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A B S T R A C T

Determining the Remaining Useful Life (RUL) of a battery is essential for several purposes, including proactive 
maintenance planning, optimizing resource allocation, preventing unforeseen failures, improving safety, 
extending battery lifespan, and achieving accurate cost savings. Concerning that matter, this study proposed 
hybrid Particle Swarm Optimization–Neural Network (PSO–NN) for estimating battery RUL. In the evaluation of 
the proposed method, the effectiveness is assessed using the metrics of Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE). The dataset employed for this investigation comprises eight input parameters and 
one output variable, representing the battery RUL. In conducting an analysis, the performance of the PSO–NN 
model is compared with hybrid NN with Cultural Algorithm (CA-NN) and Harmony Search Algorithm (HSA-NN), 
as well as the standalone Autoregressive Integrated Moving Average (ARIMA). Upon examination of the findings, 
it becomes evident that the PSO–NN model outperforms the alternatives with an MAE of 2.7708 and an RMSE of 
4.3468, significantly lower than HSA-NN (MAE: 22.0583, RMSE: 34.5154), CA-NN (MAE: 9.1189, RMSE: 
22.4646), and ARIMA (MAE: 494.6275, RMSE: 584.3098). The PSO–NN also achieves the lowest maximum 
error of 104.7381 compared to 490.3125 for HSA-NN, 827.0163 for CA-NN, and 1,160.0000 for ARIMA. 
Additionally, the low two-tail probability values (P(T ≤ t)), all below the significance level of 0.05, indicate that 
the differences between PSO–NN and the other methods (HSA-NN, CA-NN, and ARIMA) are statistically sig
nificant. These results highlight the superior accuracy and robustness of the PSO–NN model in predicting 
battery RUL. This study contributes to the field by presenting the PSO–NN as a highly effective tool for accurate 
battery RUL estimation, as evidenced by its superior performance over alternative methods.

1. Introduction

The application of machine learning techniques, such as Support 
Vector Machines (SVM) (Vapnik, 1995), Neural Networks (NN), and 
Least Squares Support Vector Machines (LSSVM) (Suykens et al., 2002), 
to name a few, can be seen extensively and efficiently applied across 
diverse domains, including medical health (Abut et al., 2024; Mall et al., 
2023), building engineering (Marzouk et al., 2024; Vivian et al., 2024), 
seismology (Gonzalez et al., 2022; Maya et al., 2022), smart agricultural 
(Mendoza-Bernal et al., 2024), ocean engineering (Hayati et al., 2024), 
finance (Gupta and Nalavade, 2023), automotive industry (Li et al., 
2022; Li et al., 2024; Zhang et al., 2015) among others. Within the 
automotive sector, the growing adoption of electric vehicles has sparked 
significant research into Battery Management Systems (BMS) (Sulaiman 
and Mustaffa, 2024), as reducing fossil fuel consumption is crucial for 

promoting sustainable and healthy societal development (Zuo et al., 
2022; Zuo et al., 2024). Leading automobile manufacturers worldwide 
have actively advanced the development of electric vehicles (Li et al., 
2022), including both pure electric vehicles and hybrid electric vehicles 
(Zhang et al., 2022; Zuo et al., 2022), resulting in a significant increase 
in their presence on the roads. This growth has highlighted the critical 
role of Battery Management Systems (BMS) in ensuring the proper 
functioning of the battery, which is essential for the safety and efficiency 
of both the battery and vehicle operations. The BMS monitors and 
controls the battery pack’s operational conditions, such as temperature, 
voltage, and current. It also conducts State of Charge (SoC) estimations 
to determine the remaining capacity of the battery and State of Health 
(SoH) assessments to measure the remaining lifespan of the battery 
(Mehta et al., 2024). Lithium-ion batteries (LIBs), serving as the core of 
new energy vehicles, have attracted increased attention. In recent years, 
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as battery technology has advanced, batteries, functioning as the pri
mary power source or energy storage component in devices, have wit
nessed widespread utilization (Zhou et al., 2023). Estimating the 
Remaining Useful Life (RUL), SoC, and SoH is crucial for effective pro
active maintenance planning. It aids in optimizing resource allocation, 
preventing unexpected failures, improving safety measures, extending 
battery lifespan, and achieving accurate cost saving (Alsuwian et al., 
2024). This is proven with numerous studies, particularly using machine 
learning techniques as presented in (Duan et al., 2023; Korkmaz, 2023; 
Li et al., 2022; Li et al., 2024; Rauf et al., 2022; Tao et al., 2024).

When working with ML techniques, such as NN and SVM, their 
effectiveness for estimation tasks is well-established. However, the 
performance of these models largely depends on optimizing key hyper- 
parameters. For instance, in the case of NN, hyper-parameters such as 
network weights and hidden layer biases require careful tuning, while in 
SVM, hyper-parameters such as the regularization parameter (C) and the 
kernel function need careful adjustment. Additionally, configuring ele
ments like the appropriate number of hidden neurons for NN is crucial 
for achieving optimal results.

In response to that, a significant number of hybrid machine learning 
with optimization techniques have been demonstrated, aiming to 
automatically optimize the relevant hyper-parameters. Recently, the 
academic community has shown considerable interest in optimization 
using meta-heuristic algorithms, acknowledging their effectiveness in 
tackling current problems. Example of meta-heuristic algorithms are 
Moth Flame Algorithm (MFO) (Mirjalili, 2015), Salp Swarm Algorithm 
(SSA) (Mirjalili et al., 2017), Barnacles Mating Optimizer (BMO) 
(Sulaiman et al., 2020), Artificial Bee Colony (ABC), Bees Algorithm 
(BA), Genetic Algorithm (GA) (Haupt and Haupt, 2004), Differential 
Evolution, Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), Particle 
Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) and many 
others.

Numerous hybrid machine learning with optimization algorithms 
have been demonstrated, such as study in (Dou et al., 2022) which 
introduced a hybrid methods combining the Salp Swarm Algorithm 
(SSA) with Extreme Learning Machine (ELM) for SoC estimation. To 
address the limitations of SSA in global search capability, the Sine 
Cosine Algorithm (SCA) was integrated into SSA. The study’s findings 
suggest the superiority of SCA-SSA-ELM in comparison to SSA-ELM and 
a few other identified algorithms. In (Liu et al., 2022), a hybrid SVM 
with improved Barnacles Mating Optimizer was presented in estimating 
the SoC for LIBs. Another hybrid machine learning with BMO also can be 
seen in (Mustaffa; and Sulaiman, 2023).

On the other hand, studies in (Li et al., 2024 Li et al., 2024) proposed 
a hybrid PSO with Temporal Convolutional Network (TCN) for SoC 
estimation. The use of PSO helps the models learn the battery charac
teristics more effectively under varying conditions, while the TCN ar
chitecture is well-suited for handling the dynamic nature of battery data. 
Validated on public datasets, the findings suggest that the proposed 
method provides strong predictive performance. Meanwhile, a study in 
(Zhou et al., 2023) demonstrated an improved GWO to optimize the 
hyper parameters in Deep Extreme Learning Machine. A comparable 
investigation employing a hybrid PSO with Extreme Learning Machine 
for SoH estimation for LIBs is discussed in (Chen et al., 2024). Since its 
introduction back in 1995, the PSO has consistently demonstrated 
notable efficiency, leading to widespread and extensive use (Chen et al., 
2024; Pan et al., 2023). Given the notable efficacy of PSO, this research 
introduces a hybrid approach that combines PSO with NN to predict the 
RUL of batteries. As emphasized earlier, the objective of this hybrid 
meta-heuristic optimization algorithm integrated with machine learning 
is to function as an optimizer for specific hyperparameters, namely, the 
network weights and hidden layer biases. The devised PSO–NN model 
was subsequently applied for the estimation of the RUL of batteries.

The major contributions of this study can be described as follows:

• Introduction of the PSO–NN hybrid model for accurate RUL esti
mation in batteries. Leveraging the proven efficiency of PSO as a 
metaheuristic optimization algorithm to enhance the performance of 
neural networks in predicting battery health.

• Comprehensive evaluation comparing the PSO–NN model with 
alternative algorithms, including Cultural Algorithm (CA-NN), Har
mony Search Algorithm (HSA-NN), and Autoregressive Integrated 
Moving Average (ARIMA). Establishing the superior accuracy and 
efficiency of developed PSO–NN model in RUL predictions, 
contributing to proactive maintenance planning, resource optimi
zation, and safety enhancement in diverse applications especially in 
electric vehicles (EVs).

The subsequent sections of the paper follow this structure: Section 2
delivers an insight into PSO, whereas Section 3 details information 
about NN. Section 4 outlines the methodology implemented, incorpo
rating the hybrid PSO–NN model. Section 5 discusses the obtained re
sults, and finally, Section 6 encapsulates the paper’s conclusion.

2. Particle swarm optimization

Introduced by Kennedy and Eberhart back in 1995 (Kennedy and 
Eberhart, 1995), PSO is classified as Swarm Intelligence (SI) algorithm 
which simulates social behavior of birds and fish, where individuals in a 
group coordinate their movements to achieve a common goal. PSO is a 
widely employed approach for approximating solutions in optimization 
and search challenges. In PSO, the historical personal optimal position of 
particle i is referred to as Pbesti, while the historical neighborhood 
optimal position of particle i is noted as Nbesti. Particle i is guided by 
Pbesti and Nbesti to transition from less promising areas to more favor
able locations. The position and velocity of particle i in the tth genera
tion are represented as xi(t) and vi(t), respectively. The updates for xi(t) 
and vi(t) are determined by the following formulas (1), (2): 

vi(t+1) = wvi(t) + C1r1(Pbesti(t) − xi(t)) + C2r2(Nbesti(t) − xi(t)) (1) 

xi(t+1) = xi (t) + vi(t+1) (2) 

In this context, w represents the inertia weight that governs the in
fluence of the previous velocity on the current velocity. Additionally, C1 
and C2 stand for the individual learning factor and the social learning 
factor, respectively. Meanwhile, r1 and r2 denote random values evenly 
distributed in the range [0,1].

3. Neural network

A neural network (NN) is a computational model inspired by the 
human brain’s structure and functioning. It comprises interconnected 
nodes, or neurons, organized into layers namely an input layer, a hidden 
layer, and an output layer. Its structure aims to establish a mapping 
relationship between input variables and output variables (He et al., 
2024). NNs are used for various tasks, such as pattern recognition (Chen 
et al., 2022; Singh et al., 2023; Xue et al., 2023), classification, and 
regression. The core idea is to learn complex relationships within data 
by adjusting the weights and biases associated with connections be
tween neurons.

In the context of estimating battery RUL, NN can be employed to 
analyze historical data and predict how much longer a battery is ex
pected to operate before reaching the end of its useful life. Input features 
might include information about charging cycles, discharge rates, tem
perature, and other relevant parameters. The success of a neural 
network in estimating RUL is closely tied to its ability to generalize well 
to new, unseen data. Generalization is enhanced by determining optimal 
weights and biases during the training phase. These parameters are 
adjusted iteratively using an optimization algorithm (e.g., gradient 
descent) to minimize the difference between predicted and actual RUL 
values on the training dataset. By finding the right balance in weights 
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Table 1 
Sample of dataset.

CI DT (s) Dec_3.6–3.4 V (s) MVD. (V) MVC (V) T_4.15 V (s) TCC(s) CT (s) RUL

15,045 1093 794.31 190.33 3.78 3.74 965.98 1484.38 6795.44
15,046 1094 793.62 188.27 3.78 3.74 964.38 1484.38 6798.12
15,047 1095 789.75 186.50 3.78 3.74 962.25 1484.25 6761.06
15,048 1096 785 185.71 3.78 3.74 958.71 1448.31 6757.62
15,049 1097 783.94 184.37 3.78 3.74 947.98 1448.38 6676.62
15,050 1098 782.88 184.37 3.78 3.74 944.38 1448.38 6732.19
15,051 1099 782.69 184 3.78 3.74 940.71 1448.31 6696.56
15,052 1100 780.31 183.52 3.774 3.74 940.713 1448.31 6696.75
15,053 1101 779.75 183.52 3.775 3.74 936.375 1448.38 6695.62
15,054 1102 778.12 183 3.774 3.74 933.637 1448.44 6703.81

* CI= Cycle index, DT= Discharge time, Dec_3.6–3.4V= Decrement 3.6–3.4 V, MVD= Max. Voltage Discharge, MVC= Minimum voltage charge, T_4.15V= Time at 
4.15 V, TCC= Time constant current, CT= Charging time, and RUL= Remaining Useful Life.

Table 2 
Sample of normalized dataset.

CI DT (s) Dec_3.6–3.4 V (s) MVD. (V) MVC (V) T_4.15 V (s) TCC(s) CT (s) RUL

0.9638 0.0008 0.4946 0.5576 0.5269 0.0035 0.0017 0.0077 0.0168
0.9647 0.0008 0.4946 0.5561 0.5276 0.0035 0.0017 0.0077 0.0159
0.9656 0.0008 0.4946 0.5553 0.5269 0.0035 0.0017 0.0077 0.0150
0.9665 0.0008 0.4946 0.5553 0.5276 0.0034 0.0016 0.0077 0.0141
0.9673 0.0008 0.4946 0.5553 0.5284 0.0034 0.0016 0.0076 0.0132
0.9682 0.0008 0.4946 0.5553 0.5291 0.0034 0.0016 0.0076 0.0124
0.9691 0.0008 0.4946 0.5545 0.5291 0.0034 0.0016 0.0076 0.0115
0.9700 0.0008 0.4946 0.5538 0.5291 0.0034 0.0016 0.0076 0.0106
0.9709 0.0008 0.4946 0.5545 0.5291 0.0034 0.0016 0.0076 0.0097
0.9718 0.0008 0.4946 0.5538 0.5291 0.0033 0.0016 0.0076 0.0088

Fig. 1. Battery RUL Estimation based on hybrid PSO–NN.
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and biases, the neural network becomes adept at capturing underlying 
patterns in the data, allowing it to make accurate predictions on new, 
unseen battery conditions.

Determining the optimal weights and biases is crucial to avoid 
overfitting (capturing noise in the training data) and underfitting 
(failing to capture essential patterns). Achieving a good balance helps 
the NN generalize well, making it effective in estimating battery RUL 
across various operating conditions.

4. Methodology

This section outlines the implemented methodology, covering 
diverse elements such as research data and data preparation, data pre- 
processing, experiment setup, the proposed PSO–NN for estimation of 
battery RUL, and examination of the evaluation and benchmark esti
mation model.

4.1. Research data and data preparation

In this study, a publicly available dataset was utilized, accessible 
from the Kaggle website (Aboelkhair et al., 2024). The dataset consists 
of 15,064 rows, encompassing 8 inputs: cycle number (CT), discharge 
time (s) (DT), decrement from 3.6 V to 3.4 V (s) (Dec_3.6–3.4 V), 
maximum voltage during discharge (V) (MVD), minimum voltage dur
ing charge (V) (MVC), time at 4.15 V (s) (T_4.15 V), time constant 
current (s) (TCC), and charging time (s) (CT). The sole output variable is 
the RUL. Table 1 shows the sample of dataset of input-output configu
rations in this study.

4.2. Data pre-processing

To enhance the learning process of the PSO–NN algorithm, the 
battery feature data undergo min–max normalization, scaling them to 
the range of (0, 1). The main objective was to avoid the dominance of 
larger input values over smaller ones, thereby potentially improving 
estimation accuracy. The Min-Max Normalization is expressed by the 
following equation: 

vʹ =
(

v − mina

maxa − mina

)

∗ (newmaxa − newmina) + newmina (3) 

Where v́  represents the new value for variable v, v is the current 
value, minais the minimum value in the data set; maxa is the maximum 
value in the dataset, newmaxa is the new maximum value in the dataset, 
and newmina is the new minimum value in the dataset. Min-Max 
normalization transforms a value of v of A to v́  within the range 
[newmaxa, newmina] by solving the above equation. The normalized 
dataset for the sample in Table 2 is presented in Table 2.

4.3. Training and testing

The dataset is divided into two distinct subsets: a training set, uti
lized for model fitting, and a testing set, employed for a genuine eval
uation of the model’s generalization performance. The split between 
these subsets follows a proportion of 0.7:0.3.

4.4. PSO–NN for estimation of battery RUL

This illustration depicts the operational flow of a hybrid PSO–NN 
model (see Fig. 1). In this framework, PSO is employed to optimize the 
weights and biases of the NN, which comprises 8 inputs, 1 hidden layer 
with 9 neurons, and 1 output. The iteration process continues until 
reaching a maximum of 1000 iterations. The dataset undergoes 
normalization and is subsequently partitioned into training and testing 
subsets before being input into the NN. This practice is crucial for pre
venting overfitting and enhancing generalization. The NN is tailored to 

the dataset by configuring essential hyperparameters such as the num
ber of inputs, hidden layers, hidden neurons, and outputs. These pa
rameters significantly impact the NN’s performance.

Prior to optimizing the NN’s weights and biases, PSO parameters 
including gamma, beta, alpha, alpha_damp, and delta are pre-set. These 
parameters govern the behavior and convergence rate of the PSO algo
rithm. Evaluation of the NN’s performance involves calculating the 
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). These 
widely used error metrics quantify the disparity between actual and 
predicted values. The trained NN undergoes testing on unseen data to 
assess its accuracy and robustness. The optimization process concludes 
with the recording of the best result achieved.

4.5. Evaluation

Selecting a suitable performance evaluation metric is essential for 
validating the results obtained in the experiment. In this study, three 
statistical indices are employed: the Mean Absolute Error (MAE) and 
Root Mean Square Error (RMSE). RMSE assesses performance by giving 
greater importance to large estimation errors, while MAE treats all 
estimation errors equally without assigning varying weights. The for
mulas for MAE and RMSE are illustrated in the following equations: 

MAE =
1
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
|y(i) − ŷ(i)|

√
√
√
√ (4) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1‖ y(i) − ŷ(i)‖2

N

√

(5) 

Here, N represents the data length of the battery RUL under evalu
ation, with y(i) and ŷ(i) denoting the target and estimated battery RUL, 
respectively. Meanwhile, O is the mean of target values.

4.6. Benchmark estimation models

To facilitate comparison, the PSO–NN is assessed alongside other 
models, including the NN hybridized with Harmony Search Algorithm 
(Woo Geem et al., 2001) (HSA-NN), Cultural Algorithm (CA-NN), and 
Autoregressive Integrated Moving Average (ARIMA).

4.6.1. Harmony search algorithm
HSA is a heuristic optimization algorithm inspired by the improvi

sation process of musicians in a jazz ensemble (Woo Geem et al., 2001). 
The algorithm mimics the process by which musicians harmonize their 
notes to find an optimal solution to a problem. The algorithm begins 
with the initialization phase, where the initial population of potential 
solutions, called “harmonies”, is initialized. Harmonies are selected 
from the population based on their fitness values, where the 
better-performing solutions are more likely to be included in the har
mony memory. New harmonies are generated by adjusting the pitches 
(values) of existing harmonies. This process embodies the balance be
tween exploration and exploitation in the search for improved solutions.

4.6.2. Cultural algorithm
Cultural Algorithms (CA) (Reynolds, 1994) fall under the domain of 

evolutionary computation, integrating a knowledge component referred 
to as the belief space along with the population component. In this 
context, Cultural Algorithms can be seen as an extension of the tradi
tional genetic algorithm. Much like several other metaheuristic algo
rithms, CA starts with an initialization stage, involving the 
establishment of candidate solutions and the belief space, representing 
cultural knowledge. During the evaluation phase, the fitness or objective 
function of individuals within the population is appraised, and the belief 
space undergoes updates based on their performance and experiences. 
Similar to the Genetic Algorithm (GA) (Haupt and Haupt, 2004), CA 
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incorporates crossover and mutation operators to generate fresh candi
date solutions. In the selection phase, individuals are chosen based on 
their fitness values or a combination of fitness and cultural knowledge.

4.6.3. ARIMA
ARIMA, which stands for Auto-Regressive Integrated Moving 

Average, is a popular time series forecasting method. It is a statistical 
model that combines autoregression, differencing, and moving average 
components to capture and predict patterns in time series data. ARIMA 
models are widely used in various fields, including economics, finance, 
and environmental science, to make predictions based on historical data. 
ARIMA models are defined by three parameters: p, d, and q, where p is 
the order of the autoregressive component, d is the degree of differ
encing, and q is the order of the moving average component. By 
adjusting these parameters, ARIMA models can be tailored to suit 
different time series patterns, making them a versatile tool for time se
ries forecasting.

5. Results and discussion

The data presented in Table 3, generated with 9 hidden neurons, 
1000 iterations, and 30 populations for PSO, HSA, and CA, reveals sig
nificant results regarding the performance of the models. The PSO–NN 
model consistently demonstrates the lowest errors across all three 
metrics: MAE of 2.7708, RMSE of 4.3468, and Maximum Error of 
104.7381. This superior performance highlights PSO–NN’s effective
ness in accurately predicting battery RUL. In contrast, both HSA-NN and 
CA-NN show moderate error levels. Specifically, CA-NN exhibits a 
higher MAE and RMSE compared to HSA-NN, indicating that while it is 
more accurate than ARIMA, it still falls short of PSO–NN. Notably, CA- 

NN’s significantly higher Maximum Error suggests a vulnerability to 
outliers or noise within the dataset, leading to larger errors for certain 
instances.

ARIMA, on the other hand, presents considerably higher error rates, 
with an MAE of 494.6275, an RMSE of 584.3098, and a Maximum Error 
of 1.16 × 103. These results support observations in previous studies (He 
et al., 2024), which indicate that ARIMA struggles to handle non
linearities in data due to its limited capacity to encapsulate complex 
dependencies between historical data points. Overall, these findings 
indicate that PSO–NN outperforms all other models in terms of accu
racy and robustness. In contrast, ARIMA is the least effective, and 
CA-NN, while better than ARIMA, is less reliable compared to PSO–NN, 
particularly in handling outliers or noise

Fig. 2 depicts the alignment between the models (PSO–NN, HSA- 
NN, CA-NN, ARIMA) and the observed data in relation to battery RUL 
over time, which shows that the battery RUL decreases significantly over 
time, indicating that the battery degradation is a complex and dynamic 
process. A higher degree of proximity between the model and the 
observed data corresponds to superior prediction accuracy. From the 
visual representation, it is evident that PSO–NN outperforms the other 
models by closely adhering to the observed data. Conversely, CA-NN, 
HSA-NN, and ARIMA exhibit lower accuracy, as they display more 
frequent deviations from the observed data. Additionally, the figure il
lustrates substantial fluctuations in battery RUL over time, underscoring 
the intricate and dynamic nature of the battery degradation process.

The close-up views of estimated values are visualized in Figs. 3(a) 
and 3(b), offering a detailed comparison of different prediction models. 
These figures clearly demonstrate that the values generated by PSO–NN 
consistently align more closely with the observed patterns, indicating its 
superior performance in predicting Battery RUL. In contrast, CA-NN 
exhibits significant difficulties in consistently producing accurate 
values, often resulting in scattered outputs that consistently underesti
mate the true Battery RUL. This underestimation is particularly evident 
in both figures, where the CA-NN predictions consistently fall below the 
observed data points. Meanwhile, HSA-NN, while sometimes tracking 
the general trend, occasionally deviates dramatically from the observed 
values. These substantial deviations are especially pronounced in Fig. 3
(b), where HSA-NN shows sharp fluctuations at the beginning of the time 

Table 3 
Estimation of Battery RUL: PSO–NN vs. HSA-NN vs. CA-NN vs. ARIMA.

MAE RMSE Maximum Error

PSO–NN 2.7708 4.3468 104.7381
HSA-NN 22.0583 34.5154 490.3125
CA-NN 9.1189 22.4646 827.0163
ARIMA 494.6275 584.3098 1.16 × 103

Fig. 2. Comparison of PSO–NN vs. Identified algorithms for battery RUL.
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series. Such inconsistencies in the HSA-NN model’s performance notably 
impact its recorded MAE, RMSE, and maximum error metrics, high
lighting the challenges it faces in maintaining prediction accuracy across 
different time windows. The comparative analysis of these models un
derscores the robustness and reliability of the PSO–NN approach in 
accurately forecasting Battery RUL across varying conditions and time 
frames.

The illustration in Fig. 4 illustrates the convergence rates of three 
algorithms: PSO–NN, CA-NN, and HSA-NN. Each algorithm’s perfor
mance is assessed utilizing the Mean Squared Error (MSE) metric. The x- 

axis denotes the number of iterations, ranging from 0 to 1000, while the 
y-axis represents the MSE values within the range of 0 to 0.04. Upon 
examination of the figure, it is evident that PSO–NN (depicted in blue 
with square markers) demonstrates swift convergence to the minimum 
MSE value. In contrast, CA-NN (depicted in orange with cross markers) 
converges at a marginally higher MSE value than PSO–NN. HSA-NN 
(depicted in red with dot markers) converges with the highest final 
MSE value.

Regarding algorithmic performance, PSO–NN achieves the most 
favorable outcome with the lowest MSE (approximately 0.0000609). 

Fig. 3. (b): Zooming in - PSO–NN vs. Identified Algorithms for Battery RUL.
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CA-NN exhibits a higher MSE (approximately 0.0003787), while HSA- 
NN presents the highest MSE (approximately 0.0006799). The findings 
suggest that PSO–NN emerges as the most efficient algorithm in terms 
of convergence. CA-NN performs adequately but trails behind PSO–NN. 
HSA-NN displays the slowest convergence rate and the highest error.

The close-up of Fig. 4 is illustrated in Fig. 5. The figure clearly il
lustrates the differences in the recorded convergence rates for each 
method.

Table 4 shows the obtained result from Two-Tail Probability (P(T ≤
t) between the proposed PSO–NN and the three identified models. For 
PSO–NN vs. HSA-NN, the probability value of 0.0012 suggests a low 
likelihood of observing the observed difference (or more extreme) 

Fig. 4. Convergence rate: PSO–NN vs. Identified algorithms for battery RUL.

Fig. 5. Detailed examination of convergence rate: PSO–NN vs. Identified algorithms for battery RUL.

Table 4 
Results of Two-Tail Probability (P(T ≤ t)) Between PSO–NN, 
HSA-NN, CA-NN, and PSO-ARIMA Models.

Methods P(T ≤ t) two-tail

PSO–NN vs. HSA-NN 0.0012
PSO–NN vs. CA-NN 0.0000
PSO–NN vs. ARIMA 0.0000
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between PSO–NN and HSA-NN purely by chance. This indicates a sta
tistically significant difference between the two methods. Meanwhile, 
for PSO–NN vs. CA-NN and PSO–NN vs. ARIMA, the probability value 
of 0.0000 indicates an extremely low likelihood of observing the 
observed difference (or more extreme) between PSO–NN and CA-NN, 
as well as PSO–NN and ARIMA, by chance.

In summary, the probability values in the table suggest statistically 
significant differences between PSO–NN and each of HSA-NN, CA-NN, 
and ARIMA. The smaller the probability value, the stronger the evidence 
against the null hypothesis of no difference between the compared 
methods.

The obtained results prove that our PSO–NN method excels in MAE, 
RMSE, and maximum error due to its effective optimization and learning 
capabilities. The PSO algorithm efficiently fine-tunes the neural net
work’s parameters, enhancing accuracy by exploring and exploiting the 
solution space effectively. This combination allows the model to capture 
complex data patterns more effectively than other methods. Addition
ally, the two-tailed test confirms that these performance improvements 
are statistically significant.

Based on the findings of the study, the PSO–NN model for battery 
RUL estimation offers several quantifiable benefits in terms of cleaner 
and more sustainable energy systems. By providing accurate RUL pre
dictions, the model enhances the efficiency of battery usage and main
tenance, leading to reduced energy consumption. This improved 
efficiency translates into less wasteful energy use in battery-operated 
systems. Additionally, the model supports better battery management 
and recycling processes, thereby decreasing the frequency of battery 
replacements and minimizing environmental impact through reduced 
emissions and waste. By enabling timely maintenance and optimal 
resource use, the PSO–NN model promotes the adoption of more sus
tainable battery management practices. Overall, the integration of PSO 
with NN not only extends battery life but also supports cleaner energy 
technologies and contributes to more sustainable energy systems.

6. Conclusion

This study has successfully introduced the PSO–NN model for esti
mating battery RUL, demonstrating its effectiveness through a detailed 
evaluation. The PSO–NN model, which integrates Particle Swarm 
Optimization (PSO) with Neural Networks (NN), achieved superior 
performance in predicting battery RUL compared to alternative models. 
The results show that PSO–NN consistently produced the lowest Mean 
Absolute Error (MAE) of 2.7708 and Root Mean Squared Error (RMSE) 
of 4.3468, outperforming the CA-NN, HSA-NN, and ARIMA models. The 
statistical analysis confirms the significance of these differences, with 
Two-Tail Probability (P(T ≤ t)) values all below the 0.05 significance 
level, indicating that PSO–NN’s performance is statistically superior to 
that of the other methods. Additionally, PSO–NN exhibited the lowest 
maximum error and the fastest convergence rate, as evidenced by its 
performance metrics.

While the PSO–NN demonstrates strong performance in optimizing 
battery RUL estimation, there are several limitations that should be 
considered. First, the optimization process may become computationally 
intensive as the size of the dataset or the complexity of the NN increases. 
This could impact real-time applications, where both accuracy and 
speed are critical. Second, the PSO’s convergence behavior, although 
faster in this study, might vary depending on the initialization param
eters, potentially affecting the stability of results in different scenarios. 
Another limitation is that the model’s performance has only been 
evaluated on the current dataset, which may limit the generalizability of 
the conclusions. The influence of external factors, such as environmental 
conditions or battery degradation modes not captured in the dataset, 
may also reduce the robustness of the model in real-world applications. 
Addressing these limitations in future work could provide a more 
comprehensive understanding of the proposed model’s potential and 
limitations in diverse scenarios.

To address these limitations, future work could explore additional 
datasets to assess the generalizability of the PSO–NN model across 
diverse conditions. Investigating the optimization of hyperparameters 
could also enhance the model’s adaptability to varying scenarios. 
Furthermore, exploring real-time implementation and improving 
computational efficiency would contribute to the practical application 
of the proposed approach in operational environments.

CRediT authorship contribution statement

Zuriani Mustaffa: Writing – original draft, Visualization, Method
ology, Formal analysis, Data curation. Mohd Herwan Sulaiman: 
Writing – review & editing, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data sharing not applicable to this article as datasets can be obtained 
from the literature.

Acknowledgement

This research is supported by Ministry of Higher Education Malaysia 
(MoHE) through research gran FRGS/1/2024/ICT02/UMP/02/2 and 
Universiti Malaysia Pahang Al-Sultan Abdullah, under research grant 
#RDU220379.

References

A.H. Aboelkhair, N. a. Hamed, O. Reda, N. Nabil, O. Ghanem, and O. Assal. "RUL analysis 
& machine learning." https://www.kaggle.com/code/ahmedhatem404/rul-analysi 
s-machine-learnig/notebook (accessed 22 January 2024, 2024).

Abut, S., Okut, H., Kallail, K.J., 2024. Paradigm shift from artificial neural networks 
(ANNs) to deep convolutional neural networks (DCNNs) in the field of medical 
image processing. Expert. Syst. Appl. 244, 122983. https://doi.org/10.1016/j. 
eswa.2023.122983, 2024/06/15/. 

Alsuwian, T., et al., 2024. A review of expert hybrid and co-estimation techniques for 
SOH and RUL estimation in battery management system with electric vehicle 
application. Expert. Syst. Appl. 246, 123123. https://doi.org/10.1016/j. 
eswa.2023.123123, 2024/07/15/. 

Chen, K., et al., 2024. State of health estimation for lithium-ion battery based on particle 
swarm optimization algorithm and extreme learning machine. Green Energy Intellig. 
Transport., 100151 https://doi.org/10.1016/j.geits.2024.100151, 2024/01/07/. 

Chen, S., Zhang, Y., Hou, X., Shang, Y., Yang, P., 2022. Wafer map failure pattern 
recognition based on deep convolutional neural network. Expert. Syst. Appl. 209, 
118254. https://doi.org/10.1016/j.eswa.2022.118254, 2022/12/15/. 

Dou, J., et al., 2022. Extreme learning machine model for state-of-charge estimation of 
lithium-ion battery using salp swarm algorithm. J. Energy Storage 52, 104996. 
https://doi.org/10.1016/j.est.2022.104996, 2022/08/25/. 

Duan, W., Song, S., Xiao, F., Chen, Y., Peng, S., Song, C., 2023. Battery SOH estimation 
and RUL prediction framework based on variable forgetting factor online sequential 
extreme learning machine and particle filter. J. Energy Storage 65, 107322. https:// 
doi.org/10.1016/j.est.2023.107322, 2023/08/15/. 

Gonzalez, J., Yu, W., Telesca, L., 2022. Gated recurrent units based recurrent neural 
network for forecasting the characteristics of the next earthquake. Cybern. Syst. 53 
(2), 209–222.

Gupta, R., Nalavade, J.E., 2023. Metaheuristic assisted hybrid classifier for bitcoin price 
prediction. Cybern. Syst. 54 (7), 1037–1061.

Haupt, R.L., Haupt, Sue Ellen, 2004. Practical genetic algorithms, 2nd edition. John 
Wiley & Sons, Inc., Publication, New Jersey. 

Hayati, R., Munawar, A.A., Lukitaningsih, E., Earlia, N., Karma, T., Idroes, R., 2024. 
Combination of PCA with LDA and SVM classifiers: a model for determining the 
geographical origin of coconut in the coastal plantation, Aceh Province, Indonesia. 
Case Stud. Chem. Environm. Eng. 9, 100552. https://doi.org/10.1016/j. 
cscee.2023.100552, 2024/06/01/. 

He, Z., Zhang, X., Fu, X., Pan, C., Jin, Y., 2024. Research on battery state of charge 
estimation based on variable window adaptive extended Kalman filter. Int. J. 
Electrochem. Sci. 19 (1), 100440. https://doi.org/10.1016/j.ijoes.2023.100440, 
2024/01/01/. 

Z. Mustaffa and M.H. Sulaiman                                                                                                                                                                                                             Cleaner Energy Systems 9 (2024) 100151 

8 

https://www.kaggle.com/code/ahmedhatem404/rul-analysis-machine-learnig/notebook
https://www.kaggle.com/code/ahmedhatem404/rul-analysis-machine-learnig/notebook
https://doi.org/10.1016/j.eswa.2023.122983
https://doi.org/10.1016/j.eswa.2023.122983
https://doi.org/10.1016/j.eswa.2023.123123
https://doi.org/10.1016/j.eswa.2023.123123
https://doi.org/10.1016/j.geits.2024.100151
https://doi.org/10.1016/j.eswa.2022.118254
https://doi.org/10.1016/j.est.2022.104996
https://doi.org/10.1016/j.est.2023.107322
https://doi.org/10.1016/j.est.2023.107322
http://refhub.elsevier.com/S2772-7831(24)00045-1/sbref0008
http://refhub.elsevier.com/S2772-7831(24)00045-1/sbref0008
http://refhub.elsevier.com/S2772-7831(24)00045-1/sbref0008
http://refhub.elsevier.com/S2772-7831(24)00045-1/sbref0009
http://refhub.elsevier.com/S2772-7831(24)00045-1/sbref0009
http://refhub.elsevier.com/S2772-7831(24)00045-1/sbref0010
http://refhub.elsevier.com/S2772-7831(24)00045-1/sbref0010
https://doi.org/10.1016/j.cscee.2023.100552
https://doi.org/10.1016/j.cscee.2023.100552
https://doi.org/10.1016/j.ijoes.2023.100440


Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 
- International conference on neural networks, 4, pp. 1942–1948. https://doi.org/ 
10.1109/ICNN.1995.488968, 27 Nov.1 Dec. 1995vol.4. 

Korkmaz, M., 2023. SoC estimation of lithium-ion batteries based on machine learning 
techniques: a filtered approach. J. Energy Storage 72, 108268. https://doi.org/ 
10.1016/j.est.2023.108268, 2023/11/15/. 

Li, F., Zuo, W., Zhou, K., Li, Q., Huang, Y., 2024. State of charge estimation of lithium-ion 
batteries based on PSO-TCN-Attention neural network. J. Energy Storage 84, 
110806. https://doi.org/10.1016/j.est.2024.110806, 2024/04/15/. 

Li, F., Zuo, W., Zhou, K., Li, Q., Huang, Y., Zhang, G., 2024. State-of-charge estimation of 
lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN 
model. Energy 289, 130025. https://doi.org/10.1016/j.energy.2023.130025, 2024/ 
02/15/. 

Li, J., et al., 2022. Multi-objective optimization of mini U-channel cold plate with SiO2 
nanofluid by RSM and NSGA-II. Energy 242, 123039. https://doi.org/10.1016/j. 
energy.2021.123039, 2022/03/01/. 

Li, R., Li, W., Zhang, H., 2022. State of health and charge estimation based on adaptive 
boosting integrated with particle swarm optimization/support vector machine 
(AdaBoost-PSO-SVM) model for lithium-ion batteries. Int. J. Electrochem. Sci. 17 
(2), 220212. https://doi.org/10.20964/2022.02.03, 2022/02/01/. 

Li, Y., et al., 2022. A hybrid machine learning framework for joint SOC and SOH 
estimation of lithium-ion batteries assisted with fiber sensor measurements. Appl. 
Energy 325, 119787. https://doi.org/10.1016/j.apenergy.2022.119787, 2022/11/ 
01/. 

Li, Y., Ye, M., Wang, Q., Lian, G., Xia, B., 2024. An improved model combining machine 
learning and kalman filtering architecture for state of charge estimation of lithium- 
ion batteries. Green Energy Intelligent Transport., 100163 https://doi.org/10.1016/ 
j.geits.2024.100163, 2024/01/10/. 

Liu, B., Wang, H., Tseng, M.L., Li, Z., 2022. State of charge estimation for lithium-ion 
batteries based on improved barnacle mating optimizer and support vector machine. 
J. Energy Storage 55, 105830. https://doi.org/10.1016/j.est.2022.105830, 2022/ 
11/30/. 

Mall, P.K., et al., 2023. A comprehensive review of deep neural networks for medical 
image processing: recent developments and future opportunities. Healthcare Analyt. 
4, 100216. https://doi.org/10.1016/j.health.2023.100216, 2023/12/01/. 

Marzouk, M., Elhakeem, A., Adel, K., 2024. Artificial neural networks applications in 
construction and building engineering (1991–2021): science mapping and 
visualization. Appl. Soft. Comput. 152, 111174. https://doi.org/10.1016/j. 
asoc.2023.111174, 2024/02/01/. 

Maya, M., Yu, W., Telesca, L., 2022. Multi-step forecasting of earthquake magnitude 
using meta-learning based neural networks. Cybern. Syst. 53 (6), 563–580.

Mehta, C., Sant, A.V., Sharma, P., 2024. Optimized ANN for LiFePO4 battery charge 
estimation using principal components based feature generation. Green Energy 
Intell. Transport., 100175 https://doi.org/10.1016/j.geits.2024.100175, 2024/01/ 
17/. 
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