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Abstract—Wireless Sensor Networks (WSN) are equipped with numerous sensors that generate vast quantities of data, essential for 

operational efficiency and informed decision-making. However, the value of this data is contingent upon its suitability for the specific 

applications it serves. A significant challenge in WSNs is the selection of appropriate data quality dimensions and metrics necessary to 

construct robust Data Quality Indicators (DQI) and comprehensively assess data quality in various contexts. This systematic literature 

review seeks to identify the key data quality dimensions and the corresponding measurement metrics within WSNs, while exploring the 

use of multi-dimensional data quality criteria in developing DQI. A thorough search of SCOPUS and Web of Science databases yielded 

475 potential research articles, from which 64 primary studies were selected for in-depth analysis. The findings highlight four key data 

quality dimensions in WSN: accuracy, timeliness, completeness, and consistency. However, choosing measurement metrics for each 

dimension requires an in-depth understanding of the data's context. Various approaches for obtaining DQI in WSN research were 

identified, including weighted linear average models and application-specific contextual information. Effective DQI incorporates 

weights to each dimension, reflecting the priorities of specific data users, and leverages contextual information pertinent to the sensors’ 

data. It is crucial to evaluate whether the data collected by WSNs meets established quality standards, a key aspect of WSN operation. 

These insights will aid in developing more robust and reliable WSNs, ensuring the provision of high-quality data essential for effective 

operation and decision-making. 
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I. INTRODUCTION

The global adoption of Wireless Sensor Networks (WSN) 

is transforming various sectors, including healthcare, industry, 

agriculture, home automation, and transportation [1]. WSNs, 

embedded with numerous sensors, generate vast amounts of 

data crucial for operations and decision-making. However, 

the utility of this data in supporting informed decisions for 

individuals and organizations relies on its fitness for the 

intended applications. Consequently, assessing whether the 

collected sensor data meets established data quality standards 

is imperative. 

Evaluating data quality in WSN demands a thorough 

assessment encompassing all key dimensions relevant to the 
problem context, including data completeness, accuracy, 

timeliness, and consistency. From the assessment, data quality 

indicators (DQI) are derived to determine whether the sensor 

data is fit for its intended purpose. A significant challenge 

arises in selecting the appropriate metrics to construct the 

indicators and fully assess data quality within the context. 

Often, critical dimensions of data quality may be overlooked 

during the process, potentially compromising the robustness 
of the overall evaluation. 

DQIs limited to completeness and accuracy must be revised 

to capture the multidimensional nature of sensor data in WSN 

[2]. Data quality dimensions, including precision, timeliness, 

and duplication, are crucial for establishing effective DQI, 

given the inherent complexity and dynamic nature of WSN 

data [3]. The indicators proposed in [4] adhere to the 

International Organization for Standardization (ISO) 

standards and incorporate essential data quality management 

procedures specific to sensor data. However, while ISO 8000-

61 provides a foundational framework for data quality 

management, it may need to fully address the challenges 
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posed by WSN data, such as real-time data variability and 

sensor reliability. This underscores the need for more tailored 

data quality assessments that comprehensively address the 

specific issues and requirements of WSN. 

In developing DQI for WSN, previous research has 

identified data quality dimensions and corresponding 

assessment metrics through a comprehensive literature review, 

thereby establishing the theoretical frameworks and 

methodological foundations for DQI [2], [5]. Another 

approach centers on the perspectives of data users, utilizing 
surveys, interviews, and questionnaires to gather insights [1], 

[3]. Each method sparks a critical discourse on the optimal 

strategy for developing DQI for data generated by WSN. The 

nuanced consideration of these divergent methodologies 

prompts an exploration into which approach may prove more 

effective in advancing the understanding and assessment of 

data quality within the complex and dynamic context of WSN 

environments. 

Wang and Strong [6] laid the foundation for data quality 

research by presenting a comprehensive list of twenty 

dimensions closely aligned with the concept of data quality. 
These dimensions have become a critical reference point for 

subsequent studies in the field. Building on this work, Wang 

[7] developed a methodology aimed at improving data quality, 

emphasizing the importance of these dimensions in ensuring 

data reliability and usefulness. In the context of WSN, data 

quality dimensions such as accuracy, completeness, 

consistency, and currentness have been utilized in data quality 

assessments [8], [9]. However, these studies overlook other 

data quality dimensions relevant to WSN. Notably, both 

studies rely exclusively on literature reviews rather than 

adopting a more comprehensive approach that solicits expert 
opinions to delineate the dimensions under scrutiny. 

This systematic literature review aims to discern the key 

data quality dimensions and the corresponding measurement 

metrics in the context of WSN, as delineated in the recent 

literature. Additionally, this paper aims to identify the 

utilization of multi-dimensional data quality criteria in 

developing a robust DQI, thereby facilitating data quality 

assessment in WSN. The remainder of the paper is organized 

as follows: Section 2 details the methodology employed in 

conducting the systematic literature review. Section 3 

presents the results and specifically addresses the research 

questions. Section 4 presents the key findings from the 
analysis, accompanied by a thoughtful discussion of potential 

future research directions. Finally, section 5 encapsulates the 

study's core insights and contributions, providing a 

comprehensive conclusion for the reader. 

II. MATERIAL AND METHOD 

The systematic literature review framework provided by 

Kitchenham et al. [10] serves as a foundational approach, 
guiding this paper through the systematic processes of 

identifying, selecting, and critically evaluating relevant 

research articles, thereby contributing to the reliability of the 

findings. Aligned with the core objective of this paper, the 

initial phase focuses on identifying key data quality 

dimensions and measurement metrics necessary for 

developing a robust DQI for WSN. To achieve this objective, 

a comprehensive investigation is undertaken rigorously 

following accepted protocols for systematic literature reviews. 

The research methodology encompasses eight distinct phases: 

(1) formulation of research questions, (2) development of a 

search strategy with targeted keyword identification, (3) 

establishment of inclusion and exclusion criteria, (4) 

definition of quality assessment criteria, (5) selection of 

primary studies, (6) meticulous data extraction, (7) thorough 

data synthesis, and (8) rigorous quality assessment. Figure 1 

visually depicts the research process, and each step is 

subsequently elaborated upon in further detail. 

 

 
Fig.1  Systematic literature review process. 

A. Research Questions 

The development of a robust DQI for WSN necessitates the 

identification of crucial quality dimensions. Therefore, this 
paper proposes the following research questions to guide this 

endeavor:  

a. RQ1: What key dimensions are essential for 

comprehensively assessing data quality within WSN? 

b. RQ2: Which measurement metrics effectively assess 

key data quality dimensions in WSN? 

c. RQ3: How can key data quality dimensions be 

effectively integrated into a robust DQI framework for 

WSN? 

RQ1 seeks to identify the key dimensions critical to 

assessing data quality in WSN. This ensures that the chosen 

dimensions are relevant and capture the unique characteristics 
of WSN data. Building upon this foundation, RQ2 focuses on 

developing metrics to quantify these key dimensions, 

effectively verifying their impact on data quality. Finally, 

RQ3 addresses the formulation of a robust DQI that integrates 

these key data quality dimensions. 

B. Search Strategy 

This paper employed a search strategy based on the chosen 

keywords and deliberately selected databases to ensure 
comprehensive and relevant search results. Research articles 

were acquired through an automated search function across 

all database resources using the selected keywords. Keywords 

were chosen based on three main categories: data quality, 

WSN, and the Internet of Things (IoT). Each research article's 

title and abstract were searched for the chosen keywords. By 

including related keywords in the search process, this paper 

1664



aimed to include all relevant research articles that discussed 

data quality within the context of WSN. Additionally, given 

the diverse applications of WSNs, this paper identified 

specific keywords related to areas of IoT, ensuring that the 

review includes all research relevant to the research objectives. 

Table 1 presents the specific keywords used for each category. 

TABLE I 

KEYWORDS BY CATEGORIES 

Category Keywords 

Data 
Quality 

‘data quality’, ‘dq’, ‘quality of data’, ‘data quality 
indicators’, ‘dimensions’ 

IoT ‘internet of things’, ‘IoT’, ‘sensors’ 
WSN ‘sensor networks’, ‘WSN’, ‘WSN’, ‘wireless 

sensor network’ 

 

Distinct research databases were selected in this paper, as 

outlined in Table 2. The selection of databases from this list 

aimed at minimizing redundancy in the gathered data. 

Furthermore, the rationale for opting for these databases 

rested on their incorporation of an advanced search feature, 

enabling the utilization of logical operators. To enhance the 

temporal relevance of the retrieved literature, the search 

strategy was designed to include a publication date filter, 

thereby focusing on articles published within a specific period. 

TABLE III 

SELECTED RESEARCH DATABASES 

Database Name URL 

Scopus https://www.scopus.com 
Web of Science https://www.webofscience.com 

C. Inclusion and Exclusion Criteria 

To capture recent advancements and emerging trends in 

data quality research within WSN, the search targeted 

research publications from 2013 until 2023. A two-step 

selection process was implemented to refine the search results. 

The initial phase involved title and abstract screening of 

retrieved articles to identify potentially relevant studies. 
Duplicate entries were systematically excluded to ensure a 

non-redundant selection. Subsequently, a thorough full-text 

review of shortlisted articles was conducted to verify their 

alignment with pre-defined study objectives. The primary 

study selection was further refined by implementing 

additional inclusion and exclusion criteria as outlined below. 

1) Inclusion Criteria: 

a. Includes research articles that were published between 

January 2013 and December 2023. 

b. Research articles that investigate the multifaceted 

nature of data quality within the domain of WSN. 

c. Research articles that primarily investigate data quality 

dimensions specific to WSNs. 

d. Research articles published in English for broader reach 

and dissemination of findings. 

e. Research articles published in an indexed journal or 

proceedings to ensure research quality and validity. 

2) Exclusion criteria: 

a. Exclude editorial articles and other non-research 

publications. 

b. Exclude studies that do not address any dimension of 

data quality. 

c. Exclude studies with a primary focus unrelated to data 

quality dimensions in WSN. 

d. Exclude studies that do not consider data quality at all. 

The initial screening of retrieved research articles 

comprised two sequential iterations. The initial stage of the 

article search employed a two-step screening process based 

on pre-defined inclusion criteria. This process involved 

scanning both titles and abstracts of identified studies to 

assess their potential relevance to the research question. 

Subsequently, during the second iteration, shortlisted articles 

underwent a thorough full-text review to ensure alignment 

with the research objectives. Exclusion criteria were 

rigorously applied at this stage to eliminate non-pertinent 

studies. Table 3 details the search queries employed within 

each database, utilizing relevant search terms and logical 
operators through complex search functionalities. 

TABLE IIIII 

QUERIES USED IN THE SEARCH PROCESS 

Database 

Name 
Search Query 

Scopus 

(“data quality” OR DQ OR “quality of data”) 
AND (assessment OR evaluation OR 
measurement) AND (“internet of things” OR IoT 
OR “WSN” OR WSN OR “sensor networks”) 

Web of 
Science 

(“data quality” OR DQ OR “quality of data”) 

AND (assessment OR evaluation OR 
measurement) AND (“internet of things” OR IoT 
OR “WSN” OR WSN OR “sensor networks”) 

D. Quality Criteria 

This section aims to ascertain the suitability of primary 

research articles for addressing research inquiries by 

evaluating their information adequacy. Quality assessment 

criteria (QAC), as listed below, were used to evaluate the 

quality of the primary articles. 

a. QAC.1: Does the article thoroughly define the key data 

quality dimensions particular to WSN? 

b. QAC.2: Does the article propose or discuss a specific 

metric to measure the key data quality dimension in 

WSN? 

c. QAC.3: Does the paper present a comparative 

evaluation of the proposed DQI? 

E. Collection of Primary Articles 

The initial search using the abovementioned queries 

identified 475 potential research articles. Subsequent titles 

and abstract screening eliminated irrelevant articles, reducing 

the pool to 199. The application of predetermined inclusion 

and exclusion criteria led to the exclusion of an additional 135 

articles. Sixty-four primary articles were deemed sufficient 

information to address the research inquiries effectively. 

F. Data Extraction 

Each primary article was analyzed, and relevant data was 

extracted based on the categories and subcategories outlined 

in Table 4. The subcategories are then mapped to the specific 

research questions posed in this paper. 
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TABLE IVV 

DATA EXTRACTION FORM 

Category Subcategory 
Research 

Question (RQ) 
Dimensions Key dimensions in WSN RQ1 
Metrics Metrics that measure key data 

quality dimensions in WSN 
RQ2 

 

Data extraction from the articles employed automated and 

manual procedures to ensure accuracy and completeness. The 

dimensions category played a pivotal role in identifying key 

dimensions crucial for a comprehensive assessment of data 

quality in WSN, thereby contributing to the completion of 

RQ1. Next, to address RQ2, a detailed list of metrics for 

measuring these key dimensions was compiled. This analysis 

aimed to identify the most prevalent metrics for evaluating 

data quality dimensions within the WSN domain. Further, 
RQ3 focused on formulating a DQI, integrating all previously 

identified dimensions.  

This extracted data is deemed highly valuable for several 

vital reasons. Firstly, it enables researchers to identify gaps 

and areas requiring further investigation. Secondly, it unveils 

potential weaknesses that may be addressed through 

alternative approaches. Finally, it provides valuable insights 

and possible solutions to explore in future research endeavors.  

G. Data Synthesis 

The data synthesis procedure facilitated data integration 

tailored to the specific requirements of each RQ. This paper 

utilized a narrative synthesis approach to systematically 

integrate data from various heterogeneous resources to 

address RQ1, RQ2, and RQ3. 

H. Quality Assessment 

Beyond applying predefined inclusion and exclusion 

criteria, each initial research underwent a rigorous quality 
assessment using established QAC questions to minimize 

preconceived notions and ensure a robust literature corpus. 

This systematic evaluation involved assigning numerical 

scores (0-1) to each primary research article, with one 

indicating a complete and satisfactory response to the QAC 

question, 0.5 signifying a partially addressed response, and 0 

representing no engagement with the question. Overall study 

quality was then determined by summing individual QAC 

scores. As detailed in Table 5, all selected primary research 

articles achieved a collective score exceeding 50% for each 

QAC, demonstrating their substantial content about data 
quality, particularly crucial data quality dimensions within 

the WSNs context. 

TABLE V 

THE COLLECTIVE SCORE FOR QAC 

QAC Criteria Responding Score 
Total 

Collective score 

QAC 01 {0,0.5,1} (No, partially, yes) 1 
QAC 02 {0,0.5,1} (No, partially, yes) 0.5 
QAC 03 {0,0.5,1} (No, partially, yes) 0.5 

III. RESULTS AND DISCUSSIONS 

Guided by the procedure explicated in the preceding 

section, this section utilizes data extracted from the primary 

research articles to answer each of the established RQ, thereby 

presenting the findings of this systematic literature review.  

A. RQ1. What are the Key Dimensions Essential for 

Comprehensively Assess Data Quality within WSN? 

The analysis of data quality dimensions discussed in the 

primary research articles, as conferred in Fig. 2, has yielded a 

beneficial understanding of the key dimensions of data quality 
assessment within the WSN domain. Accuracy, timeliness, 

completeness, and consistency are identified as the most 

frequently emphasized data quality dimensions in the 

collection of primary articles. This finding underscores their 

pivotal role in guaranteeing the validity and 

comprehensiveness of collected sensor data. 

Table 6 presents a detailed overview of the various data 

quality dimensions evaluated across the primary research 

articles, highlighting their domain, source of the problem, and 

related quality criteria within the context of WSN and IoT. 
 

   
Fig.2  Percentage of data quality dimension mentioned in the primary 

research articles. 

TABLE VI 

ANALYSIS OF DATA QUALITY DIMENSIONS IN WSN 

Data Quality 

Dimension 

Dataset 

and 

Domain 

Source of 

problem 
References 

Related quality 

criteria 

Accuracy IoT, 

WSN 

Measurement 

errors dirty data, 
outliers, noise, 

data 

misinterpretation 

[3], [4], [9], 

[11] - [26] 

Uncertainty, bias, 

precision, validity, 
correctness 

Timeliness IoT, 

WSN 

Not updated data, 

low data rate 

[2], [3], 

[5], [9], 

[11] – [30] 

Min. time 

coverage, 

presentiveness, 

currency, 

currentness, 

freshness, 

volatility, latency, 

delay, frequency 

Completeness IoT, 

WSN 

Missing value [1]-[5], [8], 

[11] - [13], 

[15], [16], 

[18] - [20],  
[22], [23], 

[25], [26],  

[28], [30], 

[31] 

Low data capture, 

data availability, 

min. time 

coverage 

Utility IoT, 

WSN 

Noise, data loss, 

missing data 

[11], [5], 

[32] 

Usage, frequency, 

relevancy 

Data volume IoT, 

WSN 

Delayed data 

transmission, 

data loss, data 

frame distortion 

[11], [12], 

[3], [5], [1] 

Min. number of 

sampling points, 

representativeness 
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Data Quality 

Dimension 

Dataset 

and 

Domain 

Source of 

problem 
References 

Related quality 

criteria 

Consistency IoT, 

WSN 

Irregular 

observations 

[2]-[5], [8], 

[9], [11], 

[12], [16], 

[20],  [23], 

[26], [30], 

[32] 

Concordance, 

Comparability, 

Conformity 

Data 

redundancy 

IoT Data duplication [3], [15], 

[5], [1] 

Duplicates 

Confidence IoT Source reliability [3], [13], 

[5], [1] 

Uncertainty, 

interpretability 

Accessibility IoT Limited node 
capability 

[4], [5], [1] Availability, Ease 
of access 

Validity IoT Source 

malfunction and 

failure 

[5], [22], 

[8], [29] 

Plausibility, 

detection limit 

Reliability IoT Nodes failure [13], [14], 

[5] 

Trust, source 

reputation 

Suitability IoT Sensor’s 

capabilities 

[19] - 

Uniqueness IoT Repetitiveness [20] - 

Access 

security 

IoT 

WSN 

Limited 

resources 

[13], [20], 

[5], [8], 

[28] 

artificiality 

 

The following subsection discusses the top four most 

frequently addressed data quality dimensions identified in the 

primary research articles. 

1) Accuracy: 

Within the domain of WSN research, accuracy consistently 

emerged as the most critical data quality dimension 

investigated across the reviewed research articles [9], [3], [19], 

[2], [5], [21], [22], [23], [33], [34], [35].  Accuracy is the 

extent to which observed data accurately represents the true, 

real-world condition of the investigated event [28]. On the 

other hand, Hendrik et al. [33] introduce a nuanced distinction 

by employing the term "validity" to denote the faithfulness of 

data value, overlapping with the conceptual domain of 

accuracy.  Accuracy is also defined as the proximity of a 
measured value to the true value [12], and it implies that 

repeated measurements should produce results that are both 

consistent and close to the true value [28]. Terms like 

precision [3], [5], [23], [34], [36], validity [23], [33], 

correctness [35], [37], [38] and uncertainty [3] are used 

interchangeably with accuracy. 

Crucial considerations for ensuring data accuracy in WSN 

revolve around mitigating systematic and random errors. 

Systematic errors, documented in several articles [33], [34], 

[39], [40], often arise from improper sensor placement or 

selection [33], [40], [41] for example, the erroneous ambient 
temperature readings captured by a misplaced product sensor 

[33]. Additionally, sensor limitations in giving accurate 

values can introduce uncertainty, rendering dirty and unusable 

data for analysis [40].  

Inaccurate data produces outliers, defined as data points 

deviating significantly from the norm [40], [42]. While sensor 

malfunctions can undoubtedly cause outliers [37], [40], [42], 

[43], [44], they can also be crucial indicators of real-world 

events [40], [42]. Thus, outlier analysis differentiates between 

erroneous data and valuable insights. 

Data accuracy is impacted by noise, defined as unwanted 

signal distortions [38]. Defective sensors, often caused by 
factors like depleted batteries, faulty memory, or transmission 

errors [19], [42], [45], [46], constitute a significant source of 

noise. In WSN, sensor noise can be reduced by avoiding 

interference between wireless devices operating on the same 

frequency [47]. 

2) Timeliness: 

Within the context of WSN, data timeliness embodies the 

concept encompassing the frequency and regularity with 

which observed sensor data aligns with critical decision-

making moments and points of interest [34]. However, the 

notion extends beyond ordinary frequency, considering the 

freshness of the sensor data. Sensor data freshness is assessed by 

measuring the time gap between recorded data and the current 

system's arrival time. The metric reflects the degree to which an 

observation aligns with the target period of interest [12].  

Data timeliness in WSN has been referred to by various 

terms, highlighting its multifaceted nature - currency [34], 
volatility [12], [34], latency [39], freshness [39], [48], data 

rate [48], [49], delay [44], [36], frequency [50], minimum 

time coverage [3], representativeness [3], and currentness [9]. 

Volatility characterizes the frequency of data fluctuations and 

is often measured by the time the data retains its accuracy and 

relevance [12]. 

Lacks in data timeliness primarily manifest in two forms: 

missing updates and insufficient data rates [48]. Data rates can 

significantly impact the overall timeliness of data acquisition 

and analysis. This challenge is particularly prevalent in 

resource-constrained settings, such as agricultural 

environments, where WSN devices operate with limited 
energy resources and often span vast communication 

distances. Consequently, low-power network technologies 

like LoRaWAN and SigFox have become attractive due to 

their energy efficiency. However, these technologies have 

inherent drawbacks – reduced data rates and increased latency 

[51]. While they enable energy-efficient data transmission, 

they compromise timeliness, potentially limiting the 

responsiveness and effectiveness of WSN applications in 

these scenarios. This presents a crucial trade-off between 

energy efficiency and timeliness, demanding careful 

consideration when designing and deploying WSNs for 
specific applications. 

3) Completeness: 

Data completeness in WSN represents the extent to which 

the WSN network delivers all expected data points without 

omissions or inconsistencies [12], [5], [34]. This fundamental 

concept is related to data accessibility and reaches into the 
absence of missing values, ensuring the integrity and 

reliability of collected sensor data for accurate decision-

making and analysis. 

Within the WSN domain, interpretations of the concept of 

completeness vary. While numerous articles directly employ 

the term "completeness" [2], [3], [5], [9], [22], [23], [34], [40], 

[48], [37], [52], others utilize related expressions like "data 

availability" [53], "missing data" [54] - [57], "minimum data 

capture" [3], and "minimum time coverage" [3] to emphasize 

specific aspects of completeness dimension. 

Data completeness in WSNs is influenced by sensor 
inefficiencies, ranging from hardware malfunctions to limited 

sensing capabilities, which lead to data gaps, compromising 

the overall integrity of the collected data [34], [36], [54], [55]. 

Additionally, communication disruptions caused by network 

congestion, interference, or signal degradation can contribute 
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to data loss, further hindering data completeness. Furthermore, 

malicious actors who intercept or manipulate sensor data can 

inflict severe damage, jeopardizing data integrity and data 

completeness in WSN [58]. 

Beyond technical challenges, data update frequency plays 

a crucial role in ensuring data completeness. Inadequate data 

updates can render outdated sensor data incomplete, as they 

fail to reflect current conditions or real-time changes. This 

highlights the importance of timely data collection and 

transmission to maintain a complete picture of the monitored 
environment. 

Moreover, data owners might intentionally withhold 

specific information due to diverse constraints, such as 

privacy concerns or proprietary interests [33]. While such 

filtering may be understandable from particular perspectives, 

it results in less comprehensive sensor data and impacts the 

overall completeness of the available data for users. The 

relationship between technical challenges and human factors 

demands a holistic approach to address data completeness 

issues in WSNs, balancing technical solutions with ethical 

considerations and user needs. 

4) Consistency: 

Data consistency refers to the absence of conflicts within 

and between data sources in WSN, ensuring coherence and 

agreement across different contexts [2], [8], [11]. It 

encompasses two key aspects: internal consistency and 

external consistency. Internal consistency, where data 
elements within a single source are free from errors and 

inconsistencies, and external consistency, where data 

elements from different sources align and complement each 

other [8]. Additionally, consistency can be measured by the 

degree of adherence to standardized formats [20]. 

The term consistency is widely used in primary research 

articles [2], [3], [9], [23]. However, different terms such as 

concordance [3], [5], comparability [3], and conformity [20] 

are also used to represent data consistency. Data consistency 

in WSN is affected by irregularity between sensor readings 

from multiple sensors in the network. Specifically, sensors 
originating from various sources within a WSN may produce 

varying readings for the same observation, leading to 

discrepancies in the data [8], [59], [60].  

Inconsistencies can stem from non-concurring 

observations across various data sources in WSN and faulty 

sensors incapable of generating consistent readings [8], [59]. 

In the context of traffic event analysis, Kuemper et al. [8] 

discovered discrepancies between vehicle speed 

measurements and vehicle counts collected from two 

independent origins. These discrepancies were attributed to 

differences in the timing and vantage point of the observations, 

highlighting the importance of concordance in ensuring data 
alignment and reducing ambiguity. 

Significantly, data quality issues in WSNs often exhibit 

interdimensional overlap. Consider noise, typically associated 

with data accuracy concerns, also demonstrably impacting 

data utility. Noisy data can hinder the accessibility of desired 

information and limit the value derived by data consumers 

[32]. Similarly, data frame distortion presents challenges to 

data quality dimensions: accuracy and volume. As discussed 

in [61], distorted data deviates from its original form, 

compromising the fidelity of the derived results. Moreover, 

reconstructing distorted data can increase the volume of 

transmitted components, further burdening system resources. 

Likewise, data loss can adversely impact both data utility and 

data volume. When data loss occurs during transmission [54], 

[62] and data updates are not timely [62], [63], the resulting 

incomplete data in WSN raises concerns regarding data usage 

for user needs and the overall information quantity. 

The findings in RQ 1 underscore a critical point: while data 

quality dimensions in WSN are conceptually distinct and 

often defined with specific purposes in mind, they are not 
entirely isolated. In practice, significant relationships and 

interdependencies exist between these dimensions. 

Addressing deficiencies in one dimension frequently requires 

consideration of its potential impact on others. Understanding 

these multidimensional relationships is crucial for 

implementing comprehensive data quality solutions that 

effectively safeguard the reliability and coherence of data 

within the complex and interconnected landscapes of WSN. 

B. RQ2.Which Measurement Metrics Effectively Assess Key 

Data Quality Dimensions in WSN? 

Various approaches have emerged to gauge the fitness of 

data for its intended purpose. DeepDQ is proposed in [20] to 

measure multiple data quality metrics. DeepDQ delivers 

detailed insights into data inconsistencies or shortcomings in 

the data quality metric. Mathematically defined metrics for 

data quality assessment are utilized by the works of [1], [3], 

[8], [9], [19]. These studies advocate for a more formal and 

universally applicable approach, grounding their 

methodologies in rigorous mathematical foundations. In the 

following subsections, this paper elucidates the 
mathematically defined metrics used to assess the key data 

quality dimensions defined in RQ 1. 

1) Accuracy: 

Data accuracy is mathematically specified within the range 

of 0 until 1 of the maximal absolute systematic error α as 
defined in Equation (1) [1], [3], [5]. The proximity of 

measured values to the true value is further clarified in [3], [5], 

where � denotes the difference between the measured value, 

� ̌ and the accepted true values, �. The definition emphasizes 

the proximity of measured values to the true value. Implicitly, 

the smaller � value is, signifies higher data accuracy. 

 Data Accuracy =  max (0, 1 −  α)  (1) 

The alternative mathematical definition of accuracy is 

presented in [19], where data measurements' precision is 
considered. As defined in Equation (2), data accuracy is 

quantified by the moving standard deviation concerning a 

given data value, ν compared to its mean of standard errors, 

������ . The variation of individual data points around the ������ 

reflecting the consistency of measurements. 

 � = (1 − ������) (2) 

2) Timeliness: 

The dimension of timeliness in WSN encompasses 

the terminology of volatility, currentness, and freshness [11], 

[3]. Timeliness is mathematically represented within the range 

of 0 until 1 in Equation (3) [3], [5], where ����� � �! is defined 

as the period during which data remains valid and "#$$%&"! is 

the timestamp of the updated data. 
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 '��� � (%� &%)) = max (0, "#$$%&"!/����� � �!) (3) 

Alternatively, [9] defined Currentness  based on the 

previous timestamps of data updates, �/01, update intervals, and 

expected timestamps of the next update, �/21, as expressed in 

Equation (4). Equation (5) denotes the currentness of a data 

source by dividing the Currentness with the number of data 

updates from a similar data source. Thus, high 

Currentness34546789:;  value indicates that the data source 

always updates current data.  

 <#$$%&�&%)) = =1
0 − |(5?@A21)05?|

B C  D�/ ∈ F�/01, −�121G (4) 

Otherwise, 

 <#$$%&�&%))34546789:; =  ∑ I899;J5J;66KLKMNM
?OA

J  (5) 

3) Completeness: 

Data completeness in WSN is defined as the proportion of 

absence data points relative to the total number of data points 

available [1]. Similarly, [3] and [5] present a metric that 

compares the actual amount of data collected within a 

timeframe to the expected total, expressed as a ratio. This 

metric captures the overall data availability and highlights 

potential deficiencies in data acquisition as defined in Equation 

(6). 

Data completeness = S8TU;9 7V I7WW;:5;3 X4W8;6
S8TU;9 7V YZ[;:5;3 X4W8;6 (6) 

A sensor-specific metric for data completeness is defined in 
[19] where completeness is measured as the absence of missing 

data point within a given window, divided by the expected 

number of data points with the actual number collected as 

defined in Equation (7). 

 

Data completeness
= 1 − �\]%"�%^ ^��� ]� &�) − <���%"�%^ ^��� ]� &�)

�\]%"�%^ ^��� ]� &�)  
(7) 

4) Consistency: 

Data consistency in WSN can be assessed by comparing 

data values across multiple data sources using correlation 

analysis, considering the share of observed values from 

different sensors, weighted by the sensor proximity as defined 

in Equation (8) [8]. 

 _:7J(\`) =  ∑ a/(\`)J
/b1  ⋅  "(\`, \/) (8) 

Expanding on this approach, the Pearson correlation 

coefficient value is subsequently employed to penalize 

correlations with distant data variables using a weighted 
function [3], [5]. Conversely, a data consistency metric, 

grounded in the agreement of data sources within specific 

tolerance thresholds, such as time and measurement, is 

proposed in [9]. Data consistency is quantified by the ratio of 

events that conform to the tolerance threshold to the total 

number of relevant events. 

C. RQ3.How Can Key Data Quality Dimensions be 

Effectively Integrated into a Robust DQI Framework for 

WSN? 

Cheng et al. [12] proposes a multidimensional model for 

DQI based on a weighted linear average model. The Pairwise 

Comparison Matrix (PCM) technique is employed to 

determine the weights, which are vital for assessing the 

relative significance of each dimension. This approach ensures 

that expert preferences and domain knowledge are factored into 

the final data quality indicator, providing a holistic and 

objective measure of data quality. The accumulated data quality 

score for the proposed model ranges from 0 to 1.  

Alternatively, the priority-based distribution approach is 
employed to determine the significance of each data quality 

dimension in measuring DQI [3]. The proposed approach 

prioritizes data quality dimensions based on their correlation 

with the overall data quality rating by assigning higher 

weights to dimensions with stronger correlations. The study 

demonstrates that the priority-based distribution approach 

outperforms weighting methods, including balanced, 

correlation-based, and hybrid distributions, and techniques 

relying solely on sensor and modeling accuracy. Moreover, 

the priority-based distribution approach exhibits the strongest 

correlation with subjective data quality assessments, 
solidifying its effectiveness. 

Weights are also utilized in [9], where each dimension 

receives a weight reflecting its relative importance, pre-

defined by stakeholders. The minimum acceptable DQI is 

defined by data quality thresholds established by the same 

stakeholders. Dimension-specific measurement methods then 

calculate the individual quality indexes. For instance, 

accuracy is determined by comparing received measurements 

with established specifications, completeness by verifying the 

capture of all expected events within the update window, 

consistency by examining data coherence across sensors 
monitoring the same phenomenon, and currentness by 

evaluating event reception timeliness against the agreed 

update interval. 

A two-pronged approach centered on accuracy and 

completeness is proposed in [19]. The data quality level is 

evaluated by comparing the expected number of data points 

and the corresponding value with the actual data record while 

considering the specific application context. Unlike other 

methods that depend on multiple sensors or external data 

sources, the proposed approach assesses sensor data quality 

based on internal contextual information. The resulting 

quality metric directly integrates into the application's 
decision-making and actuation processes. 

D. Discussion 

This section presents the findings and offers 

recommendations for future research directions concerning 

data quality in WSN. 

A. Findings 

The complex relationship between data quality dimensions, 

context, and metrics underscores the need for a flexible and 

domain-specific approach to DQI evaluation in WSN. 

Acknowledging these relationships enables data quality 

practitioners to determine key dimensions and metrics, 

thereby ensuring the reliability of sensor data for generating 

valuable insights within WSN. 

The analysis of RQ1 reveals a spectrum of dimensions 

discussed in the previous research articles: accuracy, 

1669



timeliness, completeness, data volume, consistency, data 

redundancy, uncertainty accessibility, validity, trust, 

suitability, uniqueness, and access security. Notably, accuracy, 

timeliness, completeness, and consistency are the most 

frequently mentioned and are considered the fundamental 

pillars of data quality within the WSN. These key data quality 

dimensions are the core for evaluating the "fitness-for-use" of 

sensor data in WSN applications. 

However, a more complex checklist approach is needed 

when assessing the key data quality dimensions. In response 
to RQ2, selecting the appropriate metrics for each dimension 

necessitates a deep understanding of the data's context, as 

more than a one-size-fits-all approach is required. RQ2 

emphasizes that diverse metrics might be suitable even within 

the same problem domain depending on the specific context 

and the data user’s requirements. Furthermore, in RQ3, 

various methodologies exist for obtaining DQIs, including 

weighted linear average models [3], [64], weighted 

approaches [9], and application-specific contextual 

information [19], [65]. 

B. Future Research Directions 

1) Standardizing Terminology for Data Quality in WSN: 

A lack of standardized terminology and metrics for data 

quality assessment currently hinders WSN. The disparity, 

where previous research articles utilize diverse definitions 

and metrics based on individual WSN contexts, presents a 

significant obstacle to the comprehensive advancement and 

understanding of data quality as a distinct discipline in WSN. 

Addressing this gap holds immense potential to unlock further 

advancements in the field. Establishing a specialized 
foundation for data quality in WSN, characterized by 

standardized terminology and adapted metrics, can fortify the 

quality, reliability, and interpretability of sensor-generated 

data. This, in turn, will pave the way for more robust and 

impactful applications across diverse domains. 

2) Exploring the Utility of DQI in WSN: 

DQI is crucial for evaluating data quality across diverse 

data sources in WSN. The potential advantages of using a DQI 

for WSN remain unclear, warranting further investigation. 

While previous research underscores DQI's capability to 

facilitate cross-source assessment, a more thorough 

investigation is required to understand its impact on large-

scale WSN deployments and its effectiveness in guiding 

stakeholder decision-making. 

IV. CONCLUSION 

Recognizing the critical role of data quality in WSNs, this 

paper undertakes a systematic literature review to illuminate 

its multidimensional implications in assessing data quality. 

The research is guided by three key questions: RQ1, RQ2, and 

RQ3. RQ1 identifies key dimensions of data quality in WSN: 

This paper analyzes existing research articles to uncover the 

most prevalent dimensions used to assess data quality in WSN. 

The findings reveal four key dimensions: accuracy, timeliness, 

completeness, and consistency. These dimensions form the 
cornerstone for evaluating the reliability and utility of sensor 

data across diverse WSN applications. RQ2 investigates the 

mathematical equations used to measure the key data quality 

dimensions in WSN. The analysis indicates that existing data 

quality metrics are primarily formulated based on definitions 

and critical aspects specific to the WSN landscape. This 

highlights the need for context-aware metrics that adapt to the 

unique requirements of various contexts. RQ3 addresses the 

establishment of a robust DQI in previous research. This 

paper examines current approaches to constructing DQIs that 

aggregate individual dimension measurements into a holistic 

data quality assessment. It is essential for DQIs to incorporate 

weights based on specific data users’ priorities and to leverage 

contextual information of the sensor data.  
Research should focus on standardizing terminology for 

defining and measuring data quality in WSNs. Additionally, 

it is crucial to validate proposed metrics through real-world 

deployments and explore how DQIs influence data-driven 

decision-making processes in WSN. These advancements will 

contribute to developing more robust and dependable WSNs, 

ensuring the delivery of high-quality data. 
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