

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Characteristics of NH₃/H₂ blend as carbon-free fuels: A review

Omar I. Awad^a, Bo Zhou^{a,*}, Karim Harrath^b, K. Kadirgama^c

^a Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, 518055, Shenzhen, China

^b Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China

^c Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Malaysia

HIGHLIGHTS

• Ammonia/hydrogen blends as carbon-free fuels have been reviewed.

- H₂ is an ideal promoter for improving NH₃ combustion.
- Effects of NO_x formation and Low- NO_x strategies are discussed.
- Combining two-stage combustion and humidified operation could achieve greater NO reduction.
- Challenges of NH₃/H₂ combustion have been discussed.

ARTICLE INFO

Article history: Received 23 June 2022 Received in revised form 1 September 2022 Accepted 9 September 2022 Available online 8 October 2022

Keywords: NH₃/H₂ blend fuel NH₃ fuel Hydrogen fuel Low NO_x NH₃/H₂ combustion Laminar flame speed

ABSTRACT

In the pursue of a carbon-free economy, the utilization of fuels with low or zero carbon footprint account for only 1% of global final energy demand, a share that is predicted to follow a dramatic growth to 20% by 2050. Ammonia (NH₃) has become dominant in the international transportation and storage of low-carbon alternative fuels. NH₃ is regarded as an alternative fuel, as a carbon-free fuel, and renewable hydrogen (H₂) carrier with high energy density, and its production and distribution infrastructure are well established. However, a current challenge is that NH₃ has a lower burning velocity and a narrow flammability limit. Thus, the use of NH₃ has numerous limitations in practical combustion applications. Blending NH₃ with H₂ is considered a solution that has been proposed to enhance NH₃ combustion by improving ignition, flammability, and H₂ safety issue. Using NH₃ blended with H₂ as a fuel in combustion systems is a practical approach to decarbonizing the energy sector.

Thus, this review highlights the existing influential studies and ongoing research on NH_3/H_2 blended fuels. The review covers NH_3 assists the safety behaviour of H_2 use, in-situ NH_3 dissociation, NH_3 and H_2 properties, NH_3/H_2 combustion characterization, techniques for low NO_x NH_3/H_2 combustion, and challenges for NH_3/H_2 combustion. Finally, recommendations for future studies are provided for further developing the utilization of NH_3/H_2 as blended fuel.

© 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

* Corresponding author.

E-mail address: zhoub3@sustech.edu.cn (B. Zhou).

https://doi.org/10.1016/j.ijhydene.2022.09.096

0360-3199/© 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.