suitable data imputation method, 

particularly in machine learning tasks involving financial 

datasets. 
Missing values can be classified into three distinct 

mechanisms: Missing Completely at Random (MCAR), 

Missing at Random (MAR), and Not Missing at Random 

(NMAR). Within the MCAR category, the occurrence of 

missing values is entirely independent of any other observed 

values or the data of interest itself. Importantly, imputation 
methods that address MCAR-type missing values do not 

introduce bias into subsequent analyses [5]. Nevertheless, 

exercising caution is necessary when testing MCAR patterns, 

as such patterns are infrequently encountered in datasets. 

Little's MCAR test can be conducted to confirm the MCAR 

assumption empirically. 

Conversely, missing values fall into the MAR category 

when their occurrence depends on other observed values but 

not on the missing value itself. [6] and [7] have elaborated on 

the feasibility of estimating missing values with a MAR 

pattern by utilizing other observed values, given their 
dependency on non-missing values. In contrast, NMAR 

emerges when the likelihood of missing values in the dataset 

is associated with unobserved values. Consequently, missing 

values within the NMAR framework cannot be estimated 

using other observed values [8]. 

Imputation methods such as IGN delete cases with missing 

values, and the subsequent data analysis process is conducted 

only on cases with complete data. IGN is straightforward, but 

it reduces the size of instances. As the size decreases, the data 

analysis process will retain statistical power and avoid 

difficulties in discovering minor effects or relationships 

between variables involved in the analysis [4]. Additionally, 
[4] also explained that adopting IGN in a dataset with an

MCAR mechanism increased the standard errors and

decreased the significance level in the analysis.

Batista and Monard [9] advocated the application of the 

KNN algorithm for missing value imputation, relying on the 

similarity distance between missing values and their K-

nearest neighbors, where the data values are available. 

Typically, well-established distance functions like Euclidean, 

Manhattan, and Pearson are employed to quantify the 

proximity between the neighbors and the missing value. 

Enhancement of KNN iterations has been proposed by using 
other distance functions, such as the Gray Relational Grade 

(GRG) [10], and its enhanced version, Reduced Relational 

Grade (RRG) [11], can be utilized. However, when 

considering distance functions for assessing attribute 

similarity, a study by [12] has cautioned that KNN imputation 

is most effective for datasets exhibiting a robust correlation 

between attributes. Alternatively, another study by [13] 

integrates compressive sensing and KNN methods to 

complete the missing internet traffic matrix. This underscores 

the importance of assessing the suitability of KNN imputation 

in the context of the dataset's attribute interrelationships. 

MF, a machine learning-based imputation method, is 

designed to enhance imputation accuracy. MF is an iterative 

adaptation of the random forest algorithm initially proposed 

by [14]. This method leverages a random forest model to 

predict missing values. The procedure begins by estimating 
the missing values, often through mean imputation or other 

established imputation techniques. Subsequently, a random 

forest model is generated for each missing value to facilitate 

imputation. This process iterates until specific stopping 

criteria are satisfied, typically triggered by a substantial 

disparity between the prior and the newly imputed data 

matrices.  

The principal advantage of MF lies in its capability to 

handle diverse data types while consistently delivering 

superior imputation results compared to alternative methods. 

A comparative analysis was conducted on MF and KNN 
imputation across continuous and categorical variables, 

demonstrating that MF consistently outperforms KNN, with 

performance disparities widening as the extent of missing data 

increases within the dataset [15]. Similarly, in a comparative 

study by [16], MF was evaluated against other machine 

learning-based imputation methods, and the findings 

underscored MF's superior imputation accuracy and 

computational efficiency. However, it is noteworthy that, akin 

to other machine learning-based approaches, the iterative 

nature of the imputation process renders MF computationally 

intensive, mainly when applied to large datasets.  
In the context of AVG, the approach entails replacing 

missing values with the mean of the marginal distribution 

derived solely from the available data points. Importantly, this 

imputation method does not consider any conditional 

relationships with other variables that may be associated with 

the missing value. Consequently, the introduction of mean 

imputation disrupts the inherent data randomness, as missing 

values are substituted with a fixed constant, thus negating the 

potential variability in the data values. Veering from data 

randomness during imputation can lead to compromised 

statistical inference [17]. The alteration of randomness within 

imputation procedures can only be circumvented by imputing 
non-constant values in datasets containing missing values. 

This ensures that the variability and complexity of the original 

data are preserved, aligning with robust statistical practices. 

PMM, as introduced by Little in 1988, employs linear 

regression to model variables with missing values based on 

the set of variables without missing values within the dataset. 

This method entails deriving a set of coefficients through 

regression analysis, which is subsequently utilized to predict 

values for the dataset. The predicted value closest to the 

observed value is then chosen as the donor value to replace 

the missing data point. PMM inherits a "hot deck" 
characteristic by leveraging non-missing data values from the 

same dataset to impute the missing values. Consequently, 

PMM ensures that imputed values remain within the range of 

observed values in the dataset. For instance, if the observed 

variable contains only positive numbers, PMM guarantees 

that the imputed values remain consistently positive. In a 
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study by [18] evaluating PMM's performance for semi-

continuous data in comparison to multiple imputation, the 

results demonstrated that both imputation methods performed 

equivalently, with no significant differences in imputation 

bias observed. Furthermore, the study established that PMM 

preserves the original data distribution during the imputation 

process, ensuring that the imputed values never extend 

beyond the range of observed values. This underscores 

PMM's capacity to maintain the integrity of the dataset's 

underlying distribution. 

II. MATERIAL AND METHOD

This study employs a systematic approach to ensure a 

comprehensive and rigorous analysis of the prediction model. 

This section elucidates the approach undertaken, as illustrated 

in Fig. 1. 

Fig. 1  Systematic approach in the study 

The dataset utilized in this study consists of financial data 

pertaining to S&P 500 companies, which was sourced from 

the Standard & Poor’s Compustat North America database. 

Compustat is a comprehensive repository of financial, 

statistical, and market information encompassing active and 

inactive companies across the global landscape. The choice of 

the Compustat database in this research is predicated on its 
extensive utilization in data quality research, particularly 

studies involving financial data. Specifically, this study 

extracted financial data for S&P 500 companies during the 

fourth quarter of 2009, the first quarter of 2010, the third 

quarter of 2014, and the fourth quarter of 2014 from the 

Compustat database. The dataset extracted fifteen financial 

variables, enabling the construction of fourteen financial 

ratios, as initially proposed by [19]. The resulting financial 

ratios are presented in Table 1. 

TABLE I 

FINANCIAL RATIO AND FINANCIAL VARIABLES IN THE DATASET COLLECTION 

Financial Ratio Financial Variables 

Earnings before 
interest and 
taxes/total assets 

(Net Income (Loss) (+) Interest and 
Related Expense – Total (+) Income 
Taxes Payable) ÷ (Assets – Total) 

Net income/net 
worth 

Net Income (Loss) ÷ (Stockholders 
Equity – Total) 

Gross profit/total 
assets 

(Sales/Turnover (Net) (–) Cost of goods 
sold) ÷ (Assets – Total) 

Net income/gross 
profit 

Net Income (Loss) ÷ (Sales/Turnover 
(Net) (–) Cost of goods sold) 

Financial Ratio Financial Variables 

Current 
liabilities/total 
assets 

(Current Liabilities – Total) ÷ (Assets – 
Total) 

Total 
liabilities/total 
assets 

(Liabilities –Total) ÷ (Assets – Total) 

Long term 
debt/total equity 

(Long-Term Debt – Total) ÷ ((Assets-
Total) – (Liabilities-Total)) 

Current 
assets/current 
liabilities 

(Current Assets – Total) ÷ (Current 
Liabilities – Total) 

Inventories/current 
liabilities 

(Inventories – Total) ÷ (Current 
Liabilities – Total) 

Interest 
expenses/sales 

(Interest and Related Expense- Total) ÷ 
(Sales/Turnover (Net)) 

Selling, general & 
administrative 
expenses/sales 

(Selling, General and Administrative 
Expenses) ÷ (Sales/Turnover (Net)) 

Accounts 
receivable/sales 

(Receivable – Total) ÷ (Sales/Turnover 
(Net)) 

Accounts 
payable/inventories 

(Account Payable/Creditors – Trade) ÷ 
(Inventories – Total) 

Accounts 
payable/sales 

(Account Payable/Creditors – Trade) ÷ 
(Sales/Turnover (Net)) 

Among these ratios, two financial variables, Earnings per 

Share and Dividends per Share, are employed to compute the 

RCSE class labels. Subsequently, the RCSE values transform 

three-valued class labels by applying the equal-width method. 

Specifically, these labels are categorized as follows: DOWN 

(RCSE ≤ 0.011), NOCHG (RCSE ≤ 0.104), and UP (RCSE > 

0.105), by the approach outlined by [19]. 

The dataset collection is divided into two sets. The first set 

encompasses 1973 instances, consisting of data from 500 

S&P companies during the fourth quarter of 2009, the first 

quarter of 2010, and the third quarter of 2014. Within this set, 
457 missing values were identified. During the evaluation 

phase, these missing values underwent imputation through 

various methods, including AVG, IGN, PMM, KNN, and MF, 

yielding ten distinct datasets as outcomes. Subsequently, the 

prediction model utilized these imputed datasets for training 

and validation purposes. 

The second set comprises 197 instances, equivalent to ten 

percent of the total cases in the first dataset. These instances 

were randomly selected from the fourth quarter of the 2014 

dataset, with missing values excluded. This second dataset 

serves as the testing set for evaluating the prediction model's 
performance, as detailed in Table 2 provides an overview of 

the datasets used in this research. 

TABLE II 

DATASET COLLECTION 

Set Number 

of datasets 

Usage Number of 

instances 

Missing values 

1 10 Training 
Validation 

1973 457 

2 1 Testing 197 0 

Notably, the dataset size adheres to the common practice in 

designing neural networks for financial data, fixed at 70% of 
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the total instances in the training and validation dataset. 

Additionally, an early stopping strategy is implemented, 

wherein training ceases in the absence of improvements in 

generalization error or upon reaching the maximum training 

time. To assess the classifiers' performance and test the 

models' generality, a 10-fold cross-validation approach is 

employed. Moreover, the size of the validation dataset is set 

at 20% of the total instances in the first set. The out-of-sample 

testing dataset encompasses 10% of the total cases in the 

training and validation dataset. Instances within this dataset 
are randomly selected from the fourth quarter of the 2014 

Compustat dataset, excluding those with missing values. 

During the testing phase, the trained Artificial Neural 

Network (ANN) classifiers are employed to predict RCSE 

values for each company within the testing dataset. 

Subsequently, the trained classifiers are evaluated to validate 

the prediction model's performance. 

The evaluation phase comprises five experiments in which 

datasets with missing values undergo imputation utilizing 

OFFDM, AVG, IGN, PMM, KNN, and MF methods. These 

imputed datasets are subsequently employed to train the 
prediction model for forecasting RCSE class values within the 

testing dataset. The prediction model's performance is 

assessed using three key metrics: root mean squared error 

(RMSE), prediction accuracy, and F-measure. These metrics 

are quantitative indicators to gauge the prediction model's 

effectiveness when various imputation methods address 

missing values within the training dataset [20].  

RMSE quantifies the dissimilarity between predicted 

values generated by the model and the actual observed values 

within the dataset, which plays a pivotal role in this context. 

A diminished RMSE value signifies a reduced error rate and 
a more precise and accurate prediction. The calculation of 

RMSE is formally presented in Equation (1), encapsulating its 

quantitative essence in assessing the predictive performance

of the models where ����  is the observed value, ����  is the

predicted value by the model and  is the total number of

predictions. 

	
��   � �
� ∑ ����� � ���������� (1) 

Prediction accuracy is a critical metric that quantifies the 
proportion of target class values correctly forecasted by the 

prediction model. This metric, derived from the information 

within the confusion matrix, involves computing the sum of 

true positive (TP) and true negative (TN) values, which is then 

divided by the total number of instances within the test dataset. 

TP denotes instances predicted as positive that are indeed 

positive, while TN represents instances predicted as negative 

that are genuinely negative. The calculation for prediction 

accuracy is formally presented in Equation (2), serving as an 

essential gauge of the model's ability to make correct 

predictions. 

����������  ��!�"�# �%�   �%&�'
�%&�'&(%&(' ) 100 (2)

The F-Measure, alternatively recognized as the harmonic 
mean of recall and precision, is computed utilizing Equation 

(3). This metric encapsulates the balance between recall and 

precision, providing a comprehensive assessment of model 

performance.  

, � 
�"-!��  � . /��0����' . 1�0233
/��0����'&1�0233 (3) 

Precision measures the percentage of accurate results 

among all the predicted results, while recall quantifies the 

percentage of correctly predicted results within the entirety of 

predicted results. The F-Measure attains higher values when 

both recall and precision exhibit excellence. Recall is 

determined by the formula (TP / (TP + FN)), where TP 

represents true positives, and FN stands for false negatives. 

Precision is computed as (TP / (TP + FP)), with TP denoting 
true positives and FP representing false positives. 

III. RESULTS AND DISCUSSION

Table 3 provides the RMSE outcomes for datasets 

subjected to imputation through PMM, MF, KNN, AVG, and 

IGN techniques. 

TABLE III 

RMSE BETWEEN IMPUTATION METHODS 

Dataset RMSE 

MF 0.4536 
PMM 0.4579 
AVG 0.4584 

KNN 0.4605 
IGN 0.4845 

The results notably highlight the dataset's inferior RMSE 

performance under IGN imputation compared to alternative 

imputation methods. Fig. 2 visually illustrates the discernible 

RMSE discrepancies between IGN and the other imputation 

methods. 

Fig. 2  Reduction in RMSE in each imputed dataset from experiment with 

respect to IGN 

Specifically, the dataset imputed using MF exhibits the 

most favorable RMSE outcome, closely followed by PMM, 

with a marginal difference of approximately 0.0295 compared 

to IGN. PMM and AVG also demonstrate slightly superior 
RMSE performance relative to KNN. In general, datasets that 

underwent IGN imputation exhibit RMSE differences 

exceeding 0.02 when compared to the other imputation 

methods.  

Table 4 and Fig. 3 offer compelling evidence of a 

substantial improvement exceeding 10% in prediction 

accuracy when datasets undergo imputation via KNN, PMM, 

MF, and AVG methods as compared to IGN. Notably, the 

most notable enhancement in prediction accuracy is achieved 

when employing the KNN imputation technique. Despite MF 

having a lower RMSE, it surpasses both AVG and IGN in 

0
0,02

0,04

Dataset

RMSE Reduction

IGN

KNN

AVG

PMM

MissForest
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terms of prediction accuracy, underscoring its effectiveness in 

enhancing model performance. 

TABLE IV 

PREDICTION ACCURACY BETWEEN IMPUTATION METHODS 

Dataset Prediction Accuracy (%) 

KNN 48.2 
PMM 47.2 
MF 46.1 

AVG 45.1 
IGN 32.5 

Fig. 3  Improvement in prediction accuracy percentage in each imputed 

datasets concerning IGN 

Table 5 and Fig. 4 comprehensively portray the prediction 

model's accuracy and sensitivity across each class, gauged 
through the F-Measure metric, while considering diverse 

imputation methods applied to the training dataset. This 

analytical approach offers valuable insights into the model's 

performance differentials concerning the imputation 

techniques. 

TABLE V 

F-MEASURE BETWEEN IMPUTATION METHODS 

Dataset F-Measure

UP NOCHG DOWN 

KNN 0.311 0.220 0.632 
PMM 0.425 0.133 0.618 
MF 0.489 0.108 0.485 

AVG 0.446 0.095 0.581 
IGN 0.267 0.282 0.408 

Fig. 4  Comparisons of F-Measure between imputation methods from 

experiment 

Except for IGN, an overarching observation is that both UP 

and DOWN classes consistently exhibit higher F-Measure 

values in all datasets than the NOCHG class. This observation 

aligns with the conceptual proximity between NOCHG and 

UP/DOWN classes, resulting in a comparatively lower F-

Measure for NOCHG during the RCSE prediction process. 

Consequently, this research emphasizes imputation methods 

capable of augmenting the F-Measure for the NOCHG class 

while maintaining the observed F-Measure trends. 

Except for IGN, the MF imputation method stands out, 

showcasing a notably higher F-Measure exceeding 0.2 for the 

NOCHG class. In contrast, KNN and AVG display F-Measure 

values for the NOCHG class ranging from 0.1 to 0.5. 

However, PMM records an F-Measure below 0.1 for the 
NOCHG class, suggesting that the prediction model's 

accuracy and sensitivity towards the NOCHG class benefit 

more significantly from PMM-imputed data during the 

prediction process. 

IV. CONCLUSIONS

This paper successfully presents a comprehensive 

evaluation of prevalent missing data imputation methods, 
offering valuable insights into their effectiveness. During the 

evaluation phase, missing values were subjected to imputation 

using a range of methods, including AVG, IGN, PMM, KNN, 

and MF, resulting in the creation of ten distinct datasets. 

These imputed datasets were subsequently leveraged to train 

an ANN-based prediction model that forecasts RCSE class 

values within the testing financial dataset. The prediction 

model's performance was rigorously assessed using three 

essential metrics: RMSE, prediction accuracy, and F-Measure. 

The evaluation findings position the dataset derived from 

MF imputation as the leading performer among all the 

imputed datasets. This dataset consistently outperformed the 
others across various performance indicators. While PMM 

and KNN exhibited comparable performance, they surpassed 

AVG and IGN in multiple facets, underscoring their efficacy 

in enhancing the overall model outcomes. The IGN dataset 

consistently exhibits the poorest performance across various 

metrics, including RMSE, prediction accuracy, and F-

measure. Within the IGN dataset, the training dataset size is 

notably reduced to 1743 instances, with 230 cases removed 

due to missing value occurrences. This decrease in training 

size naturally results in a decline in the performance metrics, 

aligning with similar observations made in prior studies. 
Compared to IGN, datasets subjected to MF and PMM 

imputation methods demonstrate superior performance in 

both RMSE and prediction accuracy. However, it's worth 

noting that PMM exhibits a significant decline in the F-

Measure for the NOCHG class. Conversely, KNN, which 

attains the highest prediction accuracy, does not fare well 

regarding RMSE and F-Measure. Notably, KNN's 

performance, while outperforming AVG, exhibits only a 

marginal RMSE difference of 0.0021. 

It is essential to acknowledge a limitation of this study, 

which lies in its exclusive focus on imputing missing values 
in numerical datasets. Consequently, the outcomes and 

insights derived from this research primarily apply to datasets 

with numeric attributes. Future research endeavors may 

explore extending these imputation methods to datasets with 

different data types, ensuring a more comprehensive 

understanding of missing value imputation across diverse data 

domains. 

0
10

20

Datasets

Prediction Accuracy (%)

IGN

AVG

MissForest

PMM

KNN

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

MF KNN AVG PMM IGN

F-Measure UP F-Measure NOCHG

F-Measure DOWN

1275



ACKNOWLEDGMENT 

The authors gratefully acknowledge the financial support 

from the International Matching Grant with Project ID 

UIC241510 from the Universiti Malaysia Pahang Al-Sultan 

Abdullah (RDU242708). This support is gratefully 

acknowledged. 

REFERENCES 

[1] M. S. Gangadhar, K. V. S. Sai, S. H. S. Kumar, K. A. Kumar, M.

Kavitha, and S. S. Aravinth, “Machine Learning and Deep Learning 

Techniques on Accurate Risk Prediction of Coronary Heart Disease,” 

in 2023 7th International Conference on Computing Methodologies 

and Communication (ICCMC), IEEE, Feb. 2023, pp. 227–232. 

doi:10.1109/ICCMC56507.2023.10083756. 

[2] X. Kong, W. Zhou, G. Shen, W. Zhang, N. Liu, and Y. Yang,

“Dynamic graph convolutional recurrent imputation network for 

spatiotemporal traffic missing data,” vol. 261, p. 110188, 2023, 

doi:10.1016/j.knosys.2022.110188. 

[3] E. Getzen, L. Ungar, D. Mowery, X. Jiang, and Q. Long, “Mining for

equitable health: Assessing the impact of missing data in electronic 

health records,” J Biomed Inform, vol. 139, p. 104269, Mar. 2023, 

doi:10.1016/J.JBI.2022.104269. 

[4] K. Psychogyios, L. Ilias, C. Ntanos, and D. Askounis, “Missing Value

Imputation Methods for Electronic Health Records,” IEEE Access, vol.

11, pp. 21562–21574, 2023, doi: 10.1109/ACCESS.2023.3251919. 

[5] B. Agbo, H. Al-Aqrabi, T. Alsboui, M. Hussain, and R. Hill,

“Imputation of Missing Clinical Covariates for Downstream

Classification Problems,” IEEE Access, vol. 11, pp. 102935–102943, 

2023, doi: 10.1109/ACCESS.2023.3317775. 

[6] P. Buczak, J. J. Chen, and M. Pauly, “Analyzing the Effect of 

Imputation on Classification Performance under MCAR and MAR

Missing Mechanisms,” Entropy 2023, Vol. 25, Page 521, vol. 25, no. 

3, p. 521, Mar. 2023, doi: 10.3390/E25030521. 

[7] G. Shen, W. Zhou, W. Zhang, N. Liu, Z. Liu, and X. Kong, 

“Bidirectional spatial–temporal traffic data imputation via graph 

attention recurrent neural network,” Neurocomputing, vol. 531, pp. 

151–162, Apr. 2023, doi: 10.1016/J.NEUCOM.2023.02.017. 

[8] L. Li, Y. Wang, H. Wang, S. Hu, and T. Wei, “An Efficient

Architecture for Imputing Distributed Data Sets of IoT Networks,”

IEEE Internet Things J, vol. 10, no. 17, pp. 15100–15114, Sep. 2023, 

doi: 10.1109/JIOT.2023.3264609. 

[9] G. Batista and M.-C. Monard, “A Study of K-Nearest Neighbour as an 

Imputation Method,” in Hybrid Intelligent Systems, ser Front

Artificial Intelligence Applications, Jan. 2002, pp. 251–260. 

[10] S. Zhang, “Nearest neighbor selection for iteratively kNN imputation,”

Journal of Systems and Software, vol. 85, no. 11, pp. 2541–2552, Nov. 

2012, doi: 10.1016/J.JSS.2012.05.073. 

[11] Y. He and D. Pi, “Improving KNN Method Based on Reduced 

Relational Grade for Microarray Missing Values Imputation,” IAENG

Int J Comput Sci, vol. 43, no. 3, pp. 356–362, 2016. 

[12] J.-H. Hsu, C.-H. Wu, W.-K. Wang, H.-Y. Su, E. C.-L. Lin, and P. S.

Chen, “Digital Phenotyping-Based Bipolar Disorder Assessment 

Using Multiple Correlation Data Imputation and Lasso-MLP,” IEEE

Trans Affect Comput, pp. 1–14, 2023, 

doi10.1109/TAFFC.2023.3299607. 

[13] I. D. Irawati, A. B. Suksmono, I. J. M.Edward, “An Interpolation

Comparative Analysis for Missing Internet Traffic Data,” Proceedings 

of the 3rd International Conference on Electronics, Communications

and Control Engineering, pp. 26-30, 2020, 

doi:10.1145/3396730.3396740

[14] D. J. Stekhoven and P. Bühlmann, “MissForest—non-parametric

missing value imputation for mixed-type data,” Bioinformatics, vol.

28, no. 1, pp. 112–118, Jan. 2012, doi: 10.1093/bioinformatics/btr597. 

[15] A. K. Waljee et al., “Comparison of imputation methods for missing 

laboratory data in medicine,” BMJ Open, vol. 3, no. 8, p. e002847, 

Aug. 2013, doi: 10.1136/bmjopen-2013-002847. 

[16] J. You, J. L. Ellis, S. Adams, M. Sahar, M. Jacobs, and D. Tulpan, 

“Comparison of imputation methods for missing production data of 

dairy cattle,” animal, p. 100921, Jul. 2023, 

doi:10.1016/j.animal.2023.100921. 

[17] B. Gong, Z. Xu, C. Lin, and D. Wu, “Heterogeneous Traffic Flow

Detection Using CAV-Based Sensor With I-GAIN,” IEEE Access, vol. 

11, pp. 32616–32627, 2023, doi: 10.1109/ACCESS.2023.3263720. 

[18] G. Vink, L. E. Frank, J. Pannekoek, and S. van Buuren, “Predictive

mean matching imputation of semicontinuous variables,” Stat Neerl,

vol. 68, no. 1, pp. 61–90, Feb. 2014, doi: 10.1111/stan.12023. 

[19] J. Du and L. Zhou, “Improving financial data quality using ontologies,” 

Decis Support Syst, vol. 54, no. 1, pp. 76–86, Dec. 2012, doi: 

10.1016/j.dss.2012.04.016. 

[20] Idris NF, Ismail MA, Jaya MIM, Ibrahim AO, Abulfaraj AW, Binzagr 

F (2024) Stacking with Recursive Feature Elimination-Isolation Forest

for classification of diabetes mellitus. PLoS ONE 19(5): e0302595. 

https://doi.org/10.1371/journal.pone.0302595. 

1276




