
Received 13 April 2024, accepted 20 April 2024, date of publication 2 May 2024, date of current version 10 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3395927

An Ensemble Deep Learning Model for Vehicular
Engine Health Prediction
ISINKA JOSEPH CHUKWUDI1, NAFEES ZAMAN 2, MD ABDUR RAHIM 3,
MD ARAFATUR RAHMAN 1, (Senior Member, IEEE),
MOHAMMED J. F. ALENAZI 4, (Senior Member, IEEE),
AND PRASHANT PILLAI 1, (Senior Member, IEEE)
1School of Mathematics and Computer Science, University of Wolverhampton, WV1 1LY Wolverhampton, U.K.
2Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
3Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang 26600, Malaysia
4Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia

Corresponding author: Md Arafatur Rahman (arafatur.rahman@wlv.ac.uk)

This work was partially supported by the University of Wolverhampton, UK, UK-Saudi Challenge Fund 2023-24 and Researcher
Supporting Project number (RSPD2024R582), King Saud University, Riyadh, Saudi Arabia.

ABSTRACT Predictive maintenance has gained importance across various industries, including the
automotive sector. It is very challenging to detect vehicle failures in advance due to the intricate composition
of various components and sensors. The vehicle’s reliability is of utmost importance for ensuring the absence
of fatalities or malfunctions to foster economic development. This study introduces an innovative method
for developing a predictive framework for vehicle engines with faster and higher decision accuracy. The
framework is specifically designed to recognize patterns and abnormalities that may suggest prospective
engine problems in real-time and allow proactive maintenance. We assessed the performance of the
developed vehicular engine health monitoring systems using a deep learning model based on essential
measures like root mean square error, root mean square deviation, mean absolute error, accuracy, confusion
matrix, and area under the curve. In this case, the deep learning models are developed by following ensemble
techniques using the most prominently used machine learning techniques. Significantly, Stacked Model 1
outperformed other stacked models (Models 2 and 3) and achieved an impressive AUC value of 0.9702 with
a low root mean square error (RMSE) of 0.3355, a high accuracy rate of 0.9470, and a precision of 0.9486.
It happens due to the effective incorporation of different approaches into Stacked Model 1, which signifies
a significant advancement in predicting vehicular engine failures. The model can be used in real-time
monitoring systems to continuously monitor the health of vehicular engines and provide early warnings
of potential failures, thereby reducing maintenance costs and improving safety.

INDEX TERMS Vehicular engine health monitoring system, machine learning, deep learning, ensemble
stacking, vulnerability assessment, decision strategy, micro services.

I. INTRODUCTION
The use of artificial intelligence (AI) and other data-driven
methods to realize Industry 4.0 is increasingly being used
in the automotive industry around vehicle fault diagnosis
systems [1]. The reliability and performance of vehicle
engines are critical factors for a safe and effective trans-
portation system. Early detection and diagnosis of engine
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faults are essential to prevent vehicle breakdowns and
reduce maintenance costs. Traditional methods of monitoring
vehicle health involve scheduled inspections or reactive
maintenance after a failure has occurred, which can be
expensive and time-consuming. The emergence of AI and
the Internet of Things (IoT) has paved the way for the
real-time collection and analysis of substantial sensor data
from vehicles. This is called an AI-enabled vehicle health
monitoring system (VHMS) [2]. This capability presents
prospects for predictive maintenance and fault diagnosis,
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offering a proactive approach to identify potential problems
and ensure the efficient functioning of vehicles [3]. However,
analyzing such large datasets and detecting complex patterns
and relationships in the data require sophisticated machine
learning, deep learning techniques, and an end-to-end data
architecture framework. One of the main challenges in
vehicular health prediction is the need for high-quality and
diverse training data. Acquiring and categorizing extensive
data that precisely represents the diverse conditions of a
vehicle might pose a challenge due to its inherent difficulty
and time-intensive nature [2]. In this case, a novel VHMSwas
presented in [4]. Also, deep learning has demonstrated signif-
icant promise in scrutinizing time-series data and forecasting
future values. It is important to note that no singular deep
learning model can encompass all the intricacies inherent
in engine sensor data. Therefore, there is a need to explore
ensemble deep-learning models that can combine multiple
models to improve prediction accuracy and robustness [5].
However, for the complete vehicular system, developing
a complete VHMS using ensemble deep-learning models
is challenging due to its complexities and massive data
management, which should bemoved forward by considering
several subsections like the engine system, transmission
system, or vehicular chassis. Then, the fusion of individual
outcomes from different subsystems could be used to make
better and more robust VHMS decisions [4]. As part of
VHMS, Rahim et al. proposed an AI-based vehicular engine
health monitoring system (VEHMS) using deep learning
(MLP) techniques [2].
However, the decision accuracy of this proposed method

for predicting vehicular engine health was within 81%.
Additionally, the performance of the proposed models
was analyzed based on decision accuracy only instead of
an extensive discussion by considering root mean square
error, root mean square deviation, mean absolute error,
confusion matrix, and area under the curve with computation
time. These are significant factors in implementing the
VEHMS in real-time to meet Industry 4.0 requirements.
Thus, to overcome the addressed problems, we developed a
stacked ensemble combining Random Forest, support vector
machine,Gradient Boosting, Decision Tree and K-Nearest
Neighbors as the final estimator for vehicular engine health
prediction. We found that this model can effectively analyze
large amounts of engine sensor data and provide accurate
and reliable predictions of engine health, enabling proactive
maintenance and avoiding costly breakdowns in real-time.
Therefore, the contributions outlined in this paper include the
following:

• Developed a real-time model that can accurately predict
potential failures or issues with a vehicle’s engine
and classify them into Good, Minimal, Moderate, and
Critical.

• Introduced a data pre-processing technique and scaled it
by using sklearn, label encoder, and standard scaler to
get better outcomes.

• Analyzed and validated the performance of the proposed
models based on root mean square error, root mean
square deviation, mean absolute error, and area under
the curve with computation time.

Furthermore, achieving these goals can be notably
enhanced through the utilization of a Stacked Ensemble
Model. This model proves effective by leveraging the
strengths of various machine learning models to generate
predictions that are both more accurate and dependable.
The ensemble model integrates predictions from multiple
individual models, thereby mitigating errors and biases and
ultimately enhancing the overall precision of predictions.
The subsequent sections of this study are organized as
follows: Section II delves into past related works; Section III
elaborates on the methodology; Section IV presents the
results and findings; and Section V draws out the conclusion
and future research direction.

II. RELATED WORK
Vehicles have been gaining tremendous popularity due to
their excellent transport capacity, fast, efficient, flexible,
pleasant journey, minimal physical effort, and substantial
economic effect [4]. According to Industry 4.0, it is essential
to develop a system that monitors and informs the structural
condition of a vehicle intelligently so that maintenance
expenses can be minimized and longevity can be increased
significantly [6]. As a part of these, [7] presented a
data-driven predictive maintenance approach for a vehicle
powertrain using machine learning algorithms. The approach
involves collecting sensor data and using machine learning
algorithms to process and analyze the data to predict
when maintenance is needed. Similarly, [8] implemented a
real-time data processing framework for VHMS that involves
collecting sensor data, pre-processing the data, and using
machine learning algorithms to analyze and interpret the data.
The framework is designed to be scalable and can handle
large volumes of data in real-time. Also, [9] suggested a big
data analytics approach for VHMS that involves collecting
and processing data from various sources, such as sensors and
maintenance records. The approach involves using machine
learning algorithms as AI to analyze and interpret the data
to predict when maintenance is needed. Additionally, [10]
presented a data-driven framework for prognostics and health
management of power electronics in electric vehicles. The
framework involves collecting sensor data, pre-processing the
data, and using machine learning algorithms to analyze and
interpret the data to predict when maintenance is needed.

In the afore-discussed VHMS, various deep learning
techniques were employed in addition to machine learning
techniques. Reference [11] work presents a predictive
maintenance framework for VHMS that uses deep learning
algorithms to predict potential vehicle failures based on
sensor data. The framework was designed to improve
failure prediction accuracy and reduce maintenance costs.
More so, [11] proposed a predictive maintenance approach
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for electric vehicles that involves using machine learning
algorithms to predict potential failures based on sensor data.
The approach was designed to improve vehicle reliability
and reduce maintenance costs. Reference [12] suggested a
predictive maintenance approach for heavy-duty vehicles
that involves using machine learning algorithms to predict
potential failures based on sensor data. The approach is
designed to reduce maintenance costs and improve vehicle
uptime. However, [11] implemented a predictivemaintenance
approach for autonomous vehicles that uses machine learning
algorithms to predict potential failures based on sensor data.
The approach is designed to improve vehicle safety and
reduce maintenance costs.

Due to the complexities of vehicular data and com-
putational time constraints, several studies have recently
explored the effectiveness of stacking ensemble models
across diverse domains, encompassing finance, healthcare,
automotive, computer vision, and more. Nevertheless, the
performance of these models can hinge on several factors,
including the selection of base models, the quality of training
data, and the complexity of the specific problem at hand.
For example, [13] compared the performance of different
ensemble models, including stacking, bagging, and boosting,
for predicting stock prices. The results showed that the
stacking ensemble model outperformed the other methods
in terms of both accuracy and robustness. In another study,
[14] proposed a stacked autoencoder ensemble model for
predicting the risk of heart disease. The result showed that
the model achieved higher accuracy and AUC.

In the field of computer vision, [15]proposed a novel
approach for object detection using a deep learning-based
stacking ensemble model. The findings indicated that the
model proposed attained higher accuracy in comparison
to other cutting-edge models. In a review article by [16],
the authors highlighted the advantages of using stacking
ensemble models in healthcare applications. They argued that
this approach can improve the accuracy and reliability of
disease diagnosis, drug discovery, and personalizedmedicine.
Lastly, to predict vehicular engine health in real-time as a
part of VHMS, [2] proposed using the conventional stacked
ensemble technique, but the decision accuracy bounded
within 80.3 % compared with our approach which achieved
higher accuracy and AUC.

Also, recently employed conventional stacked ensemble
techniques are presented in Table 2, and Table 1 shows a
comparative analysis of the existing approaches with our
proposed scheme.

However, to meet the requirements of Industry 4.0, it is
necessary to enhance the performance of the vehicular engine
health monitoring systems (VEHMS) Decision strategy by
raising decision accuracy and computational time with
other performance criteria. In this case, a stacked ensemble
VEHMS combiningRandomForest, Support vectormachine,
Gradient Boosting, Decision Tree, and K-Nearest Neighbors
addressed the limitations of the previous study and showed
its novelty applicability in the real world.

III. METHODOLOGY
A. VEHMS DECISION STRATEGY
The individual components/points Severity Value of a
vehicular engine from [1] is

SVi(t) = Si(t)Wi {1 − λ}
k


m∑
j=1

Ij × IRIj

 (1)

where Si is data from sensors of individual components or
point, λ is the individual components or points degradation
performance for the kth 10,000 Km vehicle movement.Wi is
the weightage of these components or points, obtained as

Wi =
RSi∑
RSi

(2)

using relative significance RSi based on Value Focused
Thinking (VFT) from 0 to 10 [2], and

∑
RSi = 1. Ij

is the individual value of various intensifying factors that
may affect individual component points, obtained using the
Vulnerability Assessment Questionnaire Technique based on
an intuitive questionnaire and CSVS Qualitative Severity
Evaluation Scale [3], [4], with CSVS Qualitative Severity
Evaluation Scale [5] for rating and indexing as impact
severity on engine performances. Here, the rating and
indexing scale is 0.0 for No impact, 0 < Low impact ≥ 3.99
for, 3.99 < Medium impact ≥ 6.99, 6.99 < High impact
≥ 8.99, and 8.99 < Critical impact ≥ 10. Finally, the
intensity of relative importance (IRIj) of intensifying factors
of individual components is given by

IRIj =
RIj∑
RIj

. (3)

RIj is calculated based on VFT [2] from 0 to 10, and∑
Wi = 1. is the ratio between the relative importance of

an intensifying factor to the total relative importance of all
intensifying factors of individual VC/VP.

In addition,
∑m

j=1 Ij × X × IRIj is vulnerability affecting

value, andWi×
(∑m

j=1 Ij × IRIj
)
is theVC/VP’s vulnerability

value. However, equation (1) helps to define the health of an
individual VC/VP by following the stated condition with the
threshold as follows for the t time interval.

Critical, if SVi(t) ≥ THC
Moderate, if THC < SVi(t) ≥ THM
Minor, if THM < SVi(t) ≥ THMN
Good, if SVi(t) < THMN

(4)

The Threshold (TH ) as THC for Critical problem, THM
for Moderate problem, THMN for Minor problem and
THG for Good condition. Since the above-stated boundary
limits define the individual VC/VP health conditions in the
engine subsystem and for t time, the following matrix from
equation (1) provides the decision about whole engines by
aggregating column-wise of stated elements of Table 3, i.e.∑

VEHMSD(t) =

∑
SViC +

∑
SViM

+

∑
SViMN +

∑
SViG (5)
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TABLE 1. Comparative analysis of the existing approaches with the proposed scheme.

TABLE 2. Recently employed various conventional stacked ensemble techniques.

TABLE 3. Complete engine decision matrix.

where, engine condition is
Critical, if

∑
VEHMSD(t) ≥ THDC

Moderate, if THDC <
∑

VEHMSD(t) ≥ THDM

Minor, if THDM <
∑

VEHMSD(t) ≥ THDMN

Good, if
∑

VEHMSD(t) < THDMN

Here, the Threshold (TH ) as THDC for Critical, THDM
for Moderate, THDMN for Minor and THDG for Good
condition of engine. However, this Decision strategy can
decide whether the engine health as good condition or has a
minor, moderate, or critical problem by utilising the stated
thresholds. Another notable matter is that i denotes the

individual number of VC/VP, and j denotes the number of
intensifying factors for i-th VC/VP.

B. VEHMS DATA PROCESSING AND ANALYTIC MODEL
ARCHITECTURE
The architecture of the VEHMS data life-cycle for predicting
real-time vehicle engine health using a newly developed
stacked ensemble combining KNN, SVM, RF, Ada, and XGB
is presented in Fig.1. However, the proposed architecture is
presented as follows:

C. VHMS DATA FLOW
Overheating, piston, misfire, starter, and lubricant infor-
mation and baseline conditions need to be recorded from
vehicle engine sensors and communicated to IoT Hub via a
cellular-enabled device, which was discussed in detail in [2].
However, in this case, we introduced Stream Analytics which
could receive the message from IoT Hub in real-time, process
it according to the business logic, and transmit the data to
the serving layer for storage. Depending on the data, several
databases are used. Themessages are stored in Azure Cosmos
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FIGURE 1. Vehicle engine prediction architecture.

TABLE 4. Dataset head before LabelEncoder.

TABLE 5. Dataset tail before LabelEncoder.

DB, whereas SQL DB contains relational data and serves as
a data source for the display and action layers.

D. DATA EXTRACTION
Vehicle engine performance analysis and predictive main-
tenance necessitate access to accurate and relevant data
from engine systems [23]. Quickly extracting data from car
engine systems is critical for generating useful insights for
performance analysis and predictive maintenance [11]. There
are various methods and techniques for data extraction from
vehicle engine systems, such as onboard diagnostics (OBD)
ports, Controller Area Network (CAN) bus, and sensor-
based methods; however, this paper uses a sensor-based
method considering data quality, data availability, and data
security [24].
In implementing an Ensemble Deep Learning Model for

Vehicular Engine Health Prediction, the quality and quantity
of the extracted data play a pivotal role. The DataFrame
dimensions (3003, 7) indicate that the dataset comprises
3003 rows with 7 columns (features). However, several
potential limitations in the data collection process could

impact the model’s effectiveness. In this case, Sample Size
of 3003 of 7 instances, the dataset size may be relatively
small for training ensemble deep learning models effectively.
Adequate sample size is essential to prevent overfitting and
ensure model generalization to unseen data. Techniques like
data augmentation or transfer learning may help address this
limitation.

E. DATA TRANSFORMATION
The process of data transformation plays an important role
in both data analysis and machine learning processes. This
is because the quality and suitability of the data for analysis
significantly influence the accuracy and reliability of the
results obtained. [25]. Proper data transformation techniques
can improve data quality, reduce noise, deal with missing
data, and allow data to be successfully processed for decision-
making [26]. In this case, we used StandardScaler as a data
transformation and data pre-processing technique to scale
and normalized the dataset features to a standard scale to
ensure that each feature has a mean of 0 and a standard
deviation of 1. It is a popular pre-processing procedure
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TABLE 6. Dataset head after converting to dummy variables.

TABLE 7. Dataset tail after converting to dummy variables.

FIGURE 2. VHMS stakeholder management framework.

used before applying ML/DL algorithms to numerical data
analysis. Also, we Encoded the Targeted Variable (Decision)
with the LabelEncoder. This is appropriate for classification
tasks where the target variable is categorical as shown in
Table 4 and Table 5. It is a pre-processing technique that
assigns a unique numerical label to each distinct category in
a categorical feature, making it easier for ML/DL algorithms
to interpret such data [27]. furthermore after encoding
the target variable, the categorical variables in the feature
matrix are being converted into dummy variables using
pd .get_dummies(), see Table 6 and 7 This ensures that each

categorical variable is represented as a set of binary columns,
where each column indicates the presence or absence of a
particular category.

F. FEATURE ENGINEERING
This stage holds substantial significance within the machine
learning pipeline, as the excellence and pertinence of features
can markedly influence the effectiveness and interpretability
of ML/DL models. Properly built features can lead to more
accurate predictions, enhanced model interpretability, and
faster model training times. However, this study considered
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FIGURE 3. Plotting training set accuracies.

FIGURE 4. Decision strategy (A).

only 7 features in the DataFrame see Fig. 10 shows the
feature prediction’s scatter matrix for each input variable
for the feature prediction [28]. Given the constraint of a
small number of features, it’s crucial to carefully analyze the
existing features and potentially engineer new ones that might
provide additional predictive power.

G. DATA MODELLING AND PREDICTION
In stack ensemble techniques, data modeling and prediction
often entail integrating the predictions of numerous base

FIGURE 5. Decision strategy (B).

models (also known as weak models or base learners) to get
a more accurate and robust prediction [29]. The outputs of
the base models are utilized as input features for a higher-
level model, known as the meta-model, which subsequently
produces the ultimate prediction [30].

Assume we have Nbase models represented by h1, h2 . . . ,

hN and a meta-model represented by H . X represents the
input data used to train the basic models, and y represents
the associated output (i.e., target variable). The base models’
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FIGURE 6. Plotting test set accuracies.

predictions for a given input X denoted by y1, y2 . . . , yN
respectively. These predictions are then combined to generate
a new feature matrix, designated by Xmeta, which is fed into
the meta-model H . The final prediction is made by the meta-
model H , which is denoted by Ymeta.
The equations are presented below:
y1 = h1(X ), y2 = h2(X ), . . . , yN = hN (X )
Xmeta = [y1, y2, . . . , yN ]
Ymeta = H (Xmeta, y)

(6)

H. STAKEHOLDER
A vehicle health monitoring system could benefit from their
support and input if stakeholders are managed properly.
Stakeholders can be classified based on their function and
interest [31]. Also, effective stakeholder management is a
vital success factor in the automotive business. It entails iden-
tifying stakeholders, prioritising their problems, designing
a communication strategy, and measuring stakeholder sat-
isfaction. [32]. Regular stakeholder meetings, collaborative
decision-making, and effective communication channels can
assist in overcoming stakeholder management difficulties and
accelerate industrial innovation, which is presented in Fig 2.

I. PERFORMANCE EVALUATION
We evaluated individual ensemble approaches using a range
of performance metrics, including RMSE, RMSD, MAE,

Root square error, Accuracy, Confusion Matrix, and AUC
respectively, see Table11.

J. DEFINITION OF EVALUATION METRICS USED
Root Mean Square Error(RMSE): is a metric that quantifies
the averagemagnitude of the discrepancies between projected
and actual values. The algorithm computes the square root of
the mean of the squared discrepancies between the expected
and actual values. Smaller RMSE values suggest superior
model performance, as they correspond to less prediction
errors.
Root Mean Square variation(RMSD): is a metric that

quantifies the average variation between projected values and
actual values, similar to RMSE (Root Mean Square Error).
The statement describes how the measure calculates the
extent to which data points deviate from the regression line.
Smaller RMSD values suggest superior model performance,
as they reflect reduced variability in prediction accuracy.
MeanAbsolute Error (MAE): TheMeanAbsolute Error is a

metric that quantifies the average absolute deviation between
projected and actual data. It offers a more understandable
and precise measure of error in comparison to RMSE.
Smaller Mean Absolute Error (MAE) values imply superior
model performance, as they correspond to reduced average
prediction errors.
Accuracy: Accuracy is a metric that quantifies the ratio

of accurately predicted instances to the total number of
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FIGURE 7. Comparative accuracies of different machine learning.

FIGURE 8. The architecture of the proposed stacked ensemble technique.

instances. It is frequently employed in classification tasks
and offers a comprehensive evaluation of model performance.
Greater accuracy values indicate superior model performance
in accurately classifying engine health statuses.
confusion matrix: A confusion matrix is a comprehensive

representation of a model’s predictions compared to the

FIGURE 9. Classification report for ML: Confusion matrix.

actual results for several classes. The framework is comprised
of four quadrants, namely true positive, true negative, false
positive, and false negative. It aids in assessing the model’s
effectiveness in terms of its ability to accurately classify and
detect any instances of misclassification or biases.
Area Under the Curve (AUC): The AUC is a metric

that quantifies the performance of a classification model
across all possible categorization levels. The plot illustrates
the relationship between the true positive rate and the
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FIGURE 10. Scatter-matrix for each input variable.

false positive rate, yielding a single numerical value that
quantifies the model’s capacity to differentiate across classes.
AUC values that are higher suggest superior discrimination
and overall performance of the model.The logic for the
selection of these particular metrics was based on their
ability to provide a thorough evaluation of the model’s
effectiveness in predicting the health of vehicle engines.
These metrics offer extensive insights into many aspects of
model accuracy, precision, and resilience. RMSE, RMSD,
and MAE quantify the size of prediction errors, accuracy
gauges the overall performance of classification, confusion
matrix offers specific classification outcomes, and AUC
quantifies the discriminatory power of the model, [33], [34],

[35]. By considering a range of metrics, this study ensure a
thorough evaluation of the ensemble deep learning model’s
effectiveness in predicting engine health states accurately and
reliably.

1) EXPERIMENTAL SETUP
Figure 5 and 5 described the variables utilised in this
study and, further categorised them into Critical-0, Good-1,
Minor-2 and Moderate-3 which are encoded into dummy
variable see Table 6 and 7.We started by testing eachmachine
learning algorithm to understand their predictive capacity etc,
see Fig. 3, Fig. 6, Fig. 7 and Fig. 9. The result indicated
that SVM, K-NN, and Gradient Boosting demonstrate strong
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FIGURE 11. Stacked model 1 learning curve.

performance and generalization, while Decision Tree and
Gaussian Naive Bayes exhibited lower performances in
capturing the underlying patterns. To improve the overall
predictive performance, this further necessitates exploring
an ensemble stacked method. The integration of each ML
to form (stacked models 1, 2, and 3 respectively) an
ensemble method was randomly sampled and based on expert
experience. Stacked model 1: is a combination of Random
Forest, support vector machine, Gradient Boosting, Decision
Tree, and K-Nearest Neighbors algorithm. Stacked model 2:
is a combination of Logistic Regression, support vector
machine, Linear Discriminant Analysis, Gradient Boosting,
and AdaBoost algorithm. Stacked model 3: is a combination
of Logistic Regression, K-Nearest Neighbors, support vector
machine, Linear Discriminant Analysis, Gradient Boosting,
AdaBoost, Decision Tree, Random Forest, and Gaussian
Naive Bayes algorithm. However, the ensemble model uti-
lizes a weighted combination of predictions from individual
machine-learningmodels. By combining the predictions from
multiple models, the ensemble aims to improve overall pre-
dictive performance and robustness. The evaluation metrics
of the ensemble, such as accuracy, precision, recall, and
AUC, are similar to or better than those of individual models,
indicating the effectiveness of the ensemble approach. It is
worth mentioning that the integration of different machine
learning techniques into the ensemble model contributes to
improved predictive performance and reliability compared to
using a single model alone.

The Ensemble Stacking technique is promising and
utilized in this study to increase prediction accuracy for
the vehicular engine health monitoring Decision strategy.
It acquires the ability to integrate predictions from two
or more fundamental machine-learning algorithms through
a meta-learning approach, in this case, the three primary
classes of ensemble learning methods are stacking, bagging,
and boosting as Stacked Model 1, Stacked Model 2, and
Stacked Model 3, respectively. These three ensemble stacked
models were designed in addition to the base classifiers
such as logistic regression, AdaBoost, RF, and XGBoost for

FIGURE 12. Stacked model 1 confusion matrix.

prediction accuracy based on sample vehicle engine features
to identify good, minimal, moderate, and critical components,
see Fig 5.

The mathematical formula for ensemble stacking in
VHMS thus can be represented as follows:

Let’s say we have N base models denoted asM1,M2, . . . ,
Mn and one meta-model denoted as S. Let’s denote the
training dataset asDwhich consists of input features denoted
as X and corresponding target labels denoted as y.

2) TRAINING PHASE
For each base model M1(1 <= i <= N : Train the base
modelM1 using the training datasetD to generate predictions
and estimate the heteroscedastic uncertainties. Denote the
predictions as Pi = Mi(X ) and the estimated uncertainties
asUi = Ui(X ), where Uiis a vector of uncertainties for each
prediction. Combine the predictions and uncertainties from
all the base models into a new feature matrix denoted as
P = [P1,P2, . . .PN ] = and U = [U1,U2, . . .UN ],where
each column ofPrepresents the predictions from one base
model, and each column of U represents the estimated
uncertainties from one base model.Train the meta-model S
using the combined predictions P, the target labels y, and the
estimated uncertainties U to create a meta-model denoted as
S = S(P, y,U ).

3) PREDICTION PHASE
For making predictions on a new dataset D, Where each
base model Mi(1 <= i <= N ): is considered. Generate
predictions denoted as Pi = Mi(X ), where X represents the
input features of the new dataset D. Combine the predictions
from all the base models into a new feature matrix denoted as
P = [P1,P2, . . .PN ], where each column of P represents the
predictions from one base model. Use the trained meta-model
S to generate the final prediction denoted as y = S(P). The
design of the proposed ensemble technique is illustrated in
Fig. 8.
The selection of the meta-model and the hyper-parameters

of the base models and the meta-model are critical
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considerations in VHMS ensemble stacking. Furthermore,
precisely measuring the heteroscedastic uncertainty for each
base model’s predictions is critical in VHMS ensemble
stacking. However, based on the existing literature [2], in this
study, three layered models are developed for the prediction
of vehicle engine health monitoring systems. A stacking
ensemble architecture, named Stacked Model 1, is con-
structed by combining Random Forest, AdaBoost, and Gradi-
ent Boosting, and Stacked Model 2 is created by merging the
Logistic Regression Classifier, Random Forest Classifier, and
Gradient Boosting Classifier, while Stacked Model 3 is the
combination of Logistic Regression, KNeighborsClassifier,
SVC, Random Forest Classifier, AdaBoost Classifier and
Gradient Boosting Classifier. Moreover, Logistic Regression
is used as the final estimator. The base estimators comprise
Logistic Regression, K-Nearest Neighbors (KNN), Decision
Tree, Support Vector Machine (SVM), and Naive Bayes. The
evaluation includes various techniques such as Regression
Metrics (RMSE, RMSD, MAE, R2), Classification Metrics
(Accuracy, Confusion Matrix, Precision, Recall, AUC), and
Cross-validation is conducted using RepeatedStratifiedKFold
with 10 splits and 3 repeats to ensure reliable model
evaluation. Additionally, learning curves are generated to
visualize the model’s performance.

K. EXPERIMENT AND PERFORMANCE ANALYSIS
1) STACKED MODEL 1
The Stacked Model 1 obtained a mean accuracy of 92.93
%, with a low standard deviation of 1.46 %, suggesting a
consistent and stable predicting ability.

The model demonstrates a high level of accuracy,
see Fig. 11, as evidenced by its low regression met-
rics. The model’s performance metrics are as follows:
RMSE = 0.3355, MAE = 0.0728, R2

= 0.9021. The
metrics show that the model effectively reduces pre-
diction errors, leading to accurate decision predictions.
The confusion matrix shows the model’s accurate predic-
tions for all four classes, with minimal misclassifications
in Fig. 12.

The performance of VEHMS is important since it requires
accurate identification of various engine health states to
make informed decisions. The model also obtained a
precision score of 94.86 % and a recall exceeding 94.70 %
in Fig. 11.

These measures prioritize the model’s precision in accu-
rately detecting positive occurrences, which is essential for
reliable decision-making in vehicular situations. Thismodel’s
ability to distinguish between different classes is measured
by the Area Under the Curve (AUC) score, which achieves
a value of 97.02 %. The Model has a higher capacity
to accurately differentiate between classes in VEHMS,
which is important for identifying small variations in engine
health states. However, despite such achievement of Stacked
model 1, Table 8 further suggests its limitations, and area of
improvement.

TABLE 8. Evaluation of stacked model 1.

FIGURE 13. Stacked model 2 learning curve.

2) STACKED MODEL 2
As depicted in Fig. 13, the accuracy of Stacked Model 2
in recognizing occurrences across different engine health
statuses is 94.70 %, making it important for precise decisions
in VEHMS.

The model’s efficacy in reducing prediction errors is
evident from the low values of significant metrics–Mean
Absolute Error 0.0795, Root Mean Squared Deviation
0.1325, and Root Mean Squared Error 0.3639, respectively.
These metrics illustrate the model’s capacity to reduce
disparities between feature and target values, hence ensur-
ing accurate decision predictions. The model’s robustness
is shown in its high R-squared value of 0.8849 which
indicates its ability to explain a significant proportion of
the variation in engine health data patterns. This is crucial
for facilitating decision-making in the VEHMS system.
The confusion matrix, in contrast, offers comprehensive
data regarding the classification accuracy of the model, see
Fig. 14.However, Table 9, underscores the examination of
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TABLE 9. Evaluation of stacked model 2.

FIGURE 14. Stacked model 2 confusion matrix.

the model highlighting it strength, Weaknesses and area
of improvement. Despite this indications, the model had a
precision of 94.93 % and a recall of 94.70 % in successfully
predicting class labels. Accurate detection of positive cases
in vehicular scenarios requires an unbiased examination of
the actual positive rates. However, the Area Under the Curve
(AUC) score of 0.9665 emphasized the model’s capacity to
accurately identify subtle engine health issues in VEHMS,
which is important for accurate identification.

3) STACKED MODEL 3
The Stacked Model 3 in this experiment achieved a class label
prediction accuracy of 93.01 % as shown in Fig. 15.

The outcome additionally demonstrates a decrease in
predicted mistakes through the utilization of low-key indi-
cators such as RMSE (0.3355), RMSD (0.1126), and MAE
(0.0728), which indicates a high level of precision. The
accuracy of VEHMS decisions relies on the model’s ability to
minimize differences between projected and actual outcomes.
The model’s strong R-squared score of 0.9021 demonstrates
its effectiveness in explaining a significant amount of
variance and its ability to accurately capture and show data
patterns. This is particularly essential for making informed
decisions regarding engine health monitoring.

FIGURE 15. Stacked model 3 learning curve.

FIGURE 16. Stacked model 3 confusion matrix.

The confusion matrix Fig. 16 provides a comprehensive
evaluation of the model’s classification performance across
several classes. The recall and precision rates are 94.86 %
and 94.70 % respectively. The result further demonstrates
the model’s proficiency in precisely recognizing positive
instances—a crucial aspect in intricate traffic scenarios. The
AUC value of 0.9610 provides suggestive evidence of the
model’s ability to accurately categorize data. A high Area
Under the Curve (AUC) of 0.9653, indicates that the model
is capable of effectively differentiating labels across different
classes and identifying even minor vehicle health problems.

The findings underscore the model’s proficiency in pre-
cisely recognizing positive instances—a crucial aspect in
intricate traffic scenarios.

IV. DISCUSSION
The comprehensive evaluation of three Stacked Ensemble
Models, namely Stacked Model 1, Stacked Model 2 and
Stacked Model 3 within the context of Vehicle Engine Health
Monitoring Systems (VEHMS) provided valuable insights
into their effectiveness for decision accuracy prediction as
showed in Table 11.
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TABLE 10. Evaluation of stacked model 3.

TABLE 11. Comparison of stacked models result.

Stacked Model 1 demonstrates a consistent mean accuracy
of 92.98%, with a low standard deviation of 1.47%, indicating
stable predicting ability. Its low regression metrics RMSE,
MAE, and R2 underscore its efficiency in reducing prediction
errors, ensuring highly accurate decision predictions. The
confusion matrix Fig. 12 reveals high accuracy in predicting
all four classes, emphasizing its suitability for VEHMS.
Remarkable precision of 94.86% and recall of 94.70%
further highlight its capacity for accurate identification of
positive occurrences. The AUC score of 97.02% indicates
exceptional discriminative ability, crucial for nuanced engine
health monitoring. Stacked Model 1 emerges as a precise
prediction instrument, especially for applications prioritizing
precision. In contrast, StackedModel 2 showcases noteworthy
performance metrics, including an accuracy of 94.70%,
demonstrating its ability to identify occurrences across
multiple classes. Its low values of MAE, RMSD, and
RMSE signify precise decision prediction, essential for
reliable vehicular health monitoring. The R-squared value
of 0.8849 emphasizes its robustness in explaining large
variations. The confusion matrix affirms its accuracy in pre-
dicting class labels with a precision of 94.93% and recall of
94.70%. The exceptional AUC score of 0.9665 highlights its
superior discriminative ability, making it a preferred choice
for applications prioritizing discrimination. Stacked Model
2 proves to be a dependable forecasting tool for enhancing
decision prediction accuracy in VEHMS. However, Stacked
Model 3 contributes significantly to decision prediction

accuracy in VEHMS with a commendable accuracy of
94.70%. Its precision in minimizing prediction errors is
evident through low values of RMSE, RMSD, and MAE.
The R-squared score of 0.9021 reinforces its effectiveness
in capturing data patterns crucial for decision correctness.
High recall 94.70% and precision 94.86% values in the
confusion matrix 16 highlight its reliable recognition of
positive events. The AUC score of 0.9653 further supports
its ability to handle classification tasks, emphasizing its
capacity to capture subtle vehicle health issues. Stacked
Model 3 is validated as a precise prediction tool, enhancing
decision-making precision and dependability in VEHMS.
Finally, the decision to adopt a particular Stacked Ensemble
Model into VEHMS should align with specific application
goals. For precision-centric applications, Stacked Model 1
outperformed the rest of the model in terms of decision
accuracy prediction. Stacked Model 2, with its superior
discriminative ability, is the preferred choice for applications
prioritizing discrimination. Stacked Model 3, with consistent
performance and high accuracy, serves as a reliable option for
general-purpose applications. The integration of the selected
model into VEHMS ensures robust decision accuracy predic-
tion, contributing to more effective and reliable engine health
monitoring and risk management systems.

In summary, each stacked model demonstrates high accu-
racy, precision, and robustness in predicting engine health
states. The comprehensive evaluation through performance
metrics, confusion matrices, and AUC scores enhances
transparency and credibility by offering a comprehensive
insight into the prediction process of the models and
their dependability in real-world automotive situations.
Additionally, acknowledging the models’ limitations and
areas for improvement further strengthens transparency
and trustworthiness by promoting critical examination and
continuous refinement of the predictive models.

A. COMPARISON OF STACKED MODEL 1 WITH
EXISTING APPROACH
Again, result from the experiment appears that the Stacked
Model 1 outperformed the current methods found in [2] for
predicting the health of vehicle engines in multiple important
aspects as shown below.
High Accuracy and Stability:The StackedModel 1 demon-

strates exceptional precision and consistency, with a mean
accuracy of 92.93%, surpassing the conventional approach’s
accuracy of 80.3%. Furthermore, the fact that it has a low
standard deviation of 1.46% demonstrates a reliable predic-
tive capability, which is essential for real-time monitoring
when consistent performance is required.
Minimized Forecasting Inaccuracies: The regression met-

rics, with RMSE= 0.3355,MAE= 0.0728, and R2
= 0.9021,

indicate that the model successfully minimizes prediction
errors. This demonstrates a significant degree of accuracy in
its forecasts, which is crucial for making precise decisions.
Precise Detection of Engine Health Conditions: The

confusion matrix and precision-recall scores indicate that

63446 VOLUME 12, 2024



I. J. Chukwudi et al.: Ensemble Deep Learning Model for Vehicular Engine Health Prediction

the Stacked Model 1 achieves high prediction accuracy for
all engine health states, with minimum misclassifications.
Precise accuracy is essential for promptly detecting different
engine health conditions, guaranteeing dependable decision-
making.Themodel demonstrates a high discriminative capac-
ity, as evidenced by its AUC score of 97.02%. This suggests
its exceptional ability to reliably distinguish between various
classes of engine health conditions. The ability to distinguish
between different engine health states is crucial for promptly
maintaining and preventing potential failures, particularly
when it comes to recognizing minor deviations.
The unique advantages of the ensemble approach are: The

improved performance of StackedModel 1 is presumably due
to its ensemble character. Through the integration of various
models, it is possible to capture a wide range of patterns
and interconnections within the data, resulting in improved
forecast accuracy and the ability to apply knowledge to
new situations. Ensemble methods are recognized for their
capacity to address overfitting and decrease variation, which
may account for the model’s stability and consistent perfor-
mance.The Stacked Model 1 provides a substantial enhance-
ment compared to current methods for predicting the health of
vehicle engines. This is mainly because of its high accuracy,
stability, exact identification of engine health conditions,
and strong ability to differentiate between different states of
engine health. The advantages mentioned above demonstrate
the efficacy of ensemble deep learning methods in improving
predicted accuracy for intricate systems such as automotive
engines.

B. IMPLEMENTATION CHALLENGES
Data Quality Assurance: One of the primary challenges
encountered during the implementation of the experiment
was ensuring the quality and reliability of the input data.
Vehicular engine health data are subject to various sources
of noise, outliers, and inconsistencies, which can affect the
performance of predictive models. Ensuring the accuracy,
completeness, and consistency of the dataset required exten-
sive data preprocessing and cleaning efforts. Additionally,
integrating heterogeneous data sources and formats posed
challenges in standardizing and harmonizing the data for
analysis.
Model Complexity: Implementing and evaluating three

Stacked Ensemble Models within the context of Vehicle
Engine Health Monitoring Systems (VEHMS) involved
dealing with complex and high-dimensional data. The
complexity of the models, including the integration of mul-
tiple machine learning algorithms and ensemble techniques,
added computational overhead and resource requirements.
Balancing model complexity with interpretability was crucial
to ensure practical utility and deployment in real-world
settings.
Computational Resources: The computational resources

required for training, evaluating, and deploying the Stacked
Ensemble Models posed significant challenges. Deep learn-
ing models and ensemble techniques often require substantial

computational resources, including high-performance com-
puting (HPC) infrastructure and specialized hardware accel-
erators. Limited access to such resources may hinder the
scalability and accessibility of the predictive framework.
Stacked model 3 in particular highlighted a warning message
which suggests that the lbfgs solver used in logistic regression
failed to converge, reaching the maximum number of itera-
tions, see Table 10. This warning is particularly relevant to
computational resources. Increasing the number of iterations,
as suggested, would demand more computational power and
time during the training phase.

1) ADDRESSING IMPLEMENTATION CHALLENGES
Data Quality Assurance: Implementing robust data quality
assurance procedures, including data validation, cleansing,
and preprocessing, was essential to ensure the reliability
and integrity of the input data. Leveraging automated data
validation tools, domain knowledge, and expert insights
helped identify and address data quality issues effectively.
Additionally, conducting sensitivity analyses and sensitivity
tests helped assess the robustness of the predictive models to
variations in data quality and input parameters.
Model Complexity Management: Managing model com-

plexity and interpretability was critical to ensure practical
utility and deployment of the predictive framework in
real-world settings. Employing model regularization tech-
niques, feature selection methods, and model simplification
strategies helped mitigate overfitting and improve model
interpretability. Moreover, conducting model sensitivity anal-
yses and sensitivity tests helped assess the impact of model
complexity on predictive performance and generalization.
Optimizing Computational Resources: Optimizing the

utilization of computational resources, including parallel
computing, distributed computing, and cloud computing,
helped mitigate the computational challenges associated
with training and evaluating the Stacked Ensemble Models
3. Leveraging scalable and efficient algorithms, model
parallelism, and hardware accelerators (e.g., GPUs) helped
accelerate model training and inference tasks, improving
scalability and efficiency. Researchers and practitioners
should consider optimizing the computational resources
allocated for model training to ensure convergence and
improve overall efficiency. Additionally, scaling the data as
recommended in the warning message can also affect compu-
tational requirements, as preprocessing steps may introduce
additional computational overhead. Therefore, the avail-
ability and optimization of computational resources play a
crucial role in effectively implementing and training machine
learning models like Stacked Model 3. By addressing these
implementation challenges and limitations related to data
quality, model complexity, and computational resources,
researchers and practitioners can develop more robust,
scalable, and effective predictive frameworks for vehicular
engine healthmonitoring, contributing to improved reliability
and safety in automotive systems.
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C. REAL WORLD APPLICATION AND SCALABILITY
The developed model holds promise for various real-world
applications and scalability. In automotive manufacturing
plants, the model can be integrated into quality control
processes to identify faulty engines before installation.
In fleet management systems, it can enable predictive main-
tenance scheduling, optimizing vehicle uptime and reducing
maintenance downtime. Moreover, the model can adapt
to different types of vehicles or engine configurations by
retraining on data specific to those vehicles or configurations.
Its scalability allows for deployment across diverse vehicle
fleets, ranging from passenger cars to heavy-duty trucks,
enhancing safety and reliability across the transportation
sector. Although this paradigm shows promise, its adoption in
the automobile sector has significant practical obstacles that
must be solved to ensure feasibility and efficacy.

1) DATA ACQUISITION
Data Quality, Availability and Security The utilization
of sensor-based methodology guarantees the accuracy and
accessibility of data. However, it is crucial to ensure broad
coverage of pertinent sensor data from various vehicle
kinds and configurations. Standardization efforts may be
necessary to provide compatibility and integration with
different data sources, such as onboard diagnostics (OBD)
ports and Controller Area Network (CAN) bus. Data security
is of utmost importance in safeguarding critical vehicle data
from unauthorized access or cyber attacks. To ensure data
privacy and security, it is imperative to have strong data
encryption, access restrictions, and compliance with industry
requirements such as GDPR, CCPA and to establish explicit
standards and guidelines to oversee the collection, storage,
and utilization of vehicle data, with a strong focus on ensuring
transparency and obtaining user consent.

2) BIG DATA PROCESSING MECHANISMS
Scalability The ability to process huge quantities of sensor
data from various vehicle fleets necessitates the use of
scalable big data processing mechanisms. Utilizing dis-
tributed computing frameworks such as Apache Spark or
harnessing cloud-based technologies can effectively manage
data processing needs. Real-time Processing: The immediate
examination of continuously flowing sensor data allows
for prompt detection of engine health problems. Utilizing
stream processing frameworks, such as Apache Kafka,
and implementing real-time analytics models can expedite
decision-making in automobile manufacturing and fleet
management.

3) MODEL DEPLOYMENT
Operationalization: The process of deploying predictive
maintenance models into production environments neces-
sitates the smooth integration with pre-existing systems
and procedures. By implementing resilient model deploy-
ment pipelines, version control systems using GitHub, and

automated testing frameworks, the seamless deployment
and maintenance of the predictive maintenance solution are
ensured. Edge computing is another aspect, it involves imple-
menting models at the edge, such as onboard car systems,
in situations where there is limited network connectivity or a
need for low latency. This approach improves responsiveness
and minimizes dependence on centralized data processing
infrastructure.

4) INTEGRATION WITH EXISTING MAINTENANCE
PROCESSES
Organizational Alignment: Integrating predictive mainte-
nance solutions with existing maintenance processes requires
organizational buy-in and alignment across departments.
Collaborating with maintenance teams, providing training on
new technologies, and demonstrating the value proposition of
predictive maintenance enhance acceptance and adoption.

5) ORGANIZATIONAL BUY-IN
Stakeholder Engagement: Organizational buy-in refers to
the level of support and commitment that an organization
demonstrates towards a certain idea, initiative, or decision.
Engaging stakeholders is crucial for the success of the
predictive maintenance effort. This involves obtaining sup-
port and agreement from important stakeholders, such as
management, operations, and IT departments. Conveying
the advantages, return on investment (ROI), and how the
solution aligns strategically with company goals encourages
support and dedication. Promoting a culture that values
data-driven decision-making and innovation is essential for
fostering the adoption and ongoing enhancement of practices.
Facilitating cultural transformation can be achieved by
implementing programs that offer incentives, recognition,
and training opportunities to increase data literacy and
encourage experimenting with new technologies.

To tackle these difficulties, a multidisciplinary strategy
is necessary, which involves the participation of data sci-
entists, engineers, domain specialists, and stakeholders. The
suggested predictive maintenance system has the potential to
improve safety, reliability, and efficiency in the automobile
sector by utilizing sensor-basedmethodologies, ensuring data
quality, availability, and security, and addressing the practical
obstacles of implementation.

6) ETHICAL AND SOCIETAL IMPLICATIONS
Impact on Employment: Predictive maintenance technologies
have the potential to enhance vehicle performance and
minimize the occurrence of unforeseen failures. However,
they may also cause significant changes to the conventional
employment arrangements within the automotive repair and
maintenance industry. With the increasing capabilities of
automobiles to perform self-diagnosis and preventative main-
tenance, there may be a reduced need for human mechanics
and technicians. This change has the potential to result in job
displacement for workers in these sectors, emphasizing the
necessity for retraining initiatives and assistance for those
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impacted to successfully move into different positions or
industries.
Environmental Sustainability: Predictive maintenance can

enhance the longevity of vehicles and decrease emissions
by preventing unnecessary repairs and replacements. How-
ever, it also prompts concerns regarding the environmental
consequences associated with the production and disposal
of advanced automotive components. With the increasing
complexity of cars due to improved sensors and electrical
systems, it is necessary to evaluate the environmental
impact of manufacturing and disposing of these components.
Furthermore, it is important to take into account the energy
usage linked to data processing and analysis for predictive
maintenance within the broader framework of environmental
sustainability initiatives.
Biases in Data and Models: Predictive maintenance mod-

els are trained using historical data, which may contain biases
that were present during the data gathering process or biases
that are ingrained in the underlying systems due to societal
factors. For instance, if the training data predominantly com-
prises automobiles from specific demographics or geographic
regions, the prediction models may not effectively apply to
different populations. Additionally, if diagnostic algorithms
are not thoroughly verified across varied datasets, biases in
these algorithms could have a disproportionate impact on spe-
cific demographic groups. To tackle these biases, it is crucial
to meticulously focus on the quality, diversity, and fairness of
data at every stage of developing and implementing predictive
maintenance technology. Ultimately, predictive maintenance
technologies provide substantial advantages in terms of
enhancing vehicle performance and minimizing maintenance
expenses. However, they also give rise to crucial ethical and
societal concerns. To ensure ethical and equitable deployment
of these technologies, it is crucial to address employment,
privacy, environmental sustainability, and biases in data and
models.

V. CONCLUSION
In conclusion, a vehicle engine prediction architecture is pre-
sented in the paper. This study utilized a computer-generated
dataset to execute an improved machine and deep learning
model that alerts the user promptly and with the utmost
priority of fault in a vehicular engine in real time. The
effectiveness of machine learning algorithms and ensemble
approaches was evaluated using measures including RMSE,
RMSD, MAE, R2, Accuracy, Confusion Matrix, and AUC.
Stacked Model 1 outperformed the individual algorithms
and the other stacked models 2 and 3. The AUC of
0.9702 was impressive. The ensemble model combined
Random Forest, support vector machine,Gradient Boosting,
Decision Tree and K-Nearest Neighbors for prediction. A low
root mean square error (RMSE) of 0.3355, a high accuracy
rate of 0.9470, and a precision of 0.9486 shows that the
model performs well in decision prediction. The confusion
matrix proves engine health issue categorization works. The
drawback of this study is that the results may differ if

conducted in the real world. The study’s findings, however,
could serve as a guide for the automotive industry and a
standard procedure for enhancing prediction accuracy.

Future research should focus on increasing the efficiency
of the novel technique by exploring alternative ensemble
methods. Techniques such as gradient boosting, random
forests, and ensemble stacking offer opportunities to enhance
prediction accuracy, scalability, and computational effi-
ciency. Comparative studies evaluating the performance of
different ensemblemethods can provide valuable insights into
their effectiveness for vehicular engine health monitoring.
Another avenue for future research is to test the prediction
accuracy of the predictive framework using real-world
vehicle datasets from heterogeneous sources. Incorporating
diverse datasets representing a wide range of vehicle types,
engine configurations, and operating conditions can help
evaluate the robustness and generalization capabilities of the
model. Additionally, investigating the impact of additional
sensor data, such as temperature, pressure, or vibration,
on prediction accuracy can further enhance the model’s
effectiveness in real-world scenarios. Optimizing model
hyperparameters, including ensemble composition and tun-
ing parameters, to improve prediction performance and
generalization should be other area for future research
Furthermore, exploring the integration of domain knowledge
or expert systems into the predictive framework can enhance
interpretability and reliability. Incorporating domain-specific
insights and constraints can help tailor the model to specific
application scenarios, improving its practical utility and
adoption in real-world settings. By addressing these future
research directions, researchers can advance the field of
predictive maintenance for vehicular engines, addressing
emerging challenges in automotive reliability and safety,
and ultimately improving the performance and longevity of
automotive systems.
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