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Abstract
Food waste and by-products negatively impact the environment, economy, and society. One solution to this issue is 
repurposing this waste by creating food packaging materials. Packaging is safe for food, but using non-biodegradable 
materials, including microplastics, has led to pollution. The food industry generates substantial amounts of waste that 
creates environmental concerns. Edible and functional food packaging, crafted from food waste and natural materials, 
presents a sustainable approach by reducing waste and plastic usage. These edible materials are consumed with food, 
reducing disposal and environmental impact. This manuscript explores the potential uses of biopolymers, packaging, 
and edible films and coatings As alternatives to traditional food packaging. By-products of fruits are valuable food waste, 
often discarded despite containing beneficial compounds like polyphenols, vitamins, and minerals. This review focuses 
on recent research using vegetable and fruit waste to improve packaging systems, antioxidant, physical, and mechani-
cal properties, and antimicrobial features; advancements in synthetic and biobased films enhanced with by-product 
compounds; and their role in biodegradable food packaging.
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1  Introduction

The worldwide food industries produce significant amounts of waste and by-products, mostly from fruits and vegeta-
bles [1]. These waste materials possess the unused potential for utilization in food packaging because of their organic 
compounds. Food waste and products negatively impact the environment, economy, and society. According to the Food 
and Agriculture Organization, global food loss and waste are continuously rising, with an estimated $400 billion units 
of food wasted annually [2].

This wastage costs food and reduces vital capital like water, land, and energy. There is a global consensus on the 
urgency of addressing this issue. Governments, including the European Union (EU), recognize its seriousness and advo-
cate for strategic measures to combat food waste; waste legislation and addressing food waste offers opportunities to 
lower production costs and improve food system efficiency [3]. Fruit and vegetable waste have bioactive compounds 
that create eco-friendly, sustainable packaging with versatile polymers. However, for practical food waste-based pack-
aging, upcoming research should address key aspects like cost, scalability, moisture resistance, mechanical strength, 
regulations, and consumer approval [4].

Mostly, the food sector prioritizes preventing and reducing food waste because it’s a key aspect of achieving a circular 
economy that involves waste valorization of by-products, where waste materials transfer into valuable goods like fuels, 
materials, and chemicals. Repurpose of food waste involves generating value-added products that find applications in 
diverse sectors, including animal feed, biofuels, organic fertilizers, and energy production [5, 6].

In the last decade, extensive research has been done into using food residues to create food ingredients. These food 
waste products have organic compounds like polyphenols, dietary fiber proteins, vitamins, lipids, and food waste, which 
can offer health benefits. These compounds can improve food products’ nutritional, functional, and technological qual-
ity [7, 8].

Recent research has found that incorporating natural materials from waste and by-products into food packaging 
technologies effectively decreases food waste and related goods. This strategy demonstrates a proactive approach to 
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improving waste utilization regarding environmental sustainability [1, 9]. Food waste refers to the edible portions of 
food discarded or lost at different supply chain stages, from harvesting to processing, distribution, and consumption. 
This wastage can occur due to inadequate storage facilities, transportation issues, suboptimal processing methods, and 
consumer behaviour [10].

Biodegradable packaging material made from food by-products improves packaging film qualities and prolongs the 
shelf life and quality of food products. These by-products also facilitate the creation of eco-friendly, biodegradable pack-
aging with positive attributes like recyclability and safety [4]. Roots, tubers, and other fruit and vegetable by-products 
comprise a substantial portion of waste, about 40–50% of discarded materials. Around 10–35% of unprocessed fruits 
and vegetables, including seeds, pulp, skin, and pomace, are commonly discarded as by-products [11, 12].

Industrial processes mostly produce these byproducts, such as grapes in wine, olive pomace in oil production, and 
products derived from various fruit varieties used in the juice, jam, and jelly industries. Furthermore, processing vegeta-
bles, including potatoes, tomatoes, fennels, artichokes, and carrots, also adds to this by-product [13]. Food by-products 
have natural bioactive compounds, including sugars, pectin, fibers, polysaccharides, and essential bioactive molecules 
like tocopherols, flavonoids, carotenoids, vitamins, and aromatic compounds that have good antioxidant value and 
antiviral properties, making them beneficial for human nutrition [14, 15].

Recently, researchers have increasingly determined to utilize fruit and vegetable by-products as diet components 
such as food enrichment by incorporating fruit by-products, cereal-based, and dairy foods [16, 17] enhanced with pow-
der attained, commencing these leftover food materials to improve their nutritional values. Represents various uses of 
vegetable waste enriched to cereal-based [18–20] fish and dairy-based goods [21–24].

This review explores the utilization of by-products in food packaging materials to reduce global microplastic con-
tamination. Adding antioxidant compounds from food waste to packaging materials can make food items safer and 
more durable, preventing spoilage. The review highlights new research on such functional packaging material and its 
benefits. It focuses on using industrial food waste to improve and emphasize the impact of by-product extracts on film 
performance and biodegradable packaging.

2 � Organic compounds of vegetable and fruit byproducts

Vegetable and Fruit by-products contain beneficial compounds like phenolics and carotenoids that contribute to their 
antioxidant and antimicrobial properties against foodborne pathogens and spoilage. The residues of fruits and vegetables 
have phytochemical substances that offer diverse health advantages, such as antibacterial, antidiabetic, cardioprotective, 
antioxidant, anti-inflammatory, and anti-carcinogenic properties [25].

Pomegranate and grape byproducts, particularly rich in phenolics and antioxidants, are extensively used in various 
foods. Adding these byproducts to food enhances bioactive compounds and dietary fiber for reducing oxidation and 
microbial growth. Sensory outcomes depend on quantity, byproduct form, and food composition [26]. Re-integrating 
these byproducts into the food supply chain addresses environmental and economic concerns. This advantage, coupled 
with valuable components, likely increases consumer acceptance. However, most studies neglect to evaluate these new 
products’ toxicity, in vivo effects, and bioavailability, which are essential to validate their safety and potential health ben-
efits [27]. The foods that go to waste the most are roots, tubers, and oilseeds, which comprise about 25% of all vegetables 
and Fruits, with 21% of all food consumption. Cereals and pulses closely follow, contributing 14% to dietary intake [28].

Food production industries produce 40–50% of plant waste and byproducts. These byproducts include peels, skins, 
shells, roots, branches, stones, and seeds of different vegetables and fruits [29]. Mangoes generate the highest waste 
among all fruit and vegetable types, accounting for 60%, citrus fruits at 50%, fury fruit at 45%, ananas at 33%, pomegran-
ates at 40%, and legumes at 40%. Furthermore, bananas, apples, grapes, potatoes, and tomatoes contribute to waste 
production [30, 31]. Fruits like (banana, mango, apple) peel, and grape pomace are notable for their high dietary fiber 
content, ranging from 51 to 70% [32], and tomato and carrot pomace are also rich in fiber, with levels reaching 50% to 
64%, respectively [31].

The phenolic compounds concentration depends on the individual part of the material; in the case of avocado fruit, 
the peel contains a higher concentration of phenolic compounds than the seed and pulp [33]. The skins and seeds of 
fruits and vegetables are abundant sources of bioactive compounds. The total phenolic content in mango peel was 
significantly higher (in peel 92.6 in flesh 27.8 mg GAE/g) both in ripened and undeveloped stages [34].

The detection of phenolic compounds, especially trigonelline, in the skins and seeds of purple passion fruit, as well 
as their antioxidant properties, suggests that these by-products may be suitable for your health and have been used in 
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biotechnology for different industries and research institutions, with the seeds being the main focus [35]. Date palms 
have significant yield losses during the harvesting, storage, and conditioning stages, accounting for around 30% of the 
total output. Given the large quantity of second-grade dates and non-edible components harvested simultaneously, it 
is profitable for farmers and the food industry to capitalize on this by-product by incorporating its nutritional benefits 
into high-value goods [36]. Table 1 displays elevated concentrations of bioactive composites attained from a waste of 
fruits and vegetables.

3 � Biodegradable materials from fruit and vegetable residues

To produce environmentally friendly and degradable films and coatings, it’s crucial to choose suitable components. 
Polysaccharides like starch, pectin, chitosan, cellulose, alginates, and biodegradable proteins like gelatin, whey protein, 
casein, and gluten are ideal options [49]. Additionally, incorporating lipids such as oils and waxes enhances the effective-
ness and eco-friendliness of these materials [50, 51].

Biopolymer-based biodegradable packaging materials have grown significant interest as a sustainable alternative to 
non-degradable packaging materials [52, 53]. Polymers are degraded through enzymatic hydrolysis and reactions cata-
lyzed by enzymes, breaking the polymer into smaller components and other chemical reactions [54]. When conditions 
are appropriate, microbial activity breaks down biodegradable polymers into innocuous by-products like water, carbon 
dioxide, and biomass. This sustainability distinguishes them from traditional plastics, which may survive for periods [55].

As shown in Fig. 1, the classification of polymers is determined by their origin from Natural, Synthetic, and Microbial 
fermentation. These materials display some advantages, such as sustainable development, biodegradability, biocompat-
ibility, environmental friendliness, and reduction of carbon emissions, which are also listed in Fig. 2 [54, 56]

The incorporation of biopolymer packaging film offers numerous benefits within the food industry. This film is suit-
able for its non-toxic properties and effective control over water vapor, oxygen, and fat passage within food products. 
Crucial for maintaining food quality and prolonging shelf life, biopolymer packaging films have increased agricultural 
product markets [57].

Moreover, biodegradable polymers facilitate the conveyance of active functional elements like antimicrobials, anti-
oxidants, and nutrients, representing the foremost advantage of utilizing biopolymers [58]. Conversely, most biodegrad-
able polymers exhibit hydrophilic characteristics, producing low moisture or water vapour resistance. Additionally, their 
melting point often approaches their combustion point, leading to compact processing competencies and constraining 
their potential for industrial applications [57].

For the processing of fruits and vegetables, rich reservoirs of valuable and nutritious substances are derived; these 
byproducts are used as biodegradable biopolymers in multiple applications, enhancing artificial materials by incorporat-
ing biologically active compounds and additional nutrients into food products [59]. During postharvest handling and 

Table 1   Bioactive compounds in some fruit and vegetable residues

Fruit and vegetable by-products Bioactive compounds References

Apple pomace Hydroxycinnamates, epicatechin, chlorogenic acid, phloretin, quercetin, catechins, 
procyanidins

[37]

Blueberry pomace Anthocyanins, cinnamic acid derivatives, and flavonols [38]
Asparagus peel Rutin, dietary fiber, phenols and flavonoid compounds, peroxidases and saponins [39]
Tomato skin and seeds Caffeic acid, caffeoylquinic acid, lycopene, quercetin, naringenin, chalcone etc [40]
Citrus peel Eriocitrin, hesperidin, naringin [41]
Barberry peel Anthocyanins From Saffron Petal [42]
Onion skin Quercetin [43]
Potato peel, pomace, seeds, leaves, 

pulp, during processing chain
Protocatechuic, and caffeic acid, chlorogenic acid, gallic and ferulic [44]

Grape pomace Phenolic acids, tannins, and stilbenes, flavonoids, anthocyanins [45]
Jaboticaba pomace Phenolics, anthocyanins, and tocopherols (vitamin E) [46]
Broccoli stalk, Phenolic acids and flavonoids [47]
Olive press cake residue Phenolic acids, tyrosol flavonoids [48]
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storage, fruits and vegetables generate considerable processing byproducts and junk [29, 60]. These waste materials are 
predominantly the result of improper storage and treatment procedures, with numerous byproducts being produced 
during the processing stages. In contrast, processed waste is rich in carbohydrates, fiber, and numerous physiologically 
active compounds, making them exceptionally valuable as biological resources [61].

3.1 � Polysaccharides

Polysaccharides are chains of monosaccharide subunits that are complex molecules derived from carbohydrates. Polysac-
charides and proteins are significant in film/coatings because of their biodegradable nature [62]. In addition to cellulose, 
starch, xanthan, chitosan, inulin, pectin, and sodium alginate, they are essential polysaccharides that provide barriers. 
Biodegradable polymer films are made from natural polysaccharides because of their excellent homogeneity, biodeg-
radability, biocompatibility and film-forming qualities [63]. Cellulose is a polysaccharide that produces high-fibre plants 
like cotton, sugarcane, bagasse, fruit peel, oatmeal, and starch in sweet potatoes, beans, peas, and algae [64].

Cellulose is a naturally occurring polymer that is an abundant resource. In addition to inexpensive costs, nanosized 
crystals recovered from various vegetable wastes exhibit favourable mechanical qualities and environmental benefits 
[65]. Bioplastics made from chitosan and cellulose nanocrystals, generated from mango waste combined with polyvi-
nyl alcohol, demonstrated their promise as an active film for packaging edible products [66]. Comparable results were 
observed when chitosan (derived from shrimp waste) and starch from cassava peel were used, with several chitosan 
compositions (3%, 5%, and 7%) being assessed [67].

The manufacturing of bioplastics from vegetable or fruit waste can be considered sustainable because it is both bio-
degradable and carbon–neutral. These environmental advantages motivate bioplastics to further their presence in the 
global market [68]. While certain bioplastics may have adverse effects caused by moisture and sensitivity, future efforts 
should prioritize operational enhancements. The negative consequences have prompted a global transition towards 

Fig. 1   Shows the classification 
of biodegradable polymers

Fig. 2   Shows the advantages 
of biodegradable polymers



Vol:.(1234567890)

Review	 Discover Food           (2024) 4:130  | https://doi.org/10.1007/s44187-024-00117-4

environmentally friendly materials or biocomposites composed of a blend of food waste. Using different fruit- and 
vegetable-based substances as potential films for bio-packaging has captured the interest of numerous researchers 
who aim to create viable materials as a substitute for plastics [69]. Figure 3 depicts the efficient extraction of valuable 
compounds from waste produced by fruits and vegetables to make environmentally friendly films [70].

The research created an orange peel biodegradable material for preparing packaging film, selected for its abundant 
cellulose content and easy accessibility. The film with glycerol as a plasticizer has shown consistent and encouraging 
outcomes. The film exhibits strong durability, flexibility, and disintegration under dirty conditions, characterized by a 
rough surface, and demonstrates its biodegradable properties [71].

Polysaccharides are completely biodegradable, non-toxic, and derived from renewable sources; their potential is still 
excellent. Developing blends based on polysaccharides with synthetic/other natural polymers enables the development 
of usage methods for non-degradable components. One can add antioxidant and antibacterial capabilities using essential 
oils in polysaccharide-based systems. Pollysacrides-based biodegradable materials help Reduce production costs and 
enhance mechanical, thermal, water permeability, biodegradability and antimicrobial properties [72].

3.2 � Starch

Starch, found abundantly in nature, is a primary energy source for animals and humans [73]. It consists of two key com-
ponents: amylose, which is composed of D-glucose residues linked in linear alpha-(1–4) formations, and amylopectin, 
making up approximately 6% and characterized by alpha-(1–6) linkages forming branches in the main structure [74]. 
Under specific conditions involving plasticizers, elevated temperatures, and mechanical pressure, starch exhibits thermo-
plastic properties, consisting of water-insoluble units with diverse shapes, morphologies, and crystalline structures [75].

Despite several polysaccharides, starch stands out due to its affordability and versatility. Starchy films, however, have 
certain limitations, such as thinness, flexibility, transparency, weak mechanical properties, and susceptibility to water 
vapour permeation, which restricts their use in film production [76].

Starch-based materials used in making biodegradable food packaging can potentially reduce pollution. To enhance 
the performance of these starch-based products, we can consider adding biopolymers or additives and exploring pro-
duction techniques. However, research still needs to overcome the challenges associated with large-scale production 
of performance starch-based biodegradable polymers [77, 78].

Fig. 3   Using beneficial fruit and vegetable waste substances to create sustainable films [70]
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Figure 4 illustrates the synthesis of bioplastic samples from banana peel starch (BPP) using various fillers, namely 
potato peel powder and wood dust powder, using a combination of plasticizer glycerol. The increase in absorption of 
water capacity and the lowest values for tensile strength were achieved by making 12 samples of bioplastics with differ-
ent amounts and combinations of fillers and plasticizers [79].

Starch is hydrophilic; therefore, adding more powdered potato peel filler to BPP bioplastic samples will enhance water 
absorption capability [80]. The improved water absorption ability of BPP bioplastic samples may result from including 
powdered potato peel filler because The dry weight of potato peel consists of 52.14% starch [81].

Using sorbitol (variant in 20, 25 and 30%) as a plasticizer, the manufacture of starch-based bioplastics materials from 
cassava peel reinforced with microcrystalline cellulose MCC (Avicel PH101 fillers with a range of 0 to 6%) was explored. 
The strong hydrogen bonding between MCC and starch improved the tensile strength by increasing MCC concentra-
tion to 9 to 12 megapascals. The density, water absorption, and elongation at the break all decreased with adding MCC. 
Bioplastic has 20% sorbitol and 6% MCC content and has the greatest tensile strength value [82].

3.3 � Pectin

Pectin, a derived compound from waste materials, is the polymeric framework for active packaging, providing additional 
benefits [83]. It is a substance that increases viscosity, provides stability, enhances texture, and creates gel-like structures 
[84]. It enhances the antioxidant and antibacterial properties of materials added to functional packaging and is com-
patible with proteins, lipids, and polysaccharides [85]. Plant cell walls contain many colloidal pectin heteropolysaccha-
rides, widely found as waste from food processing and biomass by-products [13]. Biopolymers frequently include pectin 
because of its eco-friendliness, high storage capacity for volatile chemicals, lack of oxygen permeability, and viscosity 
[86]. Pectin is used to produce biodegradable packaging for food and edible coatings to extend the shelf life of food 
products. This is due to its exceptional ability to create thin layers and its low level of toxicity [87, 88].

Fruit juice production byproducts or citrus peels are the sources of commercial pectin [89]. Studies show that pectin 
sources are citrus peels, apple pulp, beet pulp, watermelon peel, pomegranate peel, and pumpkin [90, 91]. Efficient uti-
lization of food waste has involved various parts such as fruit waste parts, pomace, and vegetable/fruit peels. Pectin was 
identified in dried peels of citrus, mango, apple, and banana from Indian fruit manufacturing and processing companies 
[92]. Data on pectin percentage and calcium salt content in various food sector waste products is presented in Table 2.

Citrus fruit peel powder, derived from fruits such as orange, lemon, lime, and pomelo, has been utilized to create 
food packaging films. Citrus peel powder can serve as a film matrix due to its high levels of pectin and cellulose [98]. 
Figure 5 shows that other highly viscous polymers like xanthan gum and sodium alginate are included in the films to act 
as adhesive agents in this situation [99].

A decreased amount of citrus peel powder enhances the tensile strength of the films due to the adhesive interaction 
between the citrus peel powder and the film matrices. Excessive citrus peel powder might cause the particles to clump 
together, potentially decreasing the films’ tensile strength, water vapour barrier, and oxygen barrier properties [99–104]. 

Fig. 4   Showing different 
banana peel starch biode-
gradable material samples 
[79]
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However, a high concentration of citrus peel powder improves the light barrier and thermal stability, as well as the anti-
oxidant and antibacterial properties of the films [100–104].

Another study used a casting technique to create edible composite films from egg albumin, casein, and pectin from 
red pomelo peel. Different ratios of casein, egg albumin, and red pomelo peel pectin formed the composite films. The 
absence of cracks and crashes in the structure of pectin-incorporated composite films suggested appropriate homoge-
neity with no phase separation and a reduction in the degree of disorder in composite films. Film thermal characteristics 
showed that adding pectin to films improved thermal stability [105].

4 � Physical, mechanical, and functional properties of packaging materials

Utilizing fruit and vegetable waste as a substrate for packaging or as a reinforcement for other films is a viable alternative 
(Table 3). Biopolymers derived from fruit and vegetable by-products can be employed in the production of packaging 
films. Nevertheless, these films often exhibit optimal mechanical and physical properties. To address these limitations, 
incorporating various bioactive components sourced from food waste and different food ingredients may enhance and 
improve the inferior properties [28].

Biopolymers are influenced by applied forces and pressure, encompassing factors such as polymer type, molecular 
mass, crystalline structure, chemical content, and shape [106]. Introducing different polymers to the film through blend-
ing alters its essential and physico-mechanical characteristics. Composite films are improved by combining polysac-
charides (like chitosan, alginate, and cellulose) with proteins, such as milk protein, collagen, gelatin, and glute [107]. 
Starch-based hydrophobic films are crafted utilizing blueberry waste. Including blueberry waste leads to reduced water 
solubility and growth indicators in the starchy films. The fragrant compounds present within blueberry waste contribute 
to the ability of starch sheets to provide UV radiation protection [108].

Table 2   Extraction of Pectin from Fruit waste produced by different conditions

Source Pectin % Extraction conditions References

Apple pomace 9.183 At a pH of 1.8, an SLR (Liquid to solid ratio) of 1:10 g/mL, and a duration of 30 min, the most 
effective conditions for extraction were as follows: 100% amplitude

[93]

Mango peel 21.70 The pH 2.0 extraction was done at 100 °C for 60 min. Adding 95% ethanol [94]
Banana peel 2.8 During the extraction process, the temperature is 40 °C, 0.05 M HCL, 5 min, 24 h, 95% ethanol [92]
Apple pomace 12.5 Temperature is 80 °C, Nitric acid (0.05 M) and 90 min, 95% ethanol [95]
Sugarbeet pulp 34.5 48 h, 70% ethanol, 40 °C Ultrasonic pretreatment/ enzymatic treatment [96]
Passion fruit rind 14 During extraction, Electric field strength is (1 kV/cm), and Temrarture is 100 °C for 3 min [97]

Fig. 5   Citrus peel powder in 
packaging films as the film 
matrix [99]
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The physical and mechanical characteristics and properties of derived films from silver carp surimi are enhanced by 
incorporating extracts from pomegranate peel and grape seeds. Bio-based films exhibit diminished solubility, heightened 
transparency, reduced flexibility, and decreased water absorbency. The active film displays elevated tensile strength, 
indicating a crosslinking between the phenolic chemicals and the film matrix [109]. A packaging film has been developed 
using vegetable protein, fruit pectin, CeO2 nanoparticles, and cardamom extract, exhibiting robust mechanical strength, 
moisture resistance, and photocatalytic properties for enhanced durability and antimicrobial benefits. The composite 
film offers a sustainable and versatile solution for packaging applications [110].

Physiological properties in biodegradable films are enhanced by incorporating diverse substances, including emulsi-
fiers or surfactants, plasticizers, and reinforcing agents. These additives improve emulsion stability, increase flexibility, 
and enhance physical and mechanical characteristics [107]. Plasticizers from non-volatile substances such as fatty acids, 
polyols, oligosaccharides, and monosaccharides are employed to prevent polymer cracking. They achieve this by reduc-
ing intermolecular hydrogen bonding, reinforcing and connecting polymer chains, and fostering plasticity and exten-
sion [111, 112]. The study evaluated films made from chitosan and (CMC) carboxymethyl cellulose enriched with fruit 
skin (blueberry and red grapes). The extracts impart antioxidant and antibacterial properties, enhancing the properties 
of edible films (physical, mechanical, and barrier). The bio-based films showed remarkable antioxidant properties and 
effectively regulated oxygen permeability [113].

The nanocomposite film was produced using pectin extracted from apple peel, potato starch, and zinc oxide particles 
and encapsulated in Zataria multiflora essential oil. The film showed antibacterial and antioxidant properties, extending 
the shelf life of packaged meats and improving their physical and barrier properties [114]. The extraction, characteri-
zation, and utilization of jackfruit seed starch (JSS) and tamarind kernel xyloglucan (XG) were conducted to produce 
biodegradable packaging materials. Nanocomposite films of JSS/XG were fabricated by incorporating zinc oxide nano-
particles (ZNPs). Mixing JSS with XG decreases the composite films’ water-loving properties and enhances the material’s 
mechanical robustness [115].

The study used waste products to produce Date palm pit extract (DPPE) in combination with alginate at different con-
centrations. The addition of DPPE reduced alginate films’ solubility and surface wettability by 37–64%. It also increased 
vaporization resistance, flexible strength, and extension at break. After three months, the film with 40% DPPE showed 
the slightest reduction in phenolic content, antioxidant Activity, and FRAP. A scanning electron microscope displayed 
several pinholes and bulges, which may explain the low mechanical strength and high solubility obtained [116]. Figure 6 
shows the properties of Pit extracts in food packaging.

5 � Utilization of vegetable and fruit waste products in packaging

Currently, scientists are investigating innovative techniques to increase the durability of food products and improve 
their sensory attributes [123]. Edible films are employed as coatings and innovative packaging systems by modifying 
various qualities, including enhancement of mechanical properties, reduction of permeability, augmentation of barrier 
properties, creation of an actively antibacterial surface, and improvement of heat resistance [42, 52]. The utilization of 
films and coatings enables customers to incorporate them into food products, hence minimizing the adverse effects on 

Fig. 6   Properties of date palm 
(pit extract) by-product film 
used in food product packag-
ing
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the food products’ qualities for customers. Utilizing edible materials to fabricate films is preferable for ensuring safety 
and biocompatibility [124].

Food packaging enhances anticipated product characteristics by suppressing the proliferation of germs, improving 
resistance to environmental risks and oxidation, and maintaining the taste while concealing offensive odours [125]. A 
recent development in packaging materials involves integrating active substances to improve quality and extend the 
product’s shelf life [126].

However, a primary method for extending and enhancing the durability of items, the utilization of artificial antioxi-
dants, is prohibited because of their adverse effects on human health and high expense [127, 128]. Consequently, a sig-
nificant focus is on enhancing the efficacy of natural antioxidants and antibacterial substances as bioactive components 
in developing packaging and edible coatings [129].

Enhancing biodegradable packaging films is achievable by integrating natural materials often considered waste, like 
sugarcane bagasse, cereal straw, bran, husks, seeds, stems, leaves, extracts, and pulp. This utilization enhances the overall 
functionality of biodegradable packaging films, offering a more sustainable and environmentally friendly packaging 
solution [130] and a good source of value-added compounds and natural polysaccharides [10, 15].

Incorporating fruit waste into packaging offers several benefits, including extending food shelf life, preserving qual-
ity, reducing water content, enhancing antioxidant capacity, boosting nutrient levels, less lipid oxidation, preventing 
browning and weight loss, and preserving food sensory properties [131]. Figure 7 shows the importance of food by-
products in packaging.

The study used edible coatings like (Arabic gum, garlic, ginger, and aloe vera gel) to improve the Gola guava fruit’s 
postharvest quality and storage durability. The blend of garlic extract and gum Arabic significantly reduced browning 
and weight loss, extending the guava’s shelf life and increasing total soluble solids [133]. This study explores the crea-
tion of an edible antimicrobial film sourced from potato peels, incorporating essential oils to impede the proliferation of 
Listeria monocytogenes in smoked fish. It indicates that incorporating potato skins and crucial oils as bioactive elements 
in edible films successfully inhibits the growth of Listeria monocytogenes while improving the functional and structural 
properties [134].

The findings conclude that a 5% chitosan content is suitable for wrapping packaging of foods like sausages, while 
bags made from 7% chitosan are appropriate for handling and transportation. Encouraging outcomes were achieved 
by combining vegetable waste (including parsley, spinach stems, rice, and cocoa husk) with microcrystalline cellulose 
and ageing the mixture in trifluoroacetic acid (TFA), producing bioplastics [135]. The study used finely ground vegetable 
waste to create a micronized powder with mechanical properties resembling conventional plastics when exposed to 
an HCl solution, highlighting the need for precise moisture control and mass reduction [136]. Table 4 shows used fruit 
and vegetable waste by-products in films and coating, revealing their antioxidant properties, enhanced spoilage and 
microbial activity resistance, and extended food packaging durability.

Figure 8 illustrates the application of mango by-products (Ataulfo variety), extracted explicitly from the skin and seeds, 
for developing an edible film. This film is designed to improve gas permeability, ultimately prolonging the shelf life of 
peaches. The mango peel film showed outstanding barrier properties, reduced gas permeability, extended shelf life, and 
increased antioxidant and polyphenol content of the processed fruit [120]

The study aimed to create a biodegradable film using different proportions of corn starch and date pit powder. The 
incorporation of waste Powder resulted in an enlargement of the films’ thickness, elasticity, and phenolic and antioxidant 

Fig. 7   Utilizing by-products 
from fruit and vegetables in 
food packaging [132]
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properties while also decreasing their water solubility and vapour permeability. SEM showed that up to 30% DPP 
enhanced the films’ morphological characteristics, making them all environmentally degradable. The study suggests 
DPP’s potential for creating composite biodegradable films [146].

Figure 9 shows that The research focused on creating antioxidant-rich edible films using papaya for food preserva-
tion. Optimal drying conditions were identified, and Moringa leaf extract and ascorbic acid were integrated. The films 
underwent characterization for antioxidant activity, physicochemical properties, mechanical properties, bromatology, 
and sensory acceptance. The dehydrator was selected for film formation due to its efficient drying time and preservation 
of natural properties. Including both bioactive compounds impacted the shelf-life stability of minimally processed pears, 
with ascorbic acid influencing sensory acceptance [147]

Fig. 8   Application of mango 
waste in edible coating for 
biodegradable packaging 
[120]

Fig. 9   Different Fruit by-products edible films in food packaging [147]
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6 � Effect of biodegradable food packaging on shelf life

Incorporating bioactive substances obtained from fruits and vegetables into packaging materials such as films/
wraps inhibits the development of microorganisms and extends the shelf life of products [148]. The utilization of 
by-products in producing edible films/coatings enables the development of a protective barrier on the surfaces of 
food items. The primary function of this protective barrier is to mitigate the loss of moisture, regulate the flow of 
gases, and prevent the intrusion of microbiological contaminants [149]. To provide an example, let us consider using 
pectin-based edible films, derived from the by-product of fruit processing, to encase fruits, thereby extending their 
duration of storage. The storage trials extended for 16 days and analyzed various fruit attributes, including pH, total 
soluble solids (TSS), acidity, firmness, weight loss, and vitamin C. It showed that coated guava fruit is fresh and has 
less weight loss and improved shelf life, but uncoated fruit was weight loss [150]. A study shows that applying almond 
tree gum for edible coating improves the postharvest quality of tomatoes. Almond gum delays colour changes, 
decreases weight loss, increases firmness acidity, and decreases soluble solids concentration. The sensory evaluation 
also indicated a satisfactory level. In conclusion, almond gum shows promise as an innovative edible covering that 
enhances the post-harvest preservation of tomato fruit [151].

In another study, gelatin, chitosan, pectin and fennel essential oil were included, which increased the films’ peak 
elongation and tensile index. They gained stretchability 14.03 to 31.61% and strength 0.40 to 0.50 N.m/g while 
retaining their yellowish colour and great transparency. These films have excellent bioactive properties, increasing 
food shelf life and lowering foodborne illnesses’ risk [152]. Ginger Essential Oil, Cellulose Nanofibers, and Citric Acid 
for food coating exhibit improved flavour, aroma, and texture and extend the shelf life of meat products. Cellulose 
nanofibers serve not only in coating food effectively but also in preserving it by gradually releasing essential plant 
compounds. Ready-to-cook barbecue chicken, known for its short shelf life, can benefit significantly from a cellulose 
nanofiber coating fortified with ginger essential oil and citric acid, allowing for an extended storage period [153].

Figure 10 shows that Antibacterial and antioxidant-rich edible films were made using pomegranate peel extract 
(PPE) combined with gelatin and carboxymethyl cellulose. Composite films made with PPE outperformed controls. 
PPE films extended the shelf life of refrigerated beef products by 3 days. The extension was due to reduced viable 
counts, volatile basic nitrogen, weight loss, and pH changes. Thus, these new antioxidant and antibacterial coatings 
protect food packaging from mechanical stress, light exposure, microbiological degradation, and oxidative free 
radicals [154].

Fig. 10   Shows beef storage (4 ± 1 °C) for 10 days [154]
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The antimicrobial potential of nanocomposite films, created from jackfruit seed starch (JSS) and tamarind kernel 
xyloglucan (XG), was shown in their capability about Staphylococcus aureus and Escherichia coli. These formula-
tions were then utilized on tomato fruits, effectively retarding quality deterioration and extending their shelf life. 
Consequently, these produced nanocomposites hold the potential as environmentally friendly packaging materials 
to enhance the long life of food products [115]. More research is needed on other food items like cheese or baked 
goods; these studies consider the taste and sensory aspects of packaged foods. The natural compounds in essential 
oils (oregano, cinnamon, thyme, and rosemary) effectively prevent gram-positive, negative, and fungi [155].

7 � Conclusion and future perspectives

Edible and biodegradable films and coatings have recently replaced non-biodegradable plastic packaging materi-
als. Biopolymer-based packaging solutions, made from carbohydrates, proteins, and lipids, offer a more sustainable 
alternative to plastics. Industrial food processing by-products have emerged as valuable resources for creating cost-
effective biodegradable packaging materials. Utilizing these by-products reduces waste and minimizes environmental 
impact while enhancing the properties of the packaging material. Food waste in packaging materials improves their 
structural and functional attributes and helps to control the microorganism’s growth, enhance shelf life, and ensure 
the food quality of the packed products. The resulting packaging films or coatings exhibit desirable attributes such 
as biodegradable, recyclable and eco-friendliness. Food waste bioactive components improved the biodegradable 
film properties.

However, some challenges to overcome; improving mechanical durability, thermal stability, barrier properties, and 
scalability for large-scale production of these by-product-based materials remains a priority. Researchers have explored 
incorporating various protective materials, including nanoparticles, nanofibers, and essential oils, to form multi-layered 
biodegradable films to address these limitations. Additionally, combining these by-products with other polymers or using 
extrusion methods has been explored for industrial applications. Consumer safety is important, particularly regarding 
replacing packaging ingredients in food products. Hence, using food waste by-products to produce edible films from 
natural origins is deemed safe and ecologically sustainable. Future developments in this field should consider improving 
interactions between food and packaging, utilizing food waste and by-products as valuable resources.
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