IMPLEMENTATION OF LEAN PRACTICES IN SMALL AND MEDIUM ENTERPRISE

WAN MUHAMMAD SHUKRI BIN WAN ZAINAL ABIDIN

A report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering
UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2008
ACKNOWLEDGEMENTS

Alhamdulillah, grateful to Allah S.W.T. as I manage to complete my Final Year Project. Firstly, thank you very much to my supervisor, Mr. Mohd. Fadzil bin Abd Rahim for his guidance and advices for me to complete this project. Not forget to my former supervisor for Final Year Project 1, Mr. Ahmad Naseer bin Mohd Rose and Mr. Mohd Fadzil Faisae who helped me on the application of Witness Software. I would also like to thank Pn Norehan Mohd Nor, the Managing Director of PJ Foods Industries Sdn. Bhd. for allowing me to make research at her company. Without her permission, I will not be able to complete my project. Not forget to the staffs at PJ Foods Industries Sdn. Bhd. who were not hesitating to help me during my study at the company. Thank you to my family and friends who are always support and help me and lastly, thank you to all people who had help me either directly or indirectly until I manage to complete this project. Thank you.
ABSTRACT

This thesis deals with the wastes in a SME company which is PJ Foods Industries Sdn. Bhd. The objective of this study is to apply the lean manufacturing concept, principles and tools to eliminate and reduce the occurred wastes in PJ Foods Industries Sdn. Bhd. Movement waste, waiting waste and motion waste were subject that being studied in this thesis. Several visits have been done and the data were collected through interview, observation, pictures and calculating the current total production time of 7kg fried chicken flour product. Materials flow in the original layout, process maps and simulation on the original layout using Witness Software were used to determine the section or process that has highest idle percentage or wastes. Witness Software was also used to simulate the improvement layout and it was found that the improvements on layout managed to eliminate the movement waste and reducing other existing waste as well as reduce the total production time by 2.31% for every 20 packets. For the inventories of finished products, 5S is the best method to improve and establish better workplace and housekeeping conditions. It is recommended that the suggestions in this thesis be applied in actual condition at PJ Foods Industries Sdn. Bhd in the next stage of the study.
ABSTRAK

TABLE OF CONTENTS

SUPERVISOR’S DECLARATION ii
STUDENT’S DECLARATION iii
ACKNOWLEDGEMENTS v
ABSTRACT vi
ABSTRAK vii
TABLE OF CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Background of Study 1
 1.2.1 Company’s Background 1
1.3 Problem Statements 2
1.4 Objective 2
1.5 Scopes of the Study 2

CHAPTER 2 LITERATURE REVIEW

2.1 Lean Manufacturing Concept 3
2.2 Type of Wastes in Lean Manufacturing 4
2.3 Lean Manufacturing Tools 5
 2.3.1 5S Techniques 5
 2.3.2 Layout Improvement 6
 2.3.3 Other Tools 6
2.4 Definition of SME in Malaysia 8
2.4.1 Number of Full Time Employees 8
2.4.2 Annual Sales Turnover 9
2.4.3 Gross Domestic Product of SME in 2005 9

CHAPTER 3 METHODOLOGY

3.1 Introduction 11
3.2 Flow Chart for Final Year Project 12
3.3 Data Collections 13
3.4 Method of Analysis 13
3.5 Current Process Maps 13
3.6 Simulation 15
3.7 Layout 16
3.8 Housekeeping 17
3.9 Results 17

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Introduction 19
4.2 Simulated Results of Original Case 19
4.3 Simulated Results of Suggestion Case 21
4.4 Comparison of Idle Percentage between Both Cases 24
4.5 Comparison of Busy Percentage between Both Cases 25
4.6 Comparison of the Total Production Time between Both Cases 26
4.7 Comparison of the Layout between Both Cases 27
4.8 Cost Estimation to Make Improvement on Layout 29
4.9 Improvements on Housekeeping at the Inventories of Finished Products 30
 4.9.1 Disorganized Finished Products 31
 4.9.2 Disorganized Empty Boxes 32
 4.9.3 Disorganized Inventories 33
 4.9.4 Products Taken From the Packaging 35
 4.9.5 Racks Are Not Fully Utilized 36
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 38
5.2 Recommendation 38

REFERENCES 39

APPENDICES 40

A Gantt Chart for Final Year Project 1 40
B Gantt Chart for Final Year Project 2 41
C Layout of the Factory 42
D Production Flow for Fried Chicken Flour Products 43
E Annual Sales for 2006 44
F Annual Sales for 2007 45
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Definition of SME Based on Number of Full-Time Employees</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Definition of SME Based on Annual Sales Turnover</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>2005 data estimated based on the Census 2005’s profiles</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Result of the Simulation for Original Case</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Result of the Simulation for Suggestion Case</td>
<td>22</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of Daily and Monthly Production for Both Cases</td>
<td>29</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Overall Equipment Effectiveness</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart for Final Year Project</td>
<td>12</td>
</tr>
<tr>
<td>3.2</td>
<td>Current Process Maps for 20 Packets of 7kg Fried Chicken Flour</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>Original Layout in the Production of Fried Chicken Flour Section</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>Suggested Improvement Layout for Production of Fried Chicken Flour</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow of the Processes in Original Case</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow of the Processes in Suggestion Case</td>
<td>22</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of Idle Percentage between Original and Suggestion Case</td>
<td>24</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of Busy Percentage between Original and Suggestion Case</td>
<td>25</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of the Total Time to Produce 20 Packets of 7kg Fried Chicken Flour</td>
<td>26</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of Layout for Original Case and Suggestion Case</td>
<td>27</td>
</tr>
<tr>
<td>4.7</td>
<td>Finished Products Were Not Organized Properly</td>
<td>31</td>
</tr>
<tr>
<td>4.8</td>
<td>Racks for Empty Boxes Are Not Fully Utilized</td>
<td>32</td>
</tr>
<tr>
<td>4.9</td>
<td>Problems Occurred in the Inventories</td>
<td>33</td>
</tr>
<tr>
<td>4.10</td>
<td>Products Taken From the Plastic</td>
<td>35</td>
</tr>
<tr>
<td>4.11</td>
<td>Unutilized Racks</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SME</td>
<td>Small and Medium Enterprise</td>
</tr>
<tr>
<td>SMIDEC</td>
<td>Small and Medium Industries Development Corporation</td>
</tr>
<tr>
<td>BNM</td>
<td>Bank Negara Malaysia</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>TPM</td>
<td>Total Productive Maintenance</td>
</tr>
<tr>
<td>OEE</td>
<td>Overall Equipment Effectiveness</td>
</tr>
<tr>
<td>VSM</td>
<td>Value Stream Mapping</td>
</tr>
<tr>
<td>MRO</td>
<td>Maintenance/ Repair/ Operating</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>GAA</td>
<td>Great American Appetizers</td>
</tr>
<tr>
<td>MBU</td>
<td>Manufacturing Business Unit</td>
</tr>
<tr>
<td>NSDC</td>
<td>National SME Development Council</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter provides the description of the project background, problem statements, objective and scopes of study.

1.2 Background of Study

The study was to identify the problems that normally occur at a SME company which is PJ Foods Industries Sdn. Bhd. based on the lean manufacturing perception and provide the suitable methods or tools that can be applied with less cost and time to overcome them. A small and medium enterprise company was chosen as most of them are generally still use the traditional method of processing due to lack of technical information, expertise and also finance. So, with the identification of problems and the solutions that were provided in this study, they will benefit the company to improve their production system and processing.

1.2.1 Company’s Background

PJ Foods Industries Sdn. Bhd. is a small scale food processing company that concentrates on the production of fried chicken flour, curry powder and herbs. It has 18 full time employees and the company’s annual sales for year 2006 was RM1,401,132.87 and the best-sellers product was the fried chicken flour which covered 32.12% of the
total annual sales. For year 2007, the company’s annual sales was RM1, 186,836.37 and the fried chicken flour was still the best-sellers product with 29.49% of the total annual sales.

1.3 Problem Statements

Poor layout in the production of fried chicken flour section had caused wastes such as movement waste while poor housekeeping in the inventories of finished products had caused wastes such as motion and inventory waste. There were many unneeded items and the workers need some time to search for the products. So, these are the problems that were discussed and need to be improved in this study.

1.4 Objective

1.5 Scopes of the Study

This project will be done at PJ Foods Industries Sdn. Bhd. and the scopes will be focus on the inventories of the raw materials and finished products at the warehouse and also on the disorganize layout at the labeling and packaging section. In the labeling and packaging section, there is a process and packaging for fried chicken flour product. Other than improvement on the inventories, some methods will be identifying to make improvements on the productivity of 1 pack of 7kg fried chicken flour product.
2.1 Lean Manufacturing Concept

Lean manufacturing is a manufacturing philosophy that aims is to eliminate and reduce wastes in every area of production including customer relations, product design, supplier networks and factory management. It can be implemented by a company to stay competitive by serving its customers better and continuously reducing costs.

Lean manufacturing concepts can be organized into three levels consist of lean manufacturing objectives and basic principles, primary management and production strategies used to achieve the objectives and instill basic principles and the implementation techniques which are the practices and procedures for implementing and maintaining the strategies. (ReVelle, 2002)

The systematic elimination of waste will reduce the cost of operating the extended enterprises and fulfills the customer’s desire for maximum value at the lower cost. In lean production or process, mistakes always be made but these mistakes are not usually repeated because this is one of the form of waste that the lean philosophy and its methods aim to eliminate.
2.2 Type of Wastes in Lean Manufacturing

There are eight types of waste that are normally be considered in the lean manufacturing. There are: (ReVelle, 2002)

a) Overproduction
Overproduction happens when the company produce products more than demanded or before it is needed.

b) Inventory
Inventory is an accumulation for finished products or raw materials at any stages of production process. Inventory waste also can affect the other production process and increases the lead time and response time.

c) Waiting
This happens when equipment, people or material waiting for each other or waiting for a machine to process before proceed to the next process.

d) Movement
This waste happens when there is any material, information or people movement which is not value added contribution for the customer.

e) Overprocessing
Process or efforts that add no value to the product or service can lead to overprocesing waste.

f) Motion
This waste happens when there is any motion of people or machines that does not add value to the product or service of customer.
g) **Correction**
This waste will add unnecessary costs because additional labor hours and materials are needed to correct or repair the defects that occur in parts or materials.

h) **Underutilizing workers or people**
This waste can happen when the capabilities of the workers or people were not fully utilized.

2.3 Lean Manufacturing Tools

2.3.1 5S Techniques

Poor workplace conditions may lead to rising of wastes such as accidents, time spent in searching for needed items or motion to avoid obstacles. The lean journey can be started by establishing good workplace and housekeeping conditions. 5S is a system of workplace organization and it is fundamental to the implementation of other lean strategies. 5S is a reference to five Japanese words which described standardized clean up. The 5S are: (ReVelle, 2002)

a) **Seiri (Sort)**
This is a process where every non essential item is removing from the workplace and keeping only the essential items. Examples of non essential items that need to be sorted are extra cabinets, benches, tables, rags and tools. This will lead to fewer hazards in the workplace.

b) **Seiton (Set In Order)**
Set in order is a process of organizing the remaining items after the ‘sort’ process is completed. It focuses on the need for an orderly workplace. There should be a place for everything and everything should always be in its place unless it is being used.
c) Seiso (Shine)
Seiso or shine is a process of cleaning the work area and any equipment or machinery in it. It indicates the need to keep the work area always clean. One of the examples is at the end of each shift, the work area is cleaned up and everything is restored to its place.

d) Seiketsu (Standardize)
This process allows for control and consistency. Basic housekeeping standards are applied in the facility and duties are part of the regular work routines. Everyone should know their responsibilities.

e) Shitsuke (Sustain)
Sustain is a process of sustaining discipline. Standards need to be maintained and the facility or work area must always be in safe and efficient condition every time.

2.3.2 Layout Improvement

Several productivity metrics such as production and lead time are affected by how the materials flow and the location of the production resources in the factories. Factory layout improvements can be occurring more than one time during a factory’s life. Some of the reasons that need for a change to the layout are the factory having problems with the materials flow, location change or purchase of new equipment. The analysis and improvements on materials flow in a new layout is able to save cost and time instead of buying new machine or equipment. (Meyers et. all, 2002)

2.3.3 Other Tools

There are other lean manufacturing tools such as pull system, kaizen, value stream mapping, inventory management and total productive maintenance. Most of these
tools are normally applied at the big company or factories that normally have their own vendors or chain system.

The pull-system strategy aims to provide the flexibility to rapidly respond to customer demands and eliminate the waste that occurs when upstream processes produce more than needed by the downstream customers. Kaizen is a constant elimination of waste through bettering product quality, improving worker safety and reducing costs. Value Stream Mapping (VSM) enables seeing where the long lead times come from when the value added time is often a few minutes or hours. (ReVelle, 2002)

Total Productive Maintenance (TPM) is an approach to reduce equipment-related losses due to speed reduction, downtime or defects by stabilizing and improving equipment conditions. Overall Equipment Effectiveness (OEE) is a key measure in Total Productive Maintenance. OEE takes into account downtime due to breakdown and setup, reduced operating speed, idling, and lost time due to defects or reworks.

2.3.3.1 Overall Equipment Effectiveness

OEE = Availability x Performance (Speed) x Quality Rate (ReVelle, 2002)

\[
\begin{align*}
\text{Breakdowns} \\
\text{Setup / Adjustments} \\
\text{Reduced Speed} \\
\text{Minor Stoppages} \\
\text{Defects and Rework} \\
\text{Startup Losses}
\end{align*}
\]

\[\text{Big Six Losses}\]

Figure 2.1: Overall Equipment Effectiveness
2.4 Definition of SME in Malaysia

In Malaysia, an enterprise is considered an SME in each of the respective sectors based on the Annual Sales Turnover or Number of Full-Time Employees. Malaysian SMEs can be grouped into three categories which are micro, small and medium.

2.4.1 Number of Full-Time Employees

The Table 2.1 shown the definition of SME based on the number of full-time employees.

Table 2.1: Definition of SME based on number of full-time employees

<table>
<thead>
<tr>
<th></th>
<th>Manufacturing, Manufacturing related services and agro based</th>
<th>Service Sector including ICT</th>
<th>Primary Agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro</td>
<td>Less than 5 employees</td>
<td>Less than 5 employees</td>
<td>Less than 5 employees</td>
</tr>
<tr>
<td>Small</td>
<td>Between 5 to 50 employees</td>
<td>Between 5 to 19 employees</td>
<td>Between 5 to 19 employees</td>
</tr>
<tr>
<td>Medium</td>
<td>Between 51 to 150 employees</td>
<td>Between 20 to 50 employees</td>
<td>Between 20 to 50 employees</td>
</tr>
</tbody>
</table>

Source: NSDC, 2006
2.4.2 Annual Sales Turnover

The Table 2.2 shown the definition of SME based on the annual sales turnover.

Table 2.2: Definition of SME based on annual sales turnover

<table>
<thead>
<tr>
<th></th>
<th>Manufacturing, Manufacturing related services and agro based</th>
<th>Service Sector including ICT</th>
<th>Primary Agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro</td>
<td>Less than RM250,000</td>
<td>Less than RM200,000</td>
<td>Less than RM200,000</td>
</tr>
<tr>
<td>Small</td>
<td>Between RM250,000 to less than RM10 million</td>
<td>Between RM200,000 to less than RM1 million</td>
<td>Between RM200,000 to less than RM1 million</td>
</tr>
<tr>
<td>Medium</td>
<td>Between RM10 million to RM25 million</td>
<td>Between RM1 million to RM5 million</td>
<td>Between RM1 million to RM5 million</td>
</tr>
</tbody>
</table>

Source: NSDC, 2006

2.4.3 Gross Domestic Product of SME In 2005

Based on the 2005 Census of Establishment and Enterprise, 80% of the SMEs are micro enterprises. 86.5% of the SMEs are in services sector, 7.3% are in the manufacturing sector and 6.2% are in agriculture sector. SMEs contributed only 32% of gross domestic product and 19% of the total export value. The Table 2.3 shown the 2005 data estimated based on the Census 2005’s profiles compared to 2003.
Table 2.3: 2005 data estimated based on the Census 2005’s profiles

<table>
<thead>
<tr>
<th></th>
<th>2003 (%)</th>
<th>2005 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMEs’ contribution to GDP</td>
<td>31.9</td>
<td>32.0</td>
</tr>
<tr>
<td>SMEs’ contribution to employment</td>
<td>55.8</td>
<td>56.4</td>
</tr>
<tr>
<td>(exclude Government)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMEs’ share of total exports</td>
<td>18.9</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Source: NSDC, 2006
CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter provides the flow chart for Final Year Project, description about the data collections, method of analysis, simulation, layout, housekeeping and results analysis of the project.
3.2 Flow Chart for Final Year Project

![Flow Chart for Final Year Project]

Figure 3.1: Flow Chart for Final Year Project
3.3 Data collections

Some visits to the selected company which was PJ Foods Industries Sdn. Bhd. had been done for the process of data collections. The data collections were made through observation, interview with the supervisor and workers and pictures that being taken at the factory.

The data collections that had been made include sales revenue of the company for 2006 and 2007, background of the company, the number of workers, the layout of the production of 7kg fried chicken flour section, the total time to produce 20 packets of 7kg fried chicken flour, cycle time for each process involves in the production of fried chicken flour, pictures of the inventories and the prices of the products.

3.4 Method of Analysis

After the data collections process, the collected data about the process and layout at production of fried chicken flour section had been used to make a process map and materials flow. From the process map, the unnecessary process and wastes can be detected. From the materials flow in the layout, any problems that related to the materials flow can be detected and improvements on the layout and can be made. In this task, the suggestions to improve the layout were applied in the simulation using Witness software.

3.5 Current Process Maps

The Figure 3.2 showed the current process maps for 20 packets of 7kg fried chicken flour.
Figure 3.2: Current process maps for 20 packets 7kg fried chicken flour

Total Time for 20 Packs 7kg = 48 minutes 22 seconds
Total Time for 1 Pack 7kg = 2 minutes 26 seconds