

Performance augmentation of retrofitted sustainable R1234yf in R134a air conditioning system using AI_2O_3 -SiO₂ hybrid nanolubricant

M. Z. Sharif^{2,5} · W. H. Azmi^{1,2} · M. F. Ghazali² · Hafiz Muhammad Ali^{3,4}

Received: 15 October 2022 / Accepted: 12 July 2023 / Published online: 9 August 2023 © Akadémiai Kiadó, Budapest, Hungary 2023

Abstract

Low global warming potential hydrofluoroolefin-1234yf (R1234yf) is an alternative green refrigerant for the automotive air conditioning (AAC) system to replace the existing R134a refrigerant. However, the low energy efficiency of the AAC system using R1234yf has been a significant obstacle to its wider use. This paper describes using Al_2O_3 -SiO₂/DEC PAG nanolubricant to enhance the performance of the AAC-R1234yf system. The hybrid nanolubricant was created by a two-step preparation process. The experiment was undertaken at volume concentrations up to 0.05% and under various operating conditions. The stability test shows that the hybrid nanolubricant remained in superior stability after 6 months, with minimum particle aggregation and sedimentation. The AAC-Al₂O₃-SiO₂/DEC PAG system achieved the best performance at 0.03% volume concentration with an average increment of 12.01%. This outcome was contributed by the increase of the AAC evaporator's heat absorb value by 2.8% and the reduction of the compressor work with an average decrease of 7.7%. In conclusion, a 0.03% volume concentration of Al_2O_3 -SiO₂/DEC PAG nanolubricant in the AAC compressor was recommended for optimum system performance and energy saving.

Keywords R1234yf \cdot Hybrid nanolubricant \cdot Double-end-capped polyalkylene glycol \cdot Compressor work \cdot Coefficient of performance

		List of symbols	
\bowtie	W. H. Azmi	AAC	Automotive air conditioning
	wanazmi2010@gmail.com	AAC-Al ₂ O ₃ -SiO ₂ /DEC PAG AAC-R1234yf system with	
	Hafiz Muhammad Ali		Al ₂ O ₃ -SiO ₂ /DEC PAG
	hafiz.ali@kfupm.edu.sa		hybrid nanolubricants
	M. Z. Sharif	AAC-DEC PAG	AAC-R1234yf system with
	sharif5865@yahoo.com		DEC PAG lubricants
	M. F. Ghazali	AAC-R1234yf	AAC system with R1234yf
	fairusham@ump.edu.my		refrigerant
1	Faculty of Mechanical and Automotive Engineering	AAC-R134a	AAC system with R134a
	Technology, Universiti Malaysia Pahang,		refrigerant
	Pahang 26600 Pekan, Malaysia	ASHRAE	American society of heating,
2	Centre for Research in Advanced Fluid and Processes,		refrigerating and air condi-
	Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang,		tioning engineers
	Malaysia	COP	Coefficient of performance
3	Mechanical Engineering Department, King Fahd University	Ср	Specific heat capacity
	of Petroleum and Minerals, Dhahran 31261, Saudi Arabia		$(J kg^{-1} K^{-1})$ for water at
4	Interdisciplinary Research Center for Renewable Energy		30 °C
	and Power Systems (IRC-REPS), King Fahd University	DEC	Double-end-capped
	of Petroleum and Minerals, Dhahran 31261, Saudi Arabia	TEM	Transmission electron
5	Faculty of Mechanical and Manufacturing Engineering		microscopes
	Technology, Universiti Teknikal Malaysia, 75150 Melaka, Malaysia	GWP	Global warming potential