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A B S T R A C T

This paper sets pioneering research which investigates the parametric identification of thermoelectric modules
(TEMs) through the employment of enhanced slime mould algorithm (ESMA). The proposed method incorporates
a pair of modifications to the standard slime mould algorithm (SMA). Primary modification encloses computation
of random average position between the slimes’ current individual position and best individual position towards
resolution of local optima issue. Subsequent modification then involves substitution of an exponential function to
the existing tangent hyperbolic function within formula p of the standard SMA in enabling improved probability
variants via the selection of updated equations. Competency of the proposed algorithm in generating the optimal
parameters for TEMs was appraised based on 21 benchmarked design parameters, following the objective of root
mean square error (RMSE) minimization between the temperature of both actual and estimated models. Acquired
results which demonstrate lower values of RMSE and parameter deviation index against the standard SMA and
other preceding algorithms such as particle swarm optimization, sine cosine algorithm, moth flame optimizer
and ant lion optimizer ultimately verified ESMA’s efficacy as an effective approach for accurate model
identification.

1. Introduction

Continuous demands for fossil fuels and refractory devastation of
carbon deluge on the global scale have considerably synchronized the
aspirations among communities and professionals alike towards the
search for healthier and sustainable energy conversion alternatives. This
is also in line with the 2030 Agenda of the United Nations (UN) revolves
around the Sustainable Development Goals (SDGs) [1]. While viable
options such as solar-, hydrokinetic-, thermal- and wind-powered ap-
plications have gained substantial efficiency since their initial com-
mencements, several circumstances have, nonetheless, ensued lavish
preservation costs. Such realization then steered partiality to small-scale
electric power systems that capitalize proficient implementation at
suburban or deserted territories where sustainable or alternative energy
sources are commonly inadequate [2]. Amidst the wide varieties of
large-scale energy conversion approaches, the prevalence of solid-state
thermoelectric or TEMs, being a distinguished variant of small-scale
electrical power systems, thus, surfaced as a transcending renewable
and amiable energy source.

Reflected through the governance of adjustable temperature

systems, the practicality and convenience of TEMs are lifted ensuring its
modest mechanism with the absence of dynamic components. However,
its robustness remains shadowed by the efficacies of routine electric
coolers and generators. With this being said, the continuous decline in
power usage and tangible appearance of present-day appliances have
unearthed a multitude of technological upgrades with the like of
modernized ultra-low voltage conversion, strategic thermal energy
harvesting circuits for sensor system [3–5], as well as autonomous
thermoelectric-based energizing gadgets. The precision of the TEMs
model then emerged as the apex guideline in ensuring accurate tem-
perature management towards thermal characterization [6,7]. TEMs’
efficacy in energy harvesting, thus, fascinated practitioners and re-
searchers from diverse sectors towards examining its modelling and
definition.

The modelling efficacy of TEMs was explicitly acknowledged to-
wards a vast span of actual and functional implementations. As exem-
plified through [8], implementation of TEMs as simulated for waste heat
recovery of vehicle engine has especially eased the observation of
transformations in engine speed and coolant temperature within the
system’s radiator through its well-refined modelling. Following
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behavioral inspection of TEMs from the outlook of automotive velocity
by Ref. [9], excessive transformation in the driving cycles has been
shown to inversely affect the model’s effectiveness. Nevertheless,
investigation of the TEMs model in the automotive sector was similarly
executed within the studies by Refs. [10–12]. Additionally, both the
temperature profiles and electrical output as retrievable from the conical
nozzle of a helicopter with the employment of TEMs were also examined
in Ref. [13]. Reputably, the model was further developed and studied
within numerous other mechanical functions including biomass boiler
[14], small-scale pellet boiler [15], marine waste incinerator [16], re-
fineries, glass manufacturing and foundries, as well as diverse heated
elements such as wood-burning stoves [17], geothermal, solar salt ponds
and solar concentrators [18].

As observable via Fig. 1, TEMs fundamentally comprise N sets of
semiconductors held between two ceramic plates. Given its primary
intention for appropriate temperature profiling towards the interpreta-
tion of the analyzed material, fundamental emphasis on the develop-
ment of an accurate temperature controller then urges a strategic
blueprint that proximately replicates the natural demeanor of actual
TEMs towards effective manipulation of temperature change. Two main
modelling categories are particularly noted towards the identification of
TEMs, which comprised non-parametric modelling that adopts mini-
malistic or zero pre-disclosed inferences regarding the model’s layout,
and parametric modelling that exploits any existing intelligence
centering the model’s structure. However, TEMs are deemed admirable
for implementation of the latter, conforming to its vastly disclosed
principle physical demeanor, whilst the availability of extensive infor-
mation concerning the phenomenological models. Modern endeavors
concerning the parametric modelling of TEMs in Refs. [19–21] further
propelled the adoption of particle swarm optimization (PSO) as the
metaheuristic algorithm apropos the input of excitation current and the
output of temperature responses. Nevertheless, the setback of premature
convergence which impairs the converged precision of the investigated
PSO algorithm has blemished its excellence for resolution of otherwise
complicated and multi-modal challenges. The discovery, thus, steered
additional scouting of alternative metaheuristic approaches that avoid
such deficiency.

Consideration is then shifted to the contemporary metaheuristic
approach as formerly designed and introduced by Shimin Li [22] by the
name of slime mould algorithm (SMA) for the identification of TEMs
model. Driven by the circulated motions of slime mould, the algorithm
possesses a novel arithmetical structure which demonstrates the prop-
agation wave of slimes by incorporation of adaptive weights in creating
the finest route to forage food. The algorithm has simultaneously gained
far-reaching employment within multiple areas of the engineering sector
for its compelling exploratory and exploitation competencies, encom-
passing the contexts of solar cell estimation [23], image segmentation
[24], power system stabilizer [25], and parametric modification of
support vector regression [26].

SMA further solidified its applicability to tackle the parametric

identification of TEMs by exhibiting utmost optimization feasibility
against other practical metaheuristic counterparts such as PSO, grey
wolf optimizer (GWO) [27], bald eagle search (BES) [28], and moth
flame optimization (MFO) [29] with generating the best solutions to the
majority of the gauged itineraries and real-time engineering challenges.
Whilst mirroring the nature of metaheuristic algorithms at large, limi-
tations of the SMA layout are comparably hyped on its excessive po-
tential for local optima entrapment contributed by several inadequacies.
The primary drawback is essentially recognized on the overwhelming
dependency of slime mould’s positional updates via each iteration to the
best individual position with the greatest concentration of odor. Per-
formance debilitation ensues under the circumstance where surrounding
slimes are guided by the trapped best individual position towards its
stationed local optima region.

Additionally, the secondary drawback then acknowledges insuffi-
ciency in the layout of formula p from in (2.2) of [22] towards varied
generations of applicable alternatives for positional updates of individ-
ual slime. Attention is allocated to the immense disparity between the
slimes’ individual fitness and best fitness with the pre-established p that
rendered extreme reliance on their individual position to the best indi-
vidual position. Rigorous examination and surmounting of such setbacks
through the development and execution of an advanced SMA, therefore,
emerged as a noteworthy topic. So far, there have been many modifi-
cations of SMA to solve the local entrapment problem and most of the
enhanced versions are based on the combination of SMA with various
existing metaheuristics algorithms, such as SMA-whale optimization
algorithm (WOA) [30,31], SMA-Teaching–Learning-Based Optimization
(TLBO) [32,33], and SMA-Differential Evolution (DE) [34]. However,
these modifications are prone to introducing new challenges, such as
increased complexity in tuning control parameters, elevated computa-
tional costs, a growing population size with advancing generations, an
excessive number of algorithmic coefficients requiring determination,
and slower convergence at the initial stages of iterations. Therefore, it is
worthwhile to propose a new and enhanced version of the SMA, capable
of addressing the primary issue of local entrapment with significantly
reduced complexity, fewer coefficients to be determined, and lower
computational costs.

With reference to the previous discussion, the enhanced slime mould
algorithm (ESMA) has been particularly introduced within the current
paper towards the identification of both fixed and active parameters of
two embedded TEMs through the sole incorporation of temperature
estimation. A pair of constructive alterations are hereby operationalized
in resolving aforementioned shortcomings of the standard SMA. Such
executions comprise deliberation of random average position between
the slime mould’s current individual position and best individual posi-
tion for the most recent iteration, followed by substitution of an expo-
nential function to the existing tangent hyperbolic function within
formula p from (2.2). Reciprocated supports among current individual
position and best individual position of included slimes towards prom-
ising withdrawal from the local optima and greater probability varia-
tions in the selection of revised equations in (2.2) of [22] are, therefore,
expected to recede the overwhelming reliance of slimes’ individual
position update on the best individual position, whilst advancing the
agents’ exploratory capacity for contemporary search track. The adop-
tion of assimilation between the current and best position is based on our
previous works reported in Refs. [35–38] which have shown its effec-
tiveness in solving the local optima entrapment issue. Moreover, it has
been verified to solve diverse types of control engineering problems such
as neuroendocrine PID [35] and fractional order PID [36] controller
tuning, nonlinear system identification [37], and parameter identifica-
tion of solar cells [38].

Accounting for the 21 parameters of TEMs concerning the given in-
formation on both input current and output temperature towards
appraising optimization robustness of ESMA, suggested parametric
identification hereby engages minimization of mean squares error be-
tween both temporal temperature responses of the estimated and theFig. 1. Cross-sectional diagram of a TEM [19].
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actual models. An objective function which gauges the root mean square
error (RMSE) of the simulated temperature data to the identified tem-
perature data has been specially employed in converting the previously
determined estimation problem into an optimization problem, pending
implementation of the proposed approach which centralizes minimiza-
tion of RMSE towards attaining the optimal parameters of a TEMs
model. Centralizing the minimization of RMSE, the practicability of the
proposed approach would be appraised via components of plotted
convergence curve for the objective function, parameter deviation
index, as well as the aftereffects of time-domain output temperature
between both simulated and identified data. Performance outcomes as
recorded with the implementation of the ESMA-based method are sub-
sequently measured against the results obtained from PSO, SMA, GWO,
BES, and MFO-based methods. Thereafter, the current discovery would
produce key contributions enclosing:

• A revolutionary variant of SMA known as the ESMA-based method
has been spearheaded towards calibrating the 21 parameters of a
TEMs model.

• A pair of modifications are pioneered towards resolving the setback
of local optima entrapment within the standard SMA, enclosing the
engagement of random average position between the slimes’ current
individual position and best individual position; followed by the
substitution of an exponential function to formula p of SMA for
allowing increased alternatives in the selection of revised equations.
Prevailed as an advanced variant of SMA, ESMA indisputably pos-
sesses soaring potential in addressing polymorphic challenges as
encountered within real-time engineering applications.

• In view of the parametric outcomes which hold the closest proximity
to TEMs’ optimal parameters, the operational excellence of ESMA is
validated against its predecessor and other preceding optimization
approaches. Proficiency of the proposed method towards steady and
accurate estimations of TEMs’ parameters is, therefore, confirmed.

A comprehensive rundown of the current paper is given as follows:
Section 2 specifies the arithmetic modelling of TEMs, alongside a
formulated problem concerning optimization of the system’s parame-
ters. Section 3 subsequently ensues with a brief explanation of the
standard SMA. Following this, the contemporarily introduced ESMA-
based method has been comprehensively described in Section 4 while
emphasizing its functionality towards the optimization challenge of
TEMs. Simulated findings as measured against the results from other
existing algorithms are further demonstrated in Section 5 in validating
the parametric robustness of the proposed method. This paper is ulti-
mately wrapped through the concluding remarks as given in Section 6.

2. Mathematical model of TEMs and problem formulation

Arithmetic modelling of the TEMs system is particularly detailed
within the current section in enabling problem formulation concerning
the identification of the model’s parameters. The research problem
which sets to address the 21 parameters of TEMs model is fundamentally
defined as appropriating the two embedded TEMs models of TEM1 and
TEM2 as considered within the current study.

2.1. Mathematical model of TEMs apparatus

The currently investigated structure consisting of an interceding
combination of two embedded TEMs alongside an analyzed medium has
been comprehensively illustrated in Fig. 2. With robustness pertaining to
a multitude of circumstances viz. humidity and temperature, the
analyzed medium or material exclusively perchance a virtually repli-
cated human skin towards integration of wearable thermoelectric gen-
erators (TEG). Such design further encompasses the components of
TEM1 junction, TEM2 junction, a sensor and two heat sinks. Increased
clarity on the proposed thermal structure is further displayed through

the corresponding electrical equivalent model as demonstrated in Fig. 3,
with thermal conductance between the heat sink and its surroundings
being individually denoted by Gda1 and Gda2, thermal conductance be-
tween the summit and nether sides of TEM1 and TEM2 being individually
denoted by Gxy1 and Gxy2, thermal conductance of the analyzed material
being individually denoted by Gxb1 and Gxb2, whilst thermal conduc-
tance between the heat sink and the nether sides of TEM1 and TEM2 are
individually denoted by Gyd1 and Gyd2, respectively.

The thermal capacitance of TEM1, TEM2 and the analyzed material is
concurrently represented by the respective symbolic arrays of Cd1,Cy1
and Cx1; Cd2, Cy2 and Cx2; and Cb. The heat sink temperature of TEM1
has been given by the symbol Td1, whilst the temperature of the analyzed
material is given by the symbol Tb, temperature at the summits of TEM1
and TEM2 being given by the independent symbols of Tx1 and Tx2, room
temperature as predetermined at 298 K being given by the independent
symbols of Ta1 and Ta2, and temperature at the nether sides of TEM1 and
TEM2 being given by the independent symbols of Ty1 and Ty2, respec-
tively. Electrical resistors of both TEM1 and TEM2 are further repre-
sented by the independent symbols of Rxy1 and Rxy2. Whereas, the
voltage of the electric power as supplied to and harvested from the
respective modules of TEM1 and TEM2 are described by the symbols of
Vxy1 and Vxy2. The lowest and highest magnitude as permitted for the
Seebeck coefficient are then represented by the symbols of Ks1 and Ks2
with respect to the installed modules of TEM1 and TEM2, whilst values of
current input are represented by the independent symbols of Ic1 and Ic2.

As observable through the layout in Fig. 3, the segregation of the
investigated structure into disparate blocked segments has compellingly
defined the affinity between both electrical circuitry and thermal-based
models. Such resemblance is exemplified through the analogies between
electrical current and heat flow, electrical voltage and temperature,
electric conductance and thermal conductivity, electrical capacitance
and thermal capacitance, and so forth. With reference to Kirchhoff’s law,
the TEMs model can be comprehensively understood as

Cd1Ṫd1 =Gda1Ta1 −
(
Gyd1 +Gda1

)
Td1 + Gyd1Ty1, (1)

Cy1Ṫy1 =Gyd1Td1 +Gxy1Tx1 −
(
Gxy1 +Gyd1

)
Ty1 + Py1, (2)

Cx1Ṫx1 =Gxy1Ty1 +Gxb1Tb + Px1 −
(
Gxb1 +Gxy1

)
Tx1, (3)

Fig. 2. The two embedded TEMs mechanical structure for parameter estima-
tion [19].
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Cx2Ṫx2 =Gxb2Tb +Gxy2Ty2 + Px2 −
(
Gxy2 +Gxb2

)
Tx2, (4)

Cy2Ṫy2 =Gxy2Tx2 +Gyd2Td2 + Py2 −
(
Gyd2 +Gxy2

)
Ty2, (5)

CbṪb =Gxb1Tx1 + Gxb2Tx2 − (Gxb2 +Gxb1)Tb, (6)

CcṪc =GdcTy2 + GcaTa2 − (Gca +Gdc)Tc, (7)

Cd2Ṫd2 =Gyd2Ty2 + GdcTc −
(
Gyd2 +Gdc

)
Td2, (8)

where,

Py1 = I2c1
Rxy1

2
− Ks1Ty1Ic1, (9)

Px1 = I2c1
Rxy1

2
+ Ks1Tx1Ic1, (10)

Px2 = I2c2
Rxy2

2
+ Ks2Tx2Ic2, (11)

Py2 = I2c2
Rxy2

2
− Ks2Ty2Ic2, (12)

To facilitate the modeling, several key assumptions have been made:

i. Uniform Excitation Current Input: It is assumed that the same
random excitation current input Ic is used throughout the opti-
mization process across all proposed algorithms. This uniformity
is crucial to ensure a fair comparison of the optimization results.

ii. Parameter Boundaries: Prior knowledge is utilized to constrain
certain parameters within specific boundaries or a physically
feasible range. This assumption ensures that the optimization
process remains realistic and produces viable parameter
estimates.

iii. Known Model Structure: The structure of the TEM model, as
described in equations (1)–(8), is assumed to be known in
advance. This assumption is based on prior knowledge and pre-
liminary experimental investigations, which provide a founda-
tion for the optimization process.

iv. Steady-State Voltage Assumption: The voltages of the electric
power Vxy1 and Vxy2 are assumed to be zero. This assumption is
made because only the steady-state relationship is well estab-
lished, while the theoretical dynamic relationship is not. As a
result, this simplification is used to facilitate the modeling pro-
cess, even though it may limit the accuracy of the model under
certain dynamic conditions.

These assumptions are integral to the development and execution of
the modeling and optimization processes, defining the context within
which the algorithm operates and influencing the interpretation of the

results.

2.2. Problem formulation

Parametric identification of TEMs models is especially purposed for
diminishing discrepancy between the estimated and the actual models.
The block diagram as illustrated towards accurate prediction of the
TEMs model has been given in Fig. 4, with input values comprising the
data array of Ic2 and Ic1, and Tb and T̂b being denoted by Ic, whilst
outputs of the actual and the estimated models are individually denoted
by Tb and T̂b. With this in mind, the objective function is ascertained
through the value of root mean square error (RMSE), as interpreted by

J(θ)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Tb − T̂b)

2
.

√
√
√
√ (13)

With reference to Equation (13), the 21 identifiable parameters of TEMs
model are exclusively represented by vector θ. It can be further extended
as θ =

[
Gda1 Cd1 Gyd1 Cy1 Rxy1 ks1 Gxy1 Cx1 Gxb1 Cb Gxb2 Cx2 Rxy2

ks2 Gxy2 Cy2 Gyd2 Cd2 Gdc Gca Cc
]T. As such, the estimation problem as

determined for TEMs model is, therefore, devised by:
Problem 2.1: Retrieve the values of unknown parameters θ that

minimize the objective function J of Equation (13) pertaining to the
given actual input data of Ic1 and Ic2, and output data of Tb.

3. The original SMA

Initially published in Ref. [22], SMA has been especially galvanized
by the oscillating patterns of slime mould towards achieving the desired
route of food foraging through appropriated exploratory capability and
exploitative proficiency. Replicating the generative technique of posi-
tive and negative reactions concerning propagation wave as bolstered by
the bio-oscillator, accommodative weights are, therefore, adopted to-
wards development of such contemporary arithmetical model. The
revised equation of individual slime mould which mirrors the odor

Fig. 3. The given two TEMs model.

Fig. 4. Block diagram of TEMs Model.
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concentration is then described by

z̃j(t+1)=

⎧
⎨

⎩

r1 ∗ (ub − lb) + lb, if r2 < β,
z̃bj + vb ∗

(
w ∗ z̃Aj(t) − z̃Bj(t)

)
, if r3 < p AND r2 ≥ β,

vc ∗ z̃j(t), if r3 ≥ p AND r2 ≥ β,
(14)

for iteration t = 1,2,…, tmax, with the maximum iteration being repre-
sented by tmax. Revisiting the layout of Equation (8), element for position
vector z̃ of the slime mould has been disposed by the symbol z̃j, with
element for position vector z̃b which identifies the utmost odor con-
centration located thus far being disposed by the symbol z̃bj. Elements
for z̃A and z̃B which resides arbitrarily nominated individual position
vectors of the slimemould are further denoted by the respective symbols
of z̃Aj and z̃Bj. The symbol d is then used to represent dimension for the
position vectors of z̃, z̃b, z̃A and z̃B. Meanwhile, random numbers as
separately yielded within the range of [0, 1] have been denoted by the
symbols of r1, r2, and r3, with values of the upper and lower bounds
being denoted by the respective symbols of ub and lb at a pre-established
coefficient of β. A parameter within the range of [ − a,a] is concurrently
defined by the notation vb, with the value of a being described by

a= arctanh(1 − (t / tmax)). (15)

Additionally, the notation vc given in Equation (14) specifies an arbi-
trary value as selected between an initial range of [ − 1,1] which pro-
gressively diminishes towards the zero value. The term as demonstrated
by p is subsequently defined by

p= tanh|S(i) − DF|, (16)

where fitness for individual position vector of the slime mould z̃ at a
population size of n is given by S(i)(i = 1,2,…,n), with the best fitness
being represented by DF. Notation w, which is used to signify the slime
mould’s weight, is then determined based on

w(SmellIndex(i))=

⎧
⎪⎪⎨

⎪⎪⎩

1+ r4 ∗ log
(
BF − S(i)
BF − WF

+ 1
)

, i ∈ FH,

1 − r4 ∗ log
(
BF − S(i)
BF − WF

− 1
)

, others,
(17)

where SmellIndex is incorporated as a function which devised S(i) by
orderly disposition of the current iteration initializing the best BF to the
worst WF fitness, whilst the first quarter of the hierarchical population
corresponded by FH, with an arbitrary value within the range of [0, 1] as
manifested by the symbol r4.

Weight w in Equation (17) notably explains the correlation between
food concentration and the thickness of the vein. A proportional rela-
tionship is established between both weight and food concentration, in
which a higher level of food concentration advocates increased weight
of the surroundings, and vice versa. A circumstance where low food
concentration encourages greater foraging pursuits towards other ter-
ritories, thus, enabling swifter allocation of destination with higher food
concentration by the slimes. A comparatively sluggish process ensues
should the destination hold a lower food concentration. Following
increased prospects in acquiring more profound food owing to robust
avoidance of the local optima, such a mechanism inevitably elevates the
efficiency in determining an optimal level of food source. This is,
nonetheless, on accounts where environmental setbacks such as dehy-
drated surroundings and overwhelming brightness would hinder the
circulation of the slime mould.

As such, the pseudocode for the standard SMA has been systemati-
cally outlined as per Algorithm 1.

Algorithm 1: Pseudocode of the original SMA

1. The population size n, coefficient β, and tmax are initially identified. Following
this, individual position of the slime mould is arbitrarily executed between the pre-
determined range of ub and lb.

2. While (t ≤ tmax)
3. Fitness of the slime mould is collectively determined
4. The value of w is calculated based on Equation (17)
5. DF and its corresponding z̃b are revised and updated
6. The value of a is calculated by employment of Equation (15)

For each slime mould
7. p, vb, vc are revised and updated
8. Individual position of the slime is updated by computation of Equation (14)
9. End For
10. t = t + 1
11. End While
12. Return DF and z̃b

4. Proposed enhanced SMA (ESMA)

In light of the robustness of standard SMA towards resolving issues
concerning system optimization, its excellence is situationally demoted
by encountered setbacks of local optima entrapment. Preliminary ex-
perimentations, nonetheless, uncovered two main antecedents that
contribute to such discrepancy. The first reason is recognized in the
common revision of the slime mould’s location in accordance with the
best individual position with the highest odor concentration for every
iteration thus far. Failure of the best individual position to escape the
local optima would expediently guide surrounding slimes towards a
similarly trapped circumstance. Accounting for the extreme disparity
between individual and best fitness of the slimes that develops an
immense reliance by their respective individual position on the best
individual position, the second reason then highlights the ineffective
layout of the formula p from Equation (16) in devising sufficient selec-
tions and alternatives towards steering the locational update of each
slime.

Two disparate alterations are subsequently introduced within the
current paper to overcome the aforementioned shortcomings. The pri-
mary alteration especially concerns the computation of random average
position between both the slimes’ current individual position and best
individual position for its latest iteration. Superseding the entirety of the
simulated iterations, such a proposition is set to enhance the tendency of
otherwise trapped slimes to escape the local optima region. Unveiled
benefit, therefore, encloses reciprocated supports between the slimes’
current individual position and their entrapped best individual position
towards the withdrawal of the latter from the local optima region in
continuing its contemporary exploration. A visualized representation by
the employment of a two-dimensional design parameter (d = 2) as set
within a pre-established contour plot is further illustrated in Fig. 5 to
enable increased clarification of such conditions. Supposition transpires
unexpected entrapment of the best individual position z̃b (green dia-
mond) within the local optima region. The possibility of z̃b in with-
drawing from its entangled position is exceptionally high by the
implementation of the standard SMA, with the immense tendency of

Fig. 5. Graphical representation of the random average position.
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dragging its surrounding current individual position of slime z̃ (red
diamond) towards a similar regional mishap. However, such an issue is
deemed solvable in the case where the random average position is
operationalized based on

ỹj = z̃bj ∗ r5 + z̃j ∗ (1 − r5), (18)

as represented by the element of the vector ỹ (designated using the
yellow diamond), with r5 from Equation (18) being arbitrary values
within the range of [0, 1] that have been independently generated.

Thereafter, the second alteration as adopted for this study confronts
substitution of tangent hyperbolic function within the existing formula p
from Equation (16) with an exponential function towards inducing
vaster probable variations for the selection of revised equations in
Equation (14). The reworked formula following incorporation of the
aforementioned adjustment is then given by

p̂= exp( − |S(i) − DF|. (19)

The revised equation for individual slime as finalized upon the
arithmetic layouts given in Equations (18) and (19) is, therefore,
described as

z̃j(t+1)=

⎧
⎨

⎩

r1 ∗ (ub − lb) + lb, if r2 < β,
ỹj + vb ∗

(
w ∗ z̃Aj(t) − z̃Bj(t)

)
, if r3 < p̂ AND r2 ≥ β,

vc ∗ z̃j(t), if r3 ≥ p̂ AND r2 ≥ β.
,

(20)

Ensuing the pair of operationalized alterations as discussed above,
resolution towards overwhelming reliance of the slime’s revised indi-
vidual position on the best individual position is, therefore, anticipated.
The effectiveness of these modifications is justified by their ability to
address the key limitations identified in the standard SMA. By incor-
porating a more flexible position update mechanism and reducing reli-
ance on potentially misleading best individual positions, ESMA
enhances the algorithm’s robustness and performance in optimizing
system parameters. The improvements introduced in ESMA have been
validated through extensive simulations and comparisons with other
optimization algorithms, demonstrating its superior performance in
parameter identification for TEMs. The enhancements not only address
the issues of local optima entrapment but also provide a more effective
and efficient optimization approach. Nevertheless, enhanced SMA
(ESMA) is forwarded in advancement to the standard SMA coinciding
the contemporary equation as updated in Equation (20). As such, the
pseudocode for ESMA is further detailed in Algorithm 2.

Algorithm 2: Pseudocode of the proposed ESMA

1. The population size n, coefficient β, and tmax are initially identified. Following
this, individual position of the slime mould is arbitrarily executed between the pre-
determined range of ub and lb.

2. While (t ≤ tmax)
3. Fitness of the slime mould is collectively determined
4. The value of w is computed based on Equation (17)
5. DF and it’s corresponding z̃b are revised and updated
6. The value of a is computed by the employment of Equation (15)

For each slime mould
7. p̂, ỹ, vb , vc are revised and updated
8. Individual position of the slime is revised by computation of Equation (20)
9. End For
10. t = t + 1
11. End While
12. Return DF and z̃b

Despite the modifications in Equations (19) and (20), the complexity
of the proposed ESMA still remains the same as the original SMA. Spe-
cifically, based on the population size n, maximum iterations tmax and
size of dimension d, the computational complexity for initialization is
O(d), and for fitness evaluation and sorting, it is O(n + n log n). The
complexity of updating the weight and position is both O(n × d). In

summary, the overall computational complexity of the proposed ESMA
is represented by O(d + ntmax(1 + log n + d)). Please refer to Ref. [39]
for the details.

Nevertheless, the structured procedure for the implementation of
ESMA within a TEMs model is manifested upon.

Step 1. Previously unidentified parameters θ of the TEMs model are
determined in accordance with the mathematical model as outlined in
Section 2.

Step 2. The proposed ESMA-based approach is operationalized con-
forming to Algorithm 2 by establishing θ := z̃ and J(θ) = S(i) towards
individual slime mould.

Step 3. Algorithmic operation is discontinued upon reaching the
maximum iterations tmax, whilst the best individual position of the slime
z̃b being defined as the optimal parameter of the TEMs model, θ := z̃b.

5. Results and discussion

This section is developed to appraise the performance of TEMsModel
based on the implemented parametric optimization of ESMA based
method. The effectiveness of the proposed method is consequently
benchmarked against performances of the standard SMA, as well as
other preceding algorithms such as PSO [19], GWO, BES, and
MFO-based methods, with respect to the criteria described as follows:

1. Evaluation towards the convergence curve of the average objective
function as obtained through 20 trials, followed by the appraisal of
the parameter deviation index ξ. As such, the parameter deviation
index as assessed based on 21 estimated parameters of the TEMs
model is computed by

ξ =

⃦
⃦
⃦
⃦

θ1 − θ̂1
θ̂1

,…,
θ21 − θ̂21

θ̂21

⃦
⃦
⃦
⃦
2

(21)

where θ̂ ∈ R21, the ith component for the given design parameter vector
θ̂ is represented by θ̂ i, with the ith component for the ascertained design
parameter θ being further represented by θi.

2. Analysis enclosing the statistical yields for both fitness function and
parameter deviation index through 20 separate trials pertaining to
the calculated values of mean, best, worst and standard deviation
(Std.) among the currently examined ESMA, SMA, PSO [19], GWO,
BES, and MFO based methods.

Experimented simulations were comprehensively attempted via
MATLAB of a laptop equipping the specifications of Intel(R) Core (TM)
i3-7020U CPU @ 2.30 GHz, 12 GB RAM and Windows 10 system. At a
pre-established coefficient β of 0.61, performances of the proposed
ESMA and the standard SMA-based methods were measured against
other existing optimization approaches such as PSO [19], GWO, BES,
and MFO based methods at their corresponding coefficients as tabulated
in Table 1. Identical regulatory principles were particularly identified
for the entirety of the examined algorithms throughout the simulations
to ensure unbiased comparability, following the criteria of n = 20,
tmax = 50, as well as the upper and lower boundaries as specified in
Table 1. 20 separate trials were then executed to uniformly calibrate the
recorded outcomes of ESMA based method against performances of its
predecessors. Appropriating to the block diagram as presented in Fig. 4,
both the input signals Ic1 and Ic2, and the output signal Tb which acted as
reference points for parametric identification of the proposed algorithm
within the TEMs model have, thus, been independently plotted in Fig. 6
(a), (b) and 6(c), respectively.

The convergence curves of the best fitness function, obtained from 20
independent trials, are presented in Fig. 7 for the algorithms based on
ESMA, SMA, PSO [19], GWO, BES, and MFO. The results of the proposed
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ESMA-based method are represented by the green line, while the out-
comes of the SMA, PSO, GWO, BES, and MFO algorithms are depicted by
the yellow, blue, magenta, cyan, and black lines, respectively. The figure
demonstrates that, during the initial iterations, the ESMA, GWO, MFO
and BES algorithms achieve faster convergence compared to the original
SMA and PSO algorithms, highlighting their effectiveness in the explo-
ration phase. Towards the end of the maximum iterations, ESMA con-
tinues to improve its fitness function, resulting in the lowest fitness
function among the algorithms. This convergence curve also validates
the effectiveness of the proposed random average position in the ESMA
update equation in avoiding local entrapment issues.

In addition, the computational time results are utilized to evaluate
the computational complexity, revealing that the proposed ESMA and
the SMA have average execution times of 137.0973 min and 137.7354
min, respectively, over 20 trials. This indicates that the modifications
introduced in Equations (19) and (20) within the ESMA framework do
not contribute to a significant increase in computational complexity
compared to the original SMA. Acquired results, therefore, endorsed the
superiority of ESMA based method in generating the best performance
for the majority of the fitness function over other well-established
optimization approaches throughout the progression of the simulated
iterations. Further bolstered by the finest design parameters as deter-
mined through 20 individual trials and their respective parameter de-
viation index ξ, recorded values as tabulated in Table 1 then confirmed
the closest proximity between results by the implementation of ESMA
based method and the given parameters of an actual model over its
predecessors, whilst having the lowest parameter deviation index ξ of
0.6401. With following a hierarchical order of SMA, BES, GWO, PSO
[19] and MFO-based methods, their performances have, nonetheless,
been significantly outshined by the proposed method.

Moreover, statistical fitness function outcomes of the examined al-
gorithms with respect to the values of best, mean, worst and standard
deviation as recorded from 20 individually simulated trials are
comprehensively outlined in Table 2. The results indicate that the
ESMA-based method exhibits the lowest values for the best, worst, and
standard deviation of the fitness function, with mean values that are
slightly competitive with those of the GWO and BES methods. This
further demonstrates the effectiveness of the proposed approach
compared to the alternative algorithms. Likewise, such findings are re-
flected through the parameter deviation index which coheres to the
evaluation of best, mean, worst and standard deviation values as pre-
sented in Table 3. The cumulative findings indicate that the ESMA-based

method consistently outperforms in minimizing the best, mean, worst,
and standard deviation values of the parameter deviation index ξ. In
contrast, despite achieving lower RMSE values, the GWO and BES-based
methods struggle to produce a superior parameter deviation index.

The outcomes for both actual temperature output Tb and estimated
temperature output T̂b of the examined algorithms are consequently
outlined in Fig. 8. Performance of the actual model is hereby plotted
using a black colored line, with the streamlined algorithms comprising
ESMA, SMA and PSO [19] based methods being further plotted using the
green, yellow and blue colored lines, respectively. Having the finest
parametric estimation in Table 1 as a basis for the acquired results of
estimated temperature output Tb, specific zoomed domains as demon-
strated in Fig. 8, thus, showcasing an identifiable resemblance between
responses of the ESMA-based method and the actual output signal. Such
a claim is further substantiated by a diminished error response of the
proposed approach in Fig. 9, as compared to the standard SMA and PSO
[19] based counterparts. Aggregated responses have undeniably
corroborated ESMA as the superior alternative over performances of the
standard SMA and PSO [19] based methods towards precise identifica-
tion of the TEMs model.

6. Conclusion

ESMA has been specially introduced in the current paper as a
contemporarily enhanced variant of SMA for the fine-tuning of the TEMs
model. A hybridized approach between two different techniques; such
algorithm sets to resolve the shortcomings of its predecessor with ac-
counts for random average position between the slimes’ current indi-
vidual position and finest individual position in overcoming the issue of
local optima entrapment, alongside substitution of an exponential
function to the existing tangent hyperbolic function for formula p of the
standard SMA in accrediting increasingly diversified alternatives on the
selection of revised equations. The robustness of the proposed algorithm
was inherently validated upon its proficiency in optimizing the param-
eters of a TEMs model.

Undertaken simulations further demonstrated the relative suprem-
acy of the ESMA-based approach against former optimization alterna-
tives including the standard SMA, PSO [19], GWO, BES, and MFO, in
terms of RMSE values throughout the majority of the experimented
trials. Increased model accuracy was similarly achieved by the proposed
approach over its compared algorithms with respect to the parameter

Table 1
Comparison among parameter estimation of algorithms.

Algorithm Real Model lb ub ESMA SMA PSO [19] GWO BES MFO

Gda1(W /K) 10 5 20 9.89 6.11 5 13.42 9.51 5.46
Cd1 (J /K) 3500 3000 4000 3289.18 3898.75 3850.15 3222.16 3000.13 3000.73
Gyd1(W /K) 24 20 30 20.00 20 20 25.78 25.28 22.15
Cy1(J /K) 108 105 110 105.44 107.76 110 110 105.05 105.46
Rxy1 (Ω) 1.32 1 5 1.49 1.79 1.56 2.16 1.52 1.11
ks1 (V /K) 0.02 0.01 0.04 0.02 0.02 0.02 0.02 0.02 0.02
Gxy1(W /K) 0.23 0.1 0.5 0.25 0.33 0.14 0.14 0.21 0.27
Cx1(J /K) 3.2 3 4 3.37 3.7 3 3.13 3.95 3.00
Gxb1(W /K) 10 5 30 9.65 7.09 21.92 5.42 5.11 13.45
Cb(J /K) 42.75 20 60 37.81 48.22 40.45 45.86 43.01 48.08
Gxb2(W /K) 10 5 30 5.18 7.14 7.45 6.85 5.05 20.43
Cx2(J /K) 3.2 3 4 3.05 3.77 4 3.01 3.61 3.05
Rxy2 (Ω) 1.32 1 5 1.59 1.75 1 1.63 1.00 2.41
ks2 (V /K) 0.02 0.01 0.04 0.02 0.02 0.02 0.02 0.02 0.02
Gxy2(W /K) 0.23 0.1 0.5 0.18 0.22 0.31 0.40 0.28 0.26
Cy2(J /K) 108 105 110 105.00 108.85 105 108.12 105.05 109.93
Gyd2(W /K) 24 20 30 21.79 21.82 20.15 21.97 28.58 24.59
Cd2(J /K) 3500 3000 4000 3123.21 3493.37 3002.17 4000 3908.34 3630.94
Gdc (W /K) 10 5 20 7.61 5.15 11.78 6.41 14.74 19.99
Gca(W /K) 10 5 20 8.53 8.58 5.19 8.01 5.05 15.59
Cc(J /K) 3500 3000 4000 3249.80 3606.53 3000 3234.69 3919.64 3692.81

Best ξ 0.74 1.07 1.59 1.35 1.12 1.88
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deviation index between the actual and the estimated design parame-
ters. Transcending competencies of earlier algorithms in securing the
utmost optimal parameters to a TEMs model, the far-reaching potential
of the contemporary approach as an excellent optimizer is, therefore,
recognized.

However, despite the promising results, several limitations of the
ESMA approach should be acknowledged. One of the primary limita-
tions is the high computational time, which is largely due to the large
population size required for the algorithm’s operation. This could pose a
challenge when applying ESMA to real-time control engineering prob-
lems. Future research could explore the effectiveness of ESMA with a
smaller or dynamically adjusted population size to mitigate this issue.
Additionally, the scalability of ESMA to more complex and synthesized
systems remain to be validated. Upcoming studies should focus on
applying ESMA to a wider range of systems to confirm its real-time
operational applicability. Overall, while ESMA has proven to be a
highly effective and precise mechanism in system modeling, addressing
its limitations in future work will be essential to fully harness its po-
tential in real-world applications.
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Table 2
The statistical performance value of the RMSE.
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