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Abstract The coronavirus 2019 disease has spread across the world. The number of 
coronaviruses 2019 (COVID-19) cases throughout Malaysia is high in the densely populated state 
of Selangor. In assisting the early preventive measures, this study utilises time series methods to 
model and forecast the number of daily positive cases in three Selangor districts: Petaling, Hulu 
Langat, and Klang. Specifically, the study compares the effectiveness of the Autoregressive 
Integrated Moving Average (ARIMA), a univariate model and the Generalized Space-Time 
autoregressive integrated (GSTARI), a multivariate model. For the GSTARI model, uniform and 
inverse distance weights represent the relationship between locations. The analysed data are 
from January to August 2021, and the lowest root mean square error (RMSE) is chosen as the 
best model. The results show GSTARI (1,1) with both spatial weights outperformed ARIMA (0,1,1) 
in Petaling and Klang but not in Hulu Langat. However, the average RMSE values show that the 
most accurate and effective for forecasting the number of daily confirmed positive cases in 
Selangor is using GSTARI. In conclusion, by utilising advanced time series methods such as 
spatial analysis, this study provides important insights into forecasting trends of infectious 
diseases like COVID-19 and can help in early preventive measures. 
Keywords: Spatio-temporal model, forecasting, Generalized STAR, COVID-19.  

 

 
Introduction 
 
The discovery of the coronavirus disease, or COVID-19, stunned the globe at the end of 2019, which 
was in December. This ongoing COVID-19 pandemic originated from the Hunan seafood animal market 
in Wuhan, China [1]. Since then, COVID-19 has spread its arms and affected nearly all nations 
worldwide. On March 2020, on the 11th, the World Health Organization (WHO) declared COVID-19 a 
global pandemic. Two hundred three (203) countries had been hit by the COVID-19 pandemic by 9 April 
2020, which affected 1,476,819 people and resulted in 87,816 deaths [2]. COVID-19 is a zoonotic illness 
where the animal virus leads to mutation and reproduction within the human body, leading to over 4.5 
million fatalities between January 2020 and September 2021. Up until today, COVID-19 variants have 
been circulated around the world. 
 
The ongoing pandemic has hit Malaysia significantly, causing thousands of people to be exposed to the 
virus and eventually be affected. Due to the dramatic increase in positive COVID-19 cases, the disease 
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has become a primary worldwide public health concern and got priority attention from the Malaysian 
government. As time progressed, it has been noticeable that COVID-19 became a global pandemic due 
to the pattern of how the virus spread [3]. There was no cure for COVID-19, and it was hard to kill a novel 
virus. Hence, the WHO developed a guideline to prevent COVID-19 from being contagious. However, 
the daily case count remained a cause for concern. Forecasting the number of daily positive cases with 
the employment of quantitative approaches is the key to improving the guidelines and preparing action 
plans. The results could provide important insights into the pattern of COVID-19 spread. In addition, the 
results enable more information for further actions. 
 
COVID-19 has caught the eyes of many researchers. Diverse techniques, such as epidemic modelling 
time series and distribution modelling, were used to analyse COVID-19. Until today, these analyses are 
still being carried out. Besides understanding the dynamics of COVID-19, mathematical and statistical 
modelling may also be employed to estimate future values [4]. Infectious disease mathematical modelling 
can aid in overcoming delays and uncertainty [5]. The model of Susceptible-Infectious-Recovered (SIR) 
has been used most frequently to simulate a contagious disease epidemic’s outbreak trajectory and 
intensity [6]. As expected, the SIR model has been widely used in several studies [7] and its further 
extensions, such as the SEIR known as the Susceptible–Exposed–Infectious–Recovered mode [8], [9]. 
Sun and Weng [10] developed a modified model of the SIR model by including two new features: the 
recovery threshold behaviour and the asymptomatic population. 
 
The COVID-19 data is one type of spatio-temporal data because the data depends on events of the 
previous time and locations [11], [12]. Most infectious diseases result in high space and time trends, 
which are of the utmost importance to theoretical study [13]. In 2020, Ceylan [14] constructed a model 
based on univariate time series to estimate the COVID-19 epidemiological trend in Europe’s most 
impacted countries: Italy, Spain, and France. The model is known as the ARIMA or Autoregressive 
Integrated Moving Average model. Subsequently, research on assessing and forecasting the 
epidemiology trend of COVID-19 continues to evolve using univariate or multivariate time series analysis. 
Mishra et al. [15] found the best ARIMA and seasonal ARIMA (SARIMA) models using COVID-19 cases 
in India. The model was used to forecast the daily confirmed cases and the total deaths. The model was 
further used to assist India’s plans to fight against COVID-19. In 2021, Sun [16] modified the model of 
ARIMA to forecast the COVID-19 pandemic in Alberta, Canada. Yamamota et al. [17] proposed a spatio-
temporal approach to include locations for assessing COVID-19 regionally in compliance with US 
COVID-19 mitigation initiatives. Furtado [18] incorporates regression and ARIMA of 20 countries in 
predicting the COVID-19 pandemic infection curves. 
 
A spatio-temporal model is a multivariate approach in time series modeling. There are varieties of models 
that consider both location and time, generally known as spatio-temporal models. For example, Space-
Time Autoregressive (STAR), Generalized Space-Time Autoregressive (GSTAR), and the most basic 
model is Vector Autoregressive (VAR). These spatio-temporal models cover various applications in 
various fields, such as disease transmission, data mining, economic growth, ecology, agriculture, and 
population growth. In the COVID-19 area of study, Sukarna [19] estimated and forecasted the COVID-
19 cases in Sulawesi Island, Indonesia, using the Generalized Space-Time Autoregressive Integrated 
Moving Average (GSTARIMA) model. The result showed the necessity of the differencing since the non-
stationary exists in the number of cases with the model, which was suitable for up to three days ahead 
but not further than that. Another study was also conducted in Indonesia Bandung province [20]. The 
model used was Generalized Space-Time Autoregressive Integrated (GSTARI), where the result shows 
good performance for a maximum of two days ahead. Both studies mentioned using only one weight 
approach: inverse distance and uniform weight, respectively.  
 
The study on spatio-temporal in Malaysia was limited. Many studies still focus on the univariate time 
series model, ARIMA, in forecasting COVID-19 cases [21], [22]. However, one study found by Abdullah 
et al. [23]. The authors model the COVID-19 daily new cases using the GSTAR-ARIMA model, a hybrid 
model.  The study focuses on the spatio-temporal between five states in Malaysia: Selangor, Sabah, 
Johor, Sarawak, and Perak. The study compares the performance of GSTAR and hybrid GSTAR-ARIMA 
based on uniform weights. The results show that the hybrid model gave better forecasting performance 
than the GSTAR model. Nevertheless, the GSTAR model remains the primary model in many 
applications since the model permits variable autoregressive parameters and spatial variation by region, 
which is more practical and realistic in application [24]. 
 
Based on the literature, most existing time series forecasting studies rely on univariate approaches like 
ARIMA and SARIMA, which have limited capacity to capture the complex spatio-temporal dynamics of 
disease transmission. To overcome these limitations, this study employs the GSTARIMA family, 
GSTARI, to analyse COVID-19 cases that exhibit nonstationary characteristics. While previous research 
typically utilised either inverse distance weights or uniform weights independently, this study will use 
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both approaches and compare the weight types to understand the spatial impact on disease spread 
better. These weights are crucial for accurately modelling the spatio-temporal relationships within the 
data, enabling the model to capture complex interaction patterns across space and time. Besides, 
previous research on COVID-19 forecasting in Malaysia faced challenges in establishing connections 
between large distant regions, such as west and east Malaysia, as shown by low disease transmission 
links. This study addresses this issue by enhancing the choices of the locations based on a correlation 
approach, thereby improving the understanding of spatio-temporal patterns. Therefore, this study aims 
to develop ARIMA and GSTARI models to forecast daily positive COVID-19 cases across different 
locations in high-density areas in Malaysia. The performance of these models will be compared to 
determine which provides the most accurate forecasts. 
 
Materials and Methods 
 
Data Source 
The statistics of daily positive COVID-19 cases data recorded by the Ministry of Health Malaysia’s (MOH) 
governance were obtained from MOH’s official website. The number of issues were retrieved in 
Selangor, Malaysia, from 1 January 2021 until 7 August 2021. This dataset is categorised into two sets: 
the in-sample data comprises information from January 1, 2021, to July 31, 2021, and is used to build a 
COVID-19 model. The out-sample data, covering August 1, 2021, to August 7, 2021, is employed to 
assess the model’s accuracy. 

 
Box-Jenkins Methodology 
Box-Jenkins method is used to develop the ARIMA model and GSTAR model. There are five primary 
steps involved. The first step is detecting stationarity in the data, followed by model identification. The 
next steps are estimation, diagnostic checking, and forecasting [24]. The variance and mean of the data 
are tested for stationary using the Box-Cox plot and augmented Dickey-Fuller (ADF) test, respectively. 
Data transformation is needed if the data is not stationary in variance. Meanwhile, the differencing 
approach is used to achieve stationary in the mean. 
 
Identifying an ARIMA model depends on partial autocorrelation function (PACF) and autocorrelation 
function (ACF) plots. It should be considered simultaneously in assessing whether the patterns are cut 
off or die out. As for the GSTAR model, the space-time partial autocorrelation function (STPACF) and 
the space-time autocorrelation function (STACF) plots have the same function as ACF and PACF, are 
used to identify the GSTAR model. Subsequently, the least squares method is used to estimate the 
parameters. The diagnostic checking involved analysing residuals using a test known as Ljung-Box to 
verify that the residuals are independent. The processes will be repeated if the model is insufficient until 
it achieves a satisfactory ARIMA and GSTAR model. 
 
Univariate: ARIMA Model 
The ARIMA model with parameters (𝑝𝑝,𝑑𝑑,𝑞𝑞) integrates elements from both the autoregressive (AR) model, 
usually denoted as 𝑝𝑝, and the moving average (MA) model, usually denoted by 𝑞𝑞, with an additional 
differencing order denoted as 𝑑𝑑. Generally, this model can be written as a backward shift operator as 
follows: 
 
𝜙𝜙𝑝𝑝(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑌𝑌𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝜀𝜀𝑡𝑡 (1) 

 
where 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜙𝜙1𝐵𝐵 − 𝜙𝜙2𝐵𝐵2 − ⋯−𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝 and 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜃𝜃1𝐵𝐵 − 𝜃𝜃2𝐵𝐵2 −⋯− 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞. The 𝑝𝑝 represents 
the order, which signifies the number of time lags for the autoregressive model. The 𝑞𝑞 corresponds to 
the order, indicating the number of time lags for the moving average model; meanwhile, the differencing 
order is denoted as 𝑑𝑑. The 𝜙𝜙𝑝𝑝 represents the autoregressive parameter order 𝑝𝑝,  𝜃𝜃𝑞𝑞 denotes the moving 
average parameter of order 𝑞𝑞, and 𝜀𝜀𝑡𝑡, represents the white noise with 𝜀𝜀𝑡𝑡~𝑁𝑁(0,𝜎𝜎2). 
 
Multivariate: GSTAR Model 
Let at location 𝑖𝑖 = 1,2, … ,𝑁𝑁 and time 𝑡𝑡 = 1,2, … ,𝑇𝑇 the series can be denoted as 𝑌𝑌𝑖𝑖(𝑡𝑡) =
(𝑌𝑌1(𝑡𝑡),𝑌𝑌2(𝑡𝑡), … ,𝑌𝑌𝑁𝑁(𝑡𝑡))′ and follows the GSTAR (𝑝𝑝;  𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑝𝑝) model with time order 𝑝𝑝 and spatial 
𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑝𝑝 that can be written as follows: 
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𝒀𝒀𝒊𝒊(𝒕𝒕) = ��𝝓𝝓𝒔𝒔𝒔𝒔𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝒔𝒔) + �𝝓𝝓𝒔𝒔𝒔𝒔𝑾𝑾𝒊𝒊𝒊𝒊
(𝒔𝒔)𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝒔𝒔)

𝝀𝝀𝒔𝒔

𝒔𝒔=𝟏𝟏

�
𝑝𝑝

𝑠𝑠=1

+ 𝜺𝜺𝒊𝒊(𝒕𝒕) 
                                                (2) 

 
where 
 
𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝒔𝒔) is the observed value at time lag 𝑠𝑠,  
𝑠𝑠 is time autoregressive order,  
𝑘𝑘 is spatial autoregressive order,  
𝑝𝑝 is the time order of 𝑝𝑝−𝑡𝑡ℎ autoregressive term,  
𝜆𝜆𝑠𝑠 is the spatial order of 𝑠𝑠−𝑡𝑡ℎ autoregressive term,  
𝑾𝑾𝒊𝒊𝒊𝒊

(𝒔𝒔)represents the weight of 𝑘𝑘−𝑡𝑡ℎ order spatial, 
𝝓𝝓𝒔𝒔𝒔𝒔 are the diagonal matrices characterised by diagonal elements corresponding to the autoregressive 
values at different time lags for each location,  
𝝓𝝓𝒔𝒔𝒔𝒔 are the diagonal matrices that have diagonal elements that serve as space-time parameters, 
encompassing both spatial lag and time lag, 
𝜺𝜺𝒊𝒊(𝒕𝒕) is the white noise. 
 
Nonetheless, when the model lacks stationarity in its mean, it becomes necessary to apply a differencing 
process. This process leads to the creation of another model known as the Generalized Space-Time 
Autoregressive Integrated (GSTARI) model. For instance, the GSTARI (1,1) model, with both time and 
spatial orders set at one, can be expressed as: 
 

𝒀𝒀𝒊𝒊(𝒕𝒕) = 𝝓𝝓𝟏𝟏𝒔𝒔
𝒊𝒊 𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟏𝟏) + 𝝓𝝓𝟏𝟏𝟏𝟏

𝟏𝟏 �𝑾𝑾𝒊𝒊𝒊𝒊

𝑵𝑵

𝒊𝒊=𝟏𝟏

𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟏𝟏) + 𝜺𝜺𝒊𝒊(𝒕𝒕) 
(3) 

 
where 𝒀𝒀𝒊𝒊(𝒕𝒕) = 𝒀𝒀𝒊𝒊(𝒕𝒕) − 𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟏𝟏), and 𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟏𝟏) = 𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟏𝟏) − 𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟐𝟐). 
 
The number of surrounding observed sites in spatial order influences spatial weight. Two types of spatial 
weight were used: uniform weight and inverse distance weight. Uniform weight is a form of weight that 
gives the same amount of weight value for each site. The weight can be calculated by using the formula 
below: 
 

𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘) = �
1

𝑛𝑛𝑖𝑖
(𝑘𝑘)   ; 𝑗𝑗 is neighbour 𝑖𝑖 in 𝑘𝑘 − 𝑡𝑡ℎ 𝑜𝑜rder

0; others                                       
 

(4) 

 
where 𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘) is the weight between 𝑖𝑖 and 𝑗𝑗. 𝑛𝑛𝑖𝑖

(𝑘𝑘) is the number of neighbours sites with a site. 
 
The weight of the inverse distance method computes the real distance between geographic locations, 
which in this study are represented by latitude and longitude. The distance between these locations is 
defined as follows: 
 

𝑤𝑤𝑖𝑖𝑖𝑖 =
1 𝑑𝑑𝑖𝑖𝑖𝑖⁄

∑ 1 𝑑𝑑𝑖𝑖𝑖𝑖⁄𝑖𝑖≠𝑖𝑖
 

(5) 

 
where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between the location 𝑖𝑖 and 𝑗𝑗. 
 

𝑑𝑑𝑖𝑖𝑖𝑖 = �(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖)2 + (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖)2 (6) 

 
where 𝑢𝑢 and 𝑣𝑣 represent the latitude and longitude coordinate location, respectively. 
 
Accuracy Measure 
The forecasting accuracy will be assessed using the Root Mean Square Error (RMSE). In general, RMSE 
can be formulated as follows: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛�(𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2

𝑛𝑛

𝑡𝑡=1

 

(7) 

 
where 𝑦𝑦𝑡𝑡 is the actual data at time 𝑡𝑡, 𝑦𝑦�𝑡𝑡 is the forecast data at time 𝑡𝑡, and 𝑛𝑛 is the number of observations. 
 
The better model indicates a smaller RMSE value. 

 
Results and Discussion 
 
The Federation of Malaysia comprises thirteen states, with Selangor being the most developed, wealthy, 
and populated state. The rising number of COVID-19 cases in Selangor has garnered national attention 
due to concerning data indicating a significant spread of the virus in the region. Selangor’s three most 
correlated districts are Petaling, Hulu Langat, and Klang. Figure 1 displays a time series plot illustrating 
the daily count of confirmed COVID-19 cases in these three districts. Based on Figure 1, a noticeable 
increasing and decreasing trend can be seen in the daily positive cases in all three districts. In addition, 
the trends are similar in all districts. This indicates that the direction of the number of daily positive cases 
in one location is highly correlated with the increasing and decreasing numbers in other locations. The 
results in Table 1, presenting the correlation of the number of daily positive cases between three 
locations, concurred with the indication. 
 
The positive correlation of positive cases between locations will also increase in the other location and 
vice versa. Table 1 shows Hulu Langat is highly correlated with Petaling and Klang with a correlation 
coefficient (𝑟𝑟) of 0.8140 and 0.7798, respectively. Klang and Petaling show a correlation with 𝑟𝑟 = 0.7386. 
There would be higher chances of COVID-19 cases in Petaling and Klang if Hulu Langat reported positive 
cases. This is due to the densely populated area in these three districts, as the locations are strategic in 
both industries and residential areas. 
 

 
 

Figure 1. COVID-19 daily cases for three districts in Selangor 
 
 
Table 1. Correlation on the number of positive cases in three Selangor districts 

 
Districts Petaling Hulu Langat Klang 
Petaling 1 0.8140 0.7386 
Hulu Langat 0.8140 1 0.7798 
Klang 0.7386 0.7798 1 

 
 

Summary for the daily number of positive COVID-19 cases in Petaling, Hulu Langat and Klang or the 
descriptive statistics are presented in Table 2. The statistics will provide insights into the distribution of 
daily confirmed COVID-19 cases. According to the average and standard deviation, Petaling showed the 
most significant number of cases, followed by Hulu Langat and Klang. This implies that the data 
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distribution in Petaling is widely spread. These results suggest that Petaling’s highly dense population 
could cause a high number of positive cases. 
 

Table 2. Descriptive statistics for the number of positive cases in three districts 
 

Districts Petaling Hulu Langat Klang 
       Min 15 7 5 

1st Qu 193 134.5 89 
Median 379 285 217 
Mean 594.4 424 364.3 

Std. Dev 590.5468 436.1509 488.5964 
3rd Qu 778.5 462.5 408.5 

Max 2832 2106 3006 
 
 

The data’s variance is stationary if the rounded lambda value from the Box-COX plot is 1. Table 3 shows 
the values of λ from the Box-Cox plot before and after transformation for all three locations. Based on 
Table 3, the variance of the data is not stationary since λ is equal to 0.5 for Petaling and Hulu Langat 
and λ = 0 for Klang. Thus, the data needs transformation. After being transformed accordingly, the data 
variance is said to be stationary, having λ = 1 for all three locations. 
 

Table 3. The values of lambda from the Box-Cox plot before and after the transformation 
 

Districts Before After 
λ Transformation λ 

Petaling 0.5 y0.5 1.0 
Hulu Langat 0.5 y0.5 1.0 

Klang 0 ln y 1.0 
 
 

Subsequently, the stationarity of the data’s mean is tested using the augmented Dickey-Fuller (ADF) 
test. Using the transformed data from all locations, the results in Table 4 show that the mean is not 
stationary for all locations (𝑝𝑝-value > 0.05). Hence, a differencing approach with 𝑝𝑝-value > 0.05 was 
carried out to achieve stationary. Based on Table 4, the result shows that the 𝑝𝑝-values of all three 
locations are less than 0.05 after differencing. This suggests significance in achieving stationary for the 
mean of the data. 
 

Table 4. The 𝑝𝑝-value of the ADF test before and after differencing 
 

              Districts p-value before p-value after 
Petaling 0.7393 0.01 

Hulu Langat 0.9835 0.01 
Klang 0.5661 0.01 

 
 
ARIMA model for each location can be identified through ACF and PACF plots in Figure 2. From Figure 
2, the plot shows a die-down pattern in PACF plots for all three locations. This indicates the 
characteristics of the moving average (MA) model. Referring to ACF plots in Figure 2, all locations show 
ACF plots cut off at lag 1; hence, the model is confirmed to be MA(1). However, all the data went through 
different approaches to achieve stationary. Therefore, the proposed model to forecast the positive 
number of COVID-19 data for Petaling, Hulu Langat, and Klang can be denoted as the ARIMA (0,1,1) 
model. Table 5 represents the parameter estimation for each location. 
 

Table 5. ARIMA(0,1,1) parameter estimations for three districts 
 

              Districts Parameter Coefficients 
Petaling 𝜃𝜃1 0.6348 

Hulu Langat 𝜃𝜃2 0.6752 
Klang 𝜃𝜃3 0.7362 
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Diagnostic checks from the developed model are shown in Table 6. From Table 6, the significance level 
or 𝑝𝑝-values are 0.3397, 0.4590 and 0.4469, greater than 0.05. This indicates that the residuals are 
independent and uncorrelated. Therefore, ARIMA (0,1,1) is an appropriate univariate model to forecast 
the daily positive cases of COVID-19 in the three districts in Selangor. 
 

Table 6. Results of Ljung- box Test for ARIMA (0,1,1) model 
 

              Districts 𝜒𝜒2 𝑝𝑝-value 
Petaling 0.91164 0.3397 

Hulu Langat 0.54844 0.4590 
Klang 0.57846 0.4469 

 
 
Model identification for multivariate modelling using the GSTAR model with both spatial weight uniform 
and inverse distance begins with observing the STACF plot and STPACF plot simultaneously. Note that 
the data has gone through a differencing process to achieve stationary, the model known as the 
Generalized Space-Time Autoregressive Integrated (GSTARI) model instead. The uniform weight matrix 
on COVID-19 data assumes that the COVID-19 cases in one location have the same effect on the 
COVID-19 cases in other areas since equal weight is given to each location. Therefore, the uniform 
weighting matrix, 𝑊𝑊𝑖𝑖𝑖𝑖 with their three locations, the number of locations near the location, 𝑖𝑖, are two could 
be written as follows: 
 

𝑊𝑊𝑖𝑖𝑖𝑖 = �
0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

� 

 

  

(a) 

  

(b) 

Continue to next page 
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(c) 

Figure 2. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plot of (a) Petaling, (b) Hulu Langat, and (c) Klang 
districts 
 
 

Meanwhile, inverse distance weight assumes that the COVID-19 cases in one location are affected by 
distance or the closeness with other locations. The latitude and longitude for Petaling is (3.0833, 
101.5833), Hulu Langat is (3.0833, 101.8333) and Klang is (3.0833, 101.4167). The distances between 
locations are then calculated using the Euclidean distance formula.  
 
Therefore, the inverse distance weight matrix can be represented as follows: 
 

𝑊𝑊𝑖𝑖𝑖𝑖 = �
0 0.3999 0.6001

0.6250 0 0.3750
0.7143 0.2857 0

� 

 
As seen in Figure 3 and Figure 4, the STACF and STPACF plots show a die-down pattern for both spatial 
weights. Therefore, by the principle of parsimony, the multivariate model for both spatial weights is first 
identified as the GSTARI (1,1) model. The parameter estimation for GSTARI (1,1) for uniform spatial 
weight and GSTARI (1,1) for inverse distance spatial weight are presented in Table 7. 
 

 
(a) 

 
(b) 

 
Figure 3. Space-time autocorrelation function (STACF) of (a) Uniform weight (b) Inverse distance weight 
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(a) 

 
(b) 

 
Figure 4. Space-time partial autocorrelation function (STPACF) of (a) Uniform weight (b) Inverse 
distance weight 

 
 
Table 7. Parameter estimation of GSTARI (1,1) model 
 

Districts Parameter Coefficients GSTARI(1,1) 
Uniform Inverse 

Petaling ∅10
1 -0.3632 -0.3633 

 ∅11
1 0.0581 0.0454 

Hulu Langat ∅10
2 -0.4633 -0.4638 

 ∅11
2 0.2075 0.2612 

Klang ∅10
3 -0.5151 -0.5189 

 ∅11
3 0.0281 0.0292 

 
 

Diagnostic checking of the residuals was done using the Ljung-box, and the results are presented in 
Table 8. For both models, the results are insignificant (𝑝𝑝-value > 0.05) for all three districts. This verifies 
that the residuals are uncorrelated and independent. Consequently, GSTARI (1,1) for uniform spatial 
weight and GSTARI (1,1) for inverse distance spatial weight can be used for forecasting the daily positive 
cases of COVID-19 in the three districts in Selangor. 
 

Table 8. Results of Ljung- box Test for GSTARI (1,1) model 
 

Districts GSTARI (1,1)- Uniform GSTARI (1,1)- Inverse 
χ2 p-value χ2 p-value 

Petaling 1.0554 0.3043 1.0511 0.3052 
Hulu Langat 0.60659 0.4361 0.45565 0.4997 

Klang 0.14065 0.7076 0.56519 0.4522 
 
 
The GSTAR (1,1) was modelled as follows: 
 
𝒀𝒀𝒊𝒊(𝒕𝒕) = �𝝓𝝓𝟏𝟏𝒔𝒔

𝒊𝒊 + 𝝓𝝓𝟏𝟏𝒔𝒔
𝒊𝒊 𝑾𝑾𝒊𝒊𝒊𝒊�𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟏𝟏) + 𝜺𝜺𝒊𝒊(𝒕𝒕) (8) 
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However, the series is non-stationary. Thus, a differencing approach is needed, and the series can be 
modelled by using the GSTARI (1,1) and can be written as: 
 
𝒀𝒀𝒊𝒊(𝒕𝒕) − 𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟏𝟏) = �𝝓𝝓𝟏𝟏𝒔𝒔

𝒊𝒊 + 𝝓𝝓𝟏𝟏𝟏𝟏
𝒊𝒊 𝑾𝑾𝒊𝒊𝒊𝒊�{𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟏𝟏)

− 𝒀𝒀𝒊𝒊(𝒕𝒕 − 𝟐𝟐)} + 𝜺𝜺𝒊𝒊(𝒕𝒕) 
(9) 

 
From the estimated parameters shown in Table 7, a matrix equation of the GSTARI (1,1) model with 
uniform weight based on (9) can be formed as follows by denoting Petaling, 𝑌𝑌1, Hulu Langat, 𝑌𝑌2, and 
Klang, 𝑌𝑌3. 
 

�
𝑌𝑌�1(𝑡𝑡)
𝑌𝑌�2(𝑡𝑡)
𝑌𝑌�3(𝑡𝑡)

� = ��
−0.3632 0 0

0 −0.4633 0
0 0 −0.5151

�

+ �
0.0581 0 0

0 0.2075 0
0 0 0.0281

� �
0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

�� �
𝑌𝑌1(𝑡𝑡 − 1) − 𝑌𝑌1(𝑡𝑡 − 2)
𝑌𝑌2(𝑡𝑡 − 1) − 𝑌𝑌2(𝑡𝑡 − 2)
𝑌𝑌3(𝑡𝑡 − 1) − 𝑌𝑌3(𝑡𝑡 − 2)

� + �
𝑌𝑌1(𝑡𝑡 − 1)
𝑌𝑌2(𝑡𝑡 − 1)
𝑌𝑌3(𝑡𝑡 − 1)

� 

 
Thus, the equation of GSTARI (1,1) for uniform weight for each location is as follows: 
 
In Petaling: 
 
𝑌𝑌�1(𝑡𝑡) = −0.3632{𝑌𝑌1(𝑡𝑡 − 1) − 𝑌𝑌1(𝑡𝑡 − 2)} + 0.0291{𝑌𝑌2(𝑡𝑡 − 1) − 𝑌𝑌2(𝑡𝑡 − 2)} + 0.0291{𝑌𝑌3(𝑡𝑡 − 1) − 𝑌𝑌3(𝑡𝑡 − 2)}

+ 𝑌𝑌1(𝑡𝑡 − 1)) 
 
In Hulu Langat: 
 
𝑌𝑌�2(𝑡𝑡) = 0.1038{𝑌𝑌1(𝑡𝑡 − 1) − 𝑌𝑌1(𝑡𝑡 − 2)} − 0.4633{𝑌𝑌2(𝑡𝑡 − 1) − 𝑌𝑌2(𝑡𝑡 − 2)} + 0.1038{𝑌𝑌3(𝑡𝑡 − 1) − 𝑌𝑌3(𝑡𝑡 − 2)}

+ 𝑌𝑌2(𝑡𝑡 − 1)) 
 
 
In Klang: 
 
𝑌𝑌�3(𝑡𝑡) = 0.0140{𝑌𝑌1(𝑡𝑡 − 1) − 𝑌𝑌1(𝑡𝑡 − 2)} + 0.0140{𝑌𝑌2(𝑡𝑡 − 1) − 𝑌𝑌2(𝑡𝑡 − 2)} + 0.5151{𝑌𝑌3(𝑡𝑡 − 1) − 𝑌𝑌3(𝑡𝑡 − 2)}

+ 𝑌𝑌3(𝑡𝑡 − 1)) 
 
Using the estimated parameters from Table 7 and equation (9), the matrix equation for the GSTARI (1,1) 
model with inverse distance weighting can be shown as follows: 
 

�
𝑌𝑌�1(𝑡𝑡)
𝑌𝑌�2(𝑡𝑡)
𝑌𝑌�3(𝑡𝑡)

� = ��
−0.3633 0 0

0 −0.4638 0
0 0 −0.5189

� + �
0.0454 0 0

0 0.2612 0
0 0 0.0292

� �
0 0.3999 0.6001

0.6250 0 0.3750
0.7143 0.2857 0

�� 

�
𝑌𝑌1(𝑡𝑡 − 1) − 𝑌𝑌1(𝑡𝑡 − 2)
𝑌𝑌2(𝑡𝑡 − 1) − 𝑌𝑌2(𝑡𝑡 − 2)
𝑌𝑌3(𝑡𝑡 − 1) − 𝑌𝑌3(𝑡𝑡 − 2)

� + �
𝑌𝑌1(𝑡𝑡 − 1)
𝑌𝑌2(𝑡𝑡 − 1)
𝑌𝑌3(𝑡𝑡 − 1)

� 

 
Thus, the equation of GSTARI (1,1) for inverse distance weight is as follows: 
 
In Petaling: 
 
𝑌𝑌�1(𝑡𝑡) = −0.3633{𝑌𝑌1(𝑡𝑡 − 1) − 𝑌𝑌1(𝑡𝑡 − 2)} + 0.0181{𝑌𝑌2(𝑡𝑡 − 1) − 𝑌𝑌2(𝑡𝑡 − 2)} + 0.0272{𝑌𝑌3(𝑡𝑡 − 1) − 𝑌𝑌3(𝑡𝑡 − 2)}

+ 𝑌𝑌1(𝑡𝑡 − 1)) 
 
In Hulu Langat: 
 
𝑌𝑌�2(𝑡𝑡) = 0.1632{𝑌𝑌1(𝑡𝑡 − 1) − 𝑌𝑌1(𝑡𝑡 − 2)} − 0.4638{𝑌𝑌2(𝑡𝑡 − 1) − 𝑌𝑌2(𝑡𝑡 − 2)} + 0.0980{𝑌𝑌3(𝑡𝑡 − 1) − 𝑌𝑌3(𝑡𝑡 − 2)}

+ 𝑌𝑌2(𝑡𝑡 − 1)) 
In Klang: 
 
𝑌𝑌�3(𝑡𝑡) = 0.0209{𝑌𝑌1(𝑡𝑡 − 1) − 𝑌𝑌1(𝑡𝑡 − 2)} + 0.0083{𝑌𝑌2(𝑡𝑡 − 1) − 𝑌𝑌2(𝑡𝑡 − 2)} − 0.4638{𝑌𝑌3(𝑡𝑡 − 1) − 𝑌𝑌3(𝑡𝑡 − 2)}

+ 𝑌𝑌3(𝑡𝑡 − 1)) 
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From these three equations from both uniform weight and inverse distance weights, the daily number of 
positive cases of COVID-19 at time 𝑡𝑡 correlates with the data at the previous time, 𝑡𝑡 − 1 and 𝑡𝑡 − 2 and 
is influenced by the COVID-19 cases at other places. Specifically, the daily positive COVID-19 cases in 
Petaling, 𝑌𝑌1 , Hulu Langat, 𝑌𝑌2, and Klang, 𝑌𝑌3 influence each other. 

 
A negative coefficient in the GSTARI (1,1) model with a uniform weight equation implies that the previous 
period’s positive COVID-19 cases negatively influenced the current period’s positive cases. Conversely, 
a positive coefficient indicates a positive impact of past COVID-19 cases on the current period’s positive 
patients. For example, the GSTARI (1,1) model with uniform weight in Petaling, 𝑌𝑌1 can be interpreted if 
the number of positive cases of COVID-19 in Petaling increased by 1 case, while at other locations and 
at other times, it was constant, the number of positive cases of COVID-19 in the Petaling district in the 
next period will decrease by 36%. This interpretation is the same as in the Hulu Langat, 𝑌𝑌2 and Klang, 𝑌𝑌3 
districts equation. 
 
Then, the RMSE measures are computed to compare the forecast performances of the ARIMA (0,1,1) 
model and GSTARI (1,1) model with uniform weight and distance weight shown in Table 9. The model 
with the lowest RMSE will be chosen as the best model. Overall, there are a few differences in the RMSE 
values. Based on locations, GSTARI (1,1) for inverse distance spatial weight is the best model to forecast 
the number of positive cases in Petaling and Klang. However, the best model for Hulu Langat is GSTARI 
(1,1) for uniform spatial weight.  
 

Table 9. Results of accuracy measure based on RMSE 
 

Districts GSTARI (1,1) ARIMA(0,1,1) 
Uniform Inverse 

Petaling 640.77 637.80 643.81 
Hulu Langat 426.17 430.02 388.17 
Klang 729.39 712.95 823.52 
Average 598.78 593.59 618.50 

 
 

 
(a)  

(b) 

 
(c) 

 
Figure 5. The plots of the ARIMA model and GSTARI models in (a) Petaling, (b) Hulu Langat, and (c) Klang districts 
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In selecting the best model to forecast the number of positive COVID-19 cases for all locations, the 
average RMSE for each model are considered. Based on the rank, the average RMSE, GSTARI (1,1) 
for inverse distance spatial weight is ranked first with RMSE = 593.59, followed by GSTARI (1,1) for the 
uniform spatial weight (RMSE = 598.78) and ARIMA (0,1,1) with RMSE = 618.50. As a result, the best 
model to forecast the number of positive COVID-19 cases, based on RMSE, is GSTARI (1,1) by using 
inverse distance spatial weight. 
 
In addition to RMSE values, for each location, the actual data were plotted together with fitted data of 
each model. The fitted plots for all models show an almost similar pattern, especially in Petaling and 
Hulu Langat. However, based on Figure 5(c), the fitted plot for ARIMA (0,1,1) shows a different pattern 
and is far behind the actual data. From Figure 5, we can observe Figure 5 indicates that GSTARI (1,1) 
for both spatial weights show a consistent pattern to the actual data in all three locations. 
 
Conclusions 
 
Emerging infectious diseases, especially those caused by novel viruses, have become a major public 
health concern worldwide. Ever since the declaration of COVID-19 as a public health emergency 
worldwide, every country has taken action to control the outbreak. Forecasting the number of positive 
COVID-19 cases is crucial to monitor the potential distribution of COVID-19 infection, especially in the 
most affected location, such as Selangor. The forecasted numbers enable the COVID-19 management 
team to prepare appropriate plans of action to control this outbreak not only by locality but also nationally. 
 
Through visualisation (Figure 1), the number of positive COVID-19 daily cases from 1 January 2021 until 
7 August 2021 shows a possible correlation between three districts in Selangor: Petaling, Hulu Langat, 
and Klang. Therefore, a multivariate spatio-temporal model is convenient for forecasting the daily 
numbers of COVID-19 cases. This model pays attention to space and time aspects. The GSTAR model 
is widely used for forecasting spatio-temporal data since it can model heterogeneous locations. 
 
Initially, the data in this analysis was not stationary in both mean and variance. Hence, the data 
transformation is needed to achieve stationary in variance, and a differencing approach is required to 
attain stationary in mean. Consequently, the GSTAR model is now known as the GSTARI model. 
Selecting the best model between the ARIMA model and the GSTARI model is based on its accuracy 
performance, which the RMSE values can determine. GSTARI models with different spatial weights 
provide better performance in Petaling and Klang. 
 
On the other hand, ARIMA performed better than GSTARI models for Hulu Langat. As mentioned in 
Section 3, selecting the best model for all locations is ideal. Hence, according to the average RMSE 
values, GSTARI is the best model to be used as a forecasting tool for the positive number of COVID-19 
cases in Selangor. 
 
The outperformance of the GSTARI model over the ARIMA model could be because the GSTARI model 
considers the spatial weights. This indicates that the spatial effect is vital in forecasting the number of 
positive COVID-19 cases. The attention now turns to comparing GSTARI models with different spatial 
weights. The RMSE values for the GSTARI (1,1) model with uniform weight and inverse distance are 
relatively the same. However, to select the best model among those two, the average RMSE shows that 
the GSTARI (1,1) model with the inverse distance weight is the best model. Furthermore, the GSTARI 
(1,1) model with the inverse distance weight fits well because the parameters estimated are different 
across the model compared to the GSTARI (1,1) uniform weight model. 
 
To conclude, the GSTARI model was used to forecast the number of positive COVID-19 cases in three 
Selangor districts for the short term. Although the results still need to be improved for long-term 
forecasting, the GSTARI model can forecast spatio-temporal data in real-world situations. In addition, 
the results can prove the interaction of observation between space and time simultaneously. Hence, the 
spatial weight considered in modelling GSTARI gave vital information to build the model from the data. 
One advantage of the GSTARI model is that it took less time to forecast the number of positive COVID-
19 cases than the ARIMA model since the model building considered all locations simultaneously. 
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