
 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS

 JUDUL:

SESI PENGAJIAN:________________

Saya __
(HURUF BESAR)

mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan ()

(Mengandungi maklumat yang berdarjah keselamatan
SULIT atau kepentingan Malaysia seperti yang termaktub

di dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

 Disahkan oleh:

___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

LOT 3353 KAMPUNG FIKRI PERPINDAHAN HASZURAIDAH BINTI ISHAK
JALAN MAK LAGAM 24000 KEMAMAN (Nama Penyelia)
TERENGGANU

Tarikh: 17 NOVEMBER 2008 Tarikh: : 17 NOVEMBER 2008

CATATAN: * Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2008/2009

 WAN ROBAH BINTI W AHMAD (860602-11-5164)

A DC MOTOR CONTROLLER USING PID ALGORITHM
IMPLEMENTATON ON PIC

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : HASZURAIDAH BINTI ISHAK

 Date : 17 NOVEMBER 2008

A DC MOTOR CONTROLLER USING PID ALGORITHM

IMPLEMENTATION ON PIC

WAN ROBAAH BINTI W AHMAD

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER 2008

ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : WAN ROBAAH BINTI W AHMAD

Date : 17 NOVEMBER 2008

iii

Dedicated to my beloved parent, brothers, sisters,

niece and to all Malaysians.

iv

ACKNOWLEDGEMENT

In the name of Allah, invocation and greetings to adoration of Nabi Muhammad

(S.A.W.), thanks to God because giving me strength and patience in finishing this

Project Bachelor. In particular, I wish to express my sincere appreciation to my

supervisor, Madam Haszuraidah binti Ishak, for encouragement, guidance, critics and

friendship. My fellow friends under the same supervisor should also be recognized for

their support and ideas. In addition, my sincere appreciation also extends to all my

colleagues and others who have provided assistance at various occasions. Their views

and tips are useful indeed. Unfortunately, it is not possible to list all of them in this

limited space. I sincerely appreciated all of the efforts and precious time to be spent

together in making this final year project educational, enjoyable and memorable. And

last but not least, I am grateful to all my family members for their moral and financial

support. Thank you.

v

ABSTRACT

 This project is about controlling the speed of DC servo motor by using

Proportional-Integral-Derivative (PID) algorithm then implemented on Peripheral

Interface Circuit (PIC) microcontroller. The main objective of this project is to control

the speed of DC servo motor at the demanded speed or to drive the motor at that speed.

The speed of a DC motor usually is directly proportional to the supply voltage. So, if we

reduce the supply voltage from 12 Volts to 6 Volts, the motor will run at half the speed.

It could be achieved by simply adjusting the voltage sent to the motor, but this is quite

inefficient to do. So, A PID controller becomes the best way to overcome this problem.

PID attempts to correct the error between a measured process variable and a desired

setpoint by calculating and then outputting a corrective action that can adjust the process

accordingly. In this project, the PID algorithm that is added to the system becomes a

closed loop system. A simulation using MATLAB software is implemented to tune PID

algorithm by changing the value of Proportional gain, Kp, Integral gain, Ki and

Derivative gain, Kd to get a speed of the motor which is less overshoot and increase

settling time. Then, a PIC microcontroller is programmed by adding the value of tuned

PID algorithm to control the speed of DC servo motor. At the end of the project, the

speed of the DC servo motor should be maintain even the supply voltage is varied.

vi

ABSTRAK

Projek ini adalah mengenai mengawal kelajuan motor DC servo dengan

menggunakan algorithm “Proportional-Integral-Derivative (PID)” yang kemudiannnya

diimplementasikan pada “PIC microcontroller”. Objektif utama projek ini ialah

mengawal kelajuan motor DC servo pada kelajuan yang dikehendaki atau memandu

motor tersebut pada kelajuan yang dikehendaki. Kelajuan motor DC biasanya berkadar

langsung dengan bekalan kadar voltan. Oleh itu, jika kita mengurarngkan bekalan kadar

voltan daripada 12 voltan kepada 6 voltan, motor juga akan bergerak pada separuh

daripada kelajuan tersebut. Kelajuan motor boleh dicapai dengan mengubah kadar voltan

yang dihantar kepada motor tetapi ia tidak cekap untuk dilakukan. Oleh itu, pengawal

PID merupakan jalan terbaik untuk mengatasi masalah ini. PID berusaha untuk

memperbetul kesilapan diantara perubahan proses yang telah diukur dan titik rujukan

yang dikehendaki dengan mengira dan dan kemudian mengeluarkan satu tindakan

pembetulan yang boleh mengubah proses dengan sewajarnya. Dalam projek ini,

algorithm PID yang ditambah pada sistem menjadi kitaran tertutup. Satu simulasi

mnggunakan MATLAB perisian yang diimplementasikan untuk menala algorithm PID

dengan mengubah nilai pemalar “Proportional”,Kp, pemalar “Integral”,Ki dan pemalar

“Derivative”,Kd untuk mendapat kelajuan motor yang mengurangkan “overshoot” dan

meningkatkan “settling time”. Kemudian, “PIC microcontroller” diprogramkan dengan

menambah nilai algorithm PID yang telah ditala untuk mengawal kelajuan motor. Pada

akhir projek ini, kelajuan motor DC servo sepatutnya tetap walaupun bekalan voltan

bertambah.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENT vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF APPENDICES xiii

1 INTRODUCTION

1.1 Background 1

1.2 Problem Statement 2

1.3 Project Objective 3

1.4 Scope of Project 3

viii

2 LITERATURE REVIEW

2.1 Servo Motor 4

2.2 Microcontroller (PIC 16F84) 5

2.2.1 Pin description 7

2.2.2 Central Processing Unit 9

2.2.3 Status Register 9

2.2.4 Addressing Mode 10

2.2.5 Applications 12

2.3 Proportional-Integral-Derivative (PID)

 Controller 13

2.4 Ziegler-Nichols Method 14

3 METHODOLOGY

3.1 Modeling Servo Motor 18

3.2 Ziegler Tuning Method 20

3.3 Hardware Development 21

3.3.1 DC Servo motor 21

3.3.2 PIC 16F84 23

3.3.3 Power Supply 24

3.4 Software Development 24

3.4.1 PID Method 25

3.4.2 Program the PIC Microcontroller 30

3.5 Circuit Diagram 34

3.6 Final Prototype 35

ix

4 RESULT AND ANALYSIS

4.1 No Controller 38

4.2 Proportional Controller 40

4.3 Proportional-Integral Controller 43

4.4 Proportional-Derivative Controller 46

4.5 Proportional-Integral-Derivative Controller 49

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion 55

5.2 Recommendation 56

5.3 Commercialization 56

5.4 List and Cost of the Component 57

REFERENCES 58

APPENDIX A 60

APPENDIX B 63

APPENDIX C 65

APPENDIX D 75

APPENDIX E 77

APPENDIX F 87

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Pins on PIC16F84 microcontroller 8

2.2 Estimation value for gain, reset and derivative 15

3.1 Ziegler Tuning Table 20

3.2 Range value of controller 21

3.3 Parameters of motor 22

4.1 No controller 38

4.2 Comparison of Proportional controller 42

4.3 Comparison of Proportional-integral controller 45

4.4 Comparison of Proportional-derivative controller 48

4.5 Comparison of PID controller 53

5.1 List and cost of components 57

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 PIC 16F84 outline 7

2.2 Pin number of PIC 16F84 8

2.3 Status Register 9

2.4 Direct addressing 10

2.5 Indirect addressing 11

2.6 A block diagram of a PID controller 14

2.7 Oscillations with constant amplitude 15

3.1 Project procedure 16

3.2 Clifton Precision JDH 2250-HF-2C-E 22

3.3 PIC 16F84 microcontroller circuit 23

3.4 Power Supply circuit 24

3.5 System before using PID controller 25

3.6 System with PID controller 25

3.7 Designed using m-file 27

3.8 Typing program 27

3.9 Changing the value 28

3.10 Closed loop system 28

3.11 Save and run 29

3.12 Programming of the system 30

3.13 Select for PIC16F84A 31

xii

3.14 Setup for PLL 31

3.15 Programming selected 32

3.16 Verifying the program 33

3.17 Circuit diagram for the whole system 34

3.18 Main Circuit 35

3.19 Motor and encoder 35

3.20 The whole system 36

4.1 No controller 38

4.2 Proportional controller Kp=70 40

4.3 Proportional controller Kp=228 40

4.4 Proportional controller Kp=386 41

4.5 Proportional controller Kp=594 41

4.6 Proportional controller Kp=700 42

4.7 Proportional-integral controller Kp=70 Ki= 0.518 43

4.8 Proportional-integral controller Kp=700 Ki= 0.518 44

4.9 Proportional-integral controller Kp=70 Ki= 51.8 44

4.10 Proportional-integral controller Kp=700 Ki= 51.8 45

4.11 Proportional-derivative controller Kp=140 Kd= 2.59 46

4.12 Proportional-derivative controller Kp=700 Kd= 2.59 47

4.13 Proportional-derivative controller Kp=140 Kd= 51.8 47

4.14 Proportional-derivative controller Kp=700 Kd= 51.8 48

4.15 PID controller Kp=140 Ki=5.18 Kd=2.59 49

4.16 PID controller Kp=700 Ki=5.18 Kd=2.59 50

4.17 PID controller Kp=140 Ki=518 Kd=51.8 50

4.18 PID controller Kp=700 Ki=518 Kd=51.8 51

4.19 PID controller Kp=140 Ki=5.18 Kd=51.8 51

4.20 PID controller Kp=700 Ki=5.18 Kd=51.8 52

4.21 PID controller Kp=140 Ki=518 Kd=2.59 52

4.22 PID controller Kp=700 Ki=518 Kd=2.59 53

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Project Programming 60

B Whole Circuit Diagram 63

C PIC 16F84A Datasheeet 65

D Regulator 7805 Datasheet 75

E Servo Motor

 Clifton Precision JDH 2250-HF-2C-E 77

F CD Content 87

CHAPTER 1

INTRODUCTION

1.1 Background

This project is focusing on controlling the speed of DC servo motor using

Proportional Integral-Derivative (PID) algorithm as a method to reduce overshoot, and

settling time of the motor. Peripheral Interface Circuit (PIC) microcontroller is an

implementation of the motor to control speed by programmed the PIC.

The PID algorithm that is added to the motor becomes a closed loop system. The

system is implemented using MATLAB software and PID algorithm is tuned by

changing the value of Proportional gain, Kp, Integral gain, Ki and Derivative gain, Kd to

get a speed of the motor which is less overshoot and increase settling time.

The PIC microcontroller is programmed using PIC BASIC either using high

language or assembler language.

2

1.2 Problem Statement

The speed of a DC motor is directly proportional to the supply voltage, so if we

reduce the supply voltage from 12 Volts to 6 Volts, the motor will run at half the speed.

The speed controller works by varying the average voltage sent to the motor. It could

do this by simply adjusting the voltage sent to the motor, but this is quite inefficient to

do.

A better way is to switch the motor's supply on and off very quickly. However, if the

switching is fast enough, the motor doesn't notice it, it only notices the average effect.

So, PID algorithm is the best way to overcome this problem without varying the

voltage sent to the motor. PID will be maintain the speed of motor even the voltage

supply sent to the motor changed.

3

1.3 Project Objective

The objectives of this project are:

i. To control the speed of DC servo motor using PID algorithm.

ii. To compare the performance speed of the motor using Proportional (P)

controller, Proportional-Integral (PI) controller, Proportional-Derivative (PD)

controller and Proportional-Integral-Derivative (PID) controller.

iii. To implement PID algorithm in PIC microcontroller.

1.4 Scope of Project

The scope of this project is concentrates on controlling the speed of DC servo motor

using PID algorithm and to compare the performance using Proportional (P) controller,

Proportional-Integral (PI) controller, Proportional-Derivative (PD) controller and

Proportional-Integral-Derivative (PID) controller using simulation in MATLAB

software.

CHAPTER 2

LITERATURE REVIEW

2.1 Servo Motor

DC servo motors are normally used as prime movers in computers, numerically

controlled machinery, or other applications where starts and stops are made quickly and

accurately. Servo motors have lightweight, low-inertia armatures that respond quickly to

excitation-voltage changes. In addition, very low armature inductance in these servo

motors results in a low electrical time constant (typically 0.05 to 1.5 msec) that further

sharpens servo motor response to command signals. [1]

Servo motors include permanent-magnetic, printed-circuit, and moving-coil (or

shell) dc servo motors. The rotor of a shell dc servomotor consists of a cylindrical shell

of copper or aluminum wire coils which rotate in a magnetic field in the annular space

between magnetic pole pieces and a stationary iron core. The servo motor features a

field, which is provided by cast AlNiCo magnets whose magnetic axis is radial. Servo

motors usually have two, four, or six poles. [1]

5

DC servo motor characteristics include inertia, physical shape, costs, shaft

resonance, shaft configuration, speed, and weight. Although these dc servo motors have

similar torque ratings, their physical and electrical constants vary. [1]

DC Servo Motor Selection: The first selection approach is to choose a servo

motor large enough for a machine that has already been designed; the second is to select

the best available servo motor with a specific feature and then build the system around

it; and the third is to study servo motor performance and system requirements and mate

the two. [1]

The final servo motor system design is usually the least sophisticated that meets

the performance specifications reliably. Servo motor requirements may include control

of acceleration, velocity, and position to very close tolerances. This says that the servo

designer must define the system carefully, establish the servo motor's performance

specifications, determine critical areas, and set up tolerances. Only then will the designer

be able to propose an adequate servo system and choose a servo motor type. [1]

2.2 Microcontroller (PIC 16F84)

PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Its

general structure is shown on the following map representing basic blocks. Program

memory (FLASH)- for storing a written program. Since memory made in FLASH

technology can be programmed and cleared more than once, it makes this

microcontroller suitable for device development. [2]

6

EEPROM is the data memory that needs to be saved when there is no supply. It

is usually used for storing important data that must not be lost if power supply suddenly

stops. For instance, one such data is an assigned temperature in temperature regulators.

If during a loss of power supply this data was lost, we would have to make the

adjustment once again upon return of supply. Thus our device looses on self-reliance. [2]

RAM is the data memory used by a program during its execution. In RAM are

stored all inter-results or temporary data during run-time. [2]

PORTA and PORTB are physical connections between the microcontroller and

the outside world. Port A has five, and port B has eight pins. [2]

FREE-RUN TIMER is an 8-bit register inside a microcontroller that works

independently of the program. On every fourth clock of the oscillator it increments its

value until it reaches the maximum (255), and then it starts counting over again from

zero. As we know the exact timing between each two increments of the timer contents,

timer can be used for measuring time which is very useful with some devices. [2]

CENTRAL PROCESSING UNIT has a role of connective element between

other blocks in the microcontroller. It coordinates the work of other blocks and executes

the user program. [2]

7

Figure 2.1 PIC 16F84 outline

2.2.1 Pin description

PIC16F84 has a total of 18 pins. It is most frequently found in a DIP18 type of

case but can also be found in SMD case which is smaller from a DIP. DIP is an

abbreviation for Dual In Package. SMD is an abbreviation for Surface Mount Devices

suggesting that holes for pins to go through when mounting aren't necessary in soldering

this type of a component. [2]

8

Figure 2.2 Pin number of PIC 16F84

Table 2.1 Pins on PIC16F84 microcontroller

PIN NO PIN NAME MEANING

1 RA2 Second pin on port A. Has no additional function

2 RA3 Third pin on port A. Has no additional function

3 RA4 Fourth pin on port A. TOCK1 which functions as a

timer is also found on this pin.

4 MCLR Reset input and Vpp programming voltage of a

microcontroller

5 Vss Ground of power supply

6 RB0 Zero pin on port B. Interrupt input is an additional

function

7 RB1 First pin on port B. No additional function

8 RB2 Second pin on port B. No additional function

9 RB3 Third pin on port B. No additional function

10 RB4 Fourth pin on port B. No additional function

11 RB5 Fifth pin on port B. No additional function

12 RB6 Sixth pin on port B. 'Clock' line in program mode

13 RB7 Seventh pin on port B. 'Data' line in program mode

9

14 Vdd Positive power supply pole

15 OSC2 Pin assigned for connecting with an oscillator

16 OSC1 Pin assigned for connecting with an oscillator

17 RA0 Second pin on port A. No additional function

18 RA1 First pin on port A. No additional function

2.2.2 Central Processing Unit

Central processing unit (CPU) is the brain of a microcontroller. This part is

responsible for finding and fetching the right instruction which needs to be executed, for

decoding that instruction, and finally for its execution. Central processing unit connects

all parts of the microcontroller into one whole. [2]

2.2.3 Status Register

Figure 2.3 Status Register

10

2.2.4 Addressing Mode

RAM memory locations can be accessed directly or indirectly.

 i) Direct addressing

Direct Addressing is done through a 9-bit address. This address is obtained by

connecting 7th bit of direct address of an instruction with two bits (RP1, RP0)

from STATUS register as is shown on the following picture. [2]

Figure 2.4 Direct addressing

ii) Indirect Addressing

Indirect unlike direct addressing does not take an address from an instruction but

derives it from IRP bit of STATUS and FSR registers. Addressed location is

11

accessed via INDF register which in fact holds the address indicated by a FSR. In

other words, any instruction which uses INDF as its register in reality accesses

data indicated by a FSR register. [2]

Indirect addressing is very convenient for manipulating data arrays located in

GPR registers. In this case, it is necessary to initialize FSR register with a

starting address of the array, and the rest of the data can be accessed by

incrementing the FSR register. [2]

Figure 2.5 Indirect addressing

12

2.2.5 Applications

PIC16F84 perfectly fits many uses, from automotive industries and controlling

home appliances to industrial instruments, remote sensors, electrical door locks and

safety devices. It is also ideal for smart cards as well as for battery supplied devices

because of its low consumption. [2]

EEPROM memory makes it easier to apply microcontrollers to devices where

permanent storage of various parameters is needed (codes for transmitters, motor speed,

receiver frequencies, etc.). Low cost, low consumption, easy handling and flexibility

make PIC16F84 applicable even in areas where microcontrollers had not previously

been considered (example: timer functions, interface replacement in larger systems,

coprocessor applications, etc.). [2]

In System Programmability of this chip (along with using only two pins in data

transfer) makes possible the flexibility of a product, after assembling and testing have

been completed. This capability can be used to create assembly-line production, to store

calibration data available only after final testing, or it can be used to improve programs

on finished products. [2]

13

2.3 Proportional-Integral-Derivative (PID) Controller

A proportional–integral–derivative controller (PID controller) is a generic

control loop feedback mechanism widely used in industrial control systems. A PID

controller attempts to correct the error between a measured process variable and a

desired setpoint by calculating and then outputting a corrective action that can adjust the

process accordingly. [3]

The PID controller calculation (algorithm) involves three separate parameters;

the Proportional, the Integral and Derivative values. The Proportional value determines

the reaction to the current error, the Integral determines the reaction based on the sum of

recent errors and the Derivative determines the reaction to the rate at which the error has

been changing. The weighted sum of these three actions is used to adjust the process via

a control element such as the position of a control valve or the power supply of a heating

element. [3]

By "tuning" the three constants in the PID controller algorithm, the controller can

provide control action designed for specific process requirements. The response of the

controller can be described in terms of the responsiveness of the controller to an error,

the degree to which the controller overshoots the setpoint and the degree of system

oscillation. Note that the use of the PID algorithm for control does not guarantee optimal

control of the system or system stability. [3]

Some applications may require using only one or two modes to provide the

appropriate system control. This is achieved by setting the gain of undesired control

outputs to zero. A PID controller will be called a PI, PD, P or I controller in the absence

14

of the respective control actions. PI controllers are particularly common, since derivative

action is very sensitive to measurement noise, and the absence of an integral value may

prevent the system from reaching its target value due to the control action. [3]

Figure 2.6 A block diagram of a PID controller

2.4 Ziegler-Nichols Method

The Ziegler–Nichols tuning method is a heuristic method of tuning a PID

controller. It was developed by John G. Ziegler and Nathaniel B. Nichols. It is

performed by setting the I and D gains to zero. The "P" gain is then increased (from

zero) until it reaches the critical gain Kc, at which the output of the control loop begins to

oscillate. Kc and the oscillation period Tc are used to set the P, I, and D gains depending

on the type of controller used: [4]

15

Steps :

i) Place controller into automatic with low gain, no reset or derivative.

ii) Gradually increase gain, making small changes in the setpoint, until oscillations start.

iii) Adjust gain to make the oscillations continue with a constant amplitude.

iv) Note the gain (Ultimate Gain, Gu,) and Period (Ultimate Period, Pu.)

v) The Ultimate Gain, Gu, is the gain at which the oscillations continue with a constant

amplitude.

 [5]

Figure 2.7 Oscillations with constant amplitude

Table 2.2 Estimation value for gain, reset and derivative

Gain Reset Derivative

P 0.5 Gu - -

PI 0.45 Gu 1.2u -

PID 0.6 Gu 2/Pu Pu/8

CHAPTER 3

METHODOLOGY

Some methodologies are apply in order to control the DC servo motor control

using PID method which is implement in PIC 16F84A microcontroller. The relationship

of this project is shown below:

Figure 3.1 Project procedure

17

Configuration;

Hardware and software that involve in the system should be configuring to

ensure that the system can run properly. The hardware of the system are PIC 16F84 and

DC servo motor (Clifton Precision JDH-2250-HF-2C-E) while the software are PICbasic

and matlab

Programming;

After configure the hardware and software, the second stage is designing the

program. The program must be developing in order to ensure the DC servo motor is run

as the needed position.

Verifying;

This project must be verified to ensure either the system is run or not. The

program must be modified if the motor not run properly.

Integration;

This part of the project is explaining the background of the motor control

deriving, PID method simulating in matlab and the integration of the DC servo motor,

PID algorithm and PIC microcontroller.

18

3.1 Modeling DC Servo Motor

The first step of this project is modeling the DC servo motor. Motor modeling is

required in order to obtain the transfer function of the motor which is providing the open

loop system of this project. Then PID controller is adding to changing the system to

closed loop system. Below is the step of the motor modeling.

R= 2.7 Ω

L= 0.004 H

K=0.105 Vs rad-1

K= 0.105 Nm A-1

J= 0.0001 Kg m2

B= 0.0000093 Nms rad-1

ara
a V

LL

K
i

L

R

dt

di 1
  (3.1)

ra
r

J

B
i

J

K

dt

d



 (3.2)

a
r

a

r

a

VL
i

J

B

J

K
L

K

L

R

dt

d
dt

di

































































0

1


 (3.3)

    a
r

a V
i

y 010 











a
r

a

r

a

V
i

dt

d
dt

di

































































0
004.0

1

0001.0

0000093.0

0001.0

105.0
004.0

105.0

004.0

7.2















093.01050

25.26675
A 










0

250
B

19

 10C  0D

  




















093.01050

25.26675

0

0

s

s
AsI (3.4)














093.01050

25.26675

s

s

From  
)(

)(1

AsIdef

AsIadj
AsI




  (3.5)

If 






















ac

bd

bcad
A

dc

ba
A

1
1; (3.6)

ad-bc = (s-675)(s+0.093)-(26.25)(1050)

 = s2 + 0.093s – 675s + 62.775 + 27562.5

 = s2 + 675.093s + 27625.275

   












 

6751050

25.26093.0

27625.275675.093ss

1
2

1

s

s
AsI

27625.275675.093ss

6751050

25.26093.0

2 














s

s

 (3.7)

27625.275675.093ss

262500

)(

)(
)(

2 


sU

sY
sT

 

   

27625.275675.093ss

262500

0
0

250

27625.275675.093ss

6751050

25.26093.0

10

)(

)(
)(

2

2

1




























 

s

s

DBAsIC
sU

sY
sT

20

3.2 Ziegler Tuning Method

Table 3.1 show the typical value of the Proportional, Integral and Derivative

feedback coefficients for PID-type controllers.

Table 3.1 Ziegler Tuning Table

controller Kp Ki Kd

PID Kp € [0.1 0.5]Kpmax Ki € [0.1 10]x

KpmaxTosc

Kp € [0.05 1]x

KpmaxTosc

PD Kp € [0.1 0.5]Kpmax 0 Kp € [0.05 1]x

KpmaxTosc

PI Kp € [0.05 0.5]Kpmax Ki € [0.01 1]x

KpmaxTosc

0

P Kp € [0.05 0.5]Kpmax 0 0

The value of Kpmax and Tosc are such as below:

Kpmax = 1400

Tosc = 0.037s

Table 3.2 show the range value of Proportional, Integral and Derivative gain

after multiply to the Kpmax and Tosc value. The value of Kpmax can be get by setting

the value of Integral gain,Ki and Derivative gain,Kd to zero. Then, tuning the value of

Proportional gain,Kp until get an oscillation. The value of the best oscillation is the

value of Kpmax. The value of Tosc is the different value of time for the two first of the

oscillation.

21

Table 3.2 Range value of controller

controller Kp Ki Kd

PID 140 - 700 5.18 - 518 2.59 – 51.8

PD 140 - 700 0 2.59 – 51.8

PI 70 -700 0.518 – 51.8 0

P 70 - 700 0 0

3.3 Hardware Development

This part is about implementation PID controller to the PIC microcontroller. In

order to develop this part, its need hardware consist of some components. The best

components must be choosing by considering some factors such as quality, reliability

and cost effective. By choosing or using the wrong components will lead to much more

problems to the hardware development and also escalating cost.

3.3.1 DC Servo motor

There are various types of motor such as DC motor, stepper motor and servo

motor. In this project, the speed of DC servo motor is an importance. The speed of a DC

servo motor is directly proportional to the supply voltage. The speed controller works by

varying the average voltage sent to the motor. So, DC servo motor (Clifton Precision

JDH 2250-HF-2C-E) was selected because servo motors have low-inertia armatures that

respond quickly to excitation-voltage changes. Servomotors have three wires; usually

22

red, black and white. The red wire is for +VDC, the black for ground and the white is for

position control.

Figure 3.2 Clifton Precision JDH 2250-HF-2C-E

Table 3.3 Parameters of motor

PARAMETER SYMBOL VALUE

Resistances of armature R 2.7Ω

Inductances of armature L 0.004 H

Inertia J 0.0001 Kg m2

Friction Coefficient B 0.0000093 Nms rad-1

Torque K 0.105 Vs rad-1

23

3.3.2 PIC 16F84

In this project, PIC 16F84 microcontroller was selected to drives the DC servo

motor. The PIC microcontroller was programmed to give instruction to drive the DC

servo motor. DC servo motor can be connected to output port which is PORTB, from

RB1 to RB7. RB1 which is located at pin 6 was selected to connect DC servo motor in

this project such as in Figure 3.3. 4-MHz oscillator is used because the circuit this time

doesn't need high-speed operation.

Figure 3.3 PIC 16F84 microcontroller circuit

24

3.3.3 Power Supply

The purpose of this circuit is to keep power supply voltage to PIC to 5V.

In this case, the voltage which is applied to PIC becomes less than 5V because of the

voltage drop (about 1V) of the regulator. In case of PIC16F84 , the operation is possible

even if the power falls to about 3V because the operating voltage range is from 2V to

5.5V. It is enough in the 100-mA type.

Figure 3.4 Power Supply circuit

3.4 Software Development

This topic is discussed the development of software in order to complete this

project. There are MATLAB 7.0 to develop PID method and Melabs EPICTM

Programmer software to program the PIC microcontroller.

25

3.4.1 PID Method

From the modeling DC servo motor, the transfer function is

27625.275675.093ss

262500

)(

)(
)(

2 


sU

sY
sT (3.8)

The system before using PID controller is looks like in Figure 3.5:

Figure 3.5 System before using PID controller

Then, PID controller is added to the system. Now, the system looks like in Figure 3.6:

Figure 3.6 System with PID controller

27625.275675.093ss

262500
2 R Y

PID controller
27625.275675.093ss

262500
2 R Y

e
u

26

In Figure 3.6, the variable (e) represents the tracking error which is the difference

between the desired input value (R) and the actual output (Y). This error signal (e) will

be sent to the PID controller, and the controller computes both the derivative and the

integral of this error signal. The signal (u) just past the controller is now equal to the

proportional gain (Kp) times the magnitude of the error plus the integral gain (Ki) times

the integral of the error plus the derivative gain (Kd) times the derivative of the error

(equation 3).

The transfer function of the PID controller is:

s

KsKsK
sK

s

K
K ipd

d
i

p




2

 (3.9)

So, the signal (u) that is past the controller is:

 
dt

de
KdedtKeKU ip (3.10)

This signal (u) will be sent to the plant, and the new output (Y) will be obtained.

This new output (Y) will be sent back to the sensor again to find the new error signal (e).

The controller takes this new error signal and computes its derivative and its integral

again. This process goes on and on.

27

In this project, the PID controller that was added into the system is designed

using m-file in matlab software. (Refer Figure 3.7)

Figure 3.7 Designed using m-file

Then the following commands are typing into m-file. (Refer Figure 3.8)

Figure 3.8 Typing program

In Figure 3.8, ‘[num,den] = ss2tf(A,B,C,D’) command creates the numerator

and denominator of the transfer function of DC servo motor. This numerical

28

inconsistency can be eliminated by adding the following ‘num=num(3)’ command after

the ss2tf command to get rid of the numbers that are not supposed to be there.

The transfer function of PID controller is recalled using following commands.

The value of the proportional gain, Kp, integral gain Ki and derivative gain, Kd can be

adjust by changing the value. (Refer Figure 3.9):

Figure 3.9 Changing the value

The closed loop of the system is determined by ‘cloop’ command and the

command ‘step (numac,denac)’is to see how the step response looks as in Figure 3.10.

Figure 3.10 Closed loop system

29

Then, save and run it such in Figure 3.11.

Figure 3.11 Save and run

The result of this system is obtained by changing the value of the proportional

gain, Kp, integral gain Ki and derivative gain, Kd. The best five result for the

proportional (P) controller, proportional-Integral (PI) controller, proportional-derivative

(PD) controller and proportional-integral-derivative (PID) controller that is apply in this

system is obtained.

30

3.4.2 Program the PIC Microcontroller

In order to interface the hardware with the electronic equipment, Melabs EPICTM

Programmer software is required. This programmer is a software program that runs on a

PC to develop applications for Microchip microcontrollers. Before that we need to

change the type of document by compiling it with the MicroCode Studio. Below are the

steps on how to develop the project using this software:

(i) Open the MicroCode Studio program

(ii) Compile the program

Figure 3.12 Programming of the system

Figure 3.12 shows the programming of the system after the compilation is done.

Before we do the compilation, we must save the document and then we compile. The

documentation type will change to the .HEX after the compiling.

31

(iii) Open the Melabs EPICTM Programmer

Figure 3.13 Select for PIC16F84A

Open Melabs EPICTM Programmer then select for PIC16F84A. The melabs

EPIC™ Programmer connects to a PC compatible parallel printer port. The melabs

Serial Programmer connects to a PC compatible serial port. The melabs USB

Programmer and melabs U2 Programmer connect to a PC USB port or powered USB

hub. Each programmer may be controlled by the melabs Programmer software.

(iv) Open melabs configuration

Figure 3.14 Setup for PLL

32

After the selection of the PIC type Figure 3.14 show the step to setup the melabs

configuration for PLL application. Seen the 4 MHz crystal is used and the HS mode

oscillator for frequencies is up to 48 MHz, the configuration must be fill correctly.

(v) Open the compile programming

Figure 3.15 Programming selected

Figure 3.15 show the step for selecting the programming that had been saving in

.HEX type documentation. This were done after the deleting the entire previous program

in the PIC.

33

(vi) Verify the Program

Figure 3.16 Verifying the program

Figure 3.16 shows the complete of verifying program and the

PIC 16F84A is ready to be used.

34

3.5 Circuit Diagram

Figure 3.17 Circuit diagram for the whole system

35

3.6 Final Prototype

Figure 3.18 Main Circuit

Figure 3.19 Motor and encoder

36

Figure 3.20 The whole system

CHAPTER 3

METHODOLOGY

Some methodologies are apply in order to control the DC servo motor control

using PID method which is implement in PIC 16F84A microcontroller. The relationship

of this project is shown below:

Figure 3.1 Project procedure

17

Configuration;

Hardware and software that involve in the system should be configuring to

ensure that the system can run properly. The hardware of the system are PIC 16F84 and

DC servo motor (Clifton Precision JDH-2250-HF-2C-E) while the software are PICbasic

and matlab

Programming;

After configure the hardware and software, the second stage is designing the

program. The program must be developing in order to ensure the DC servo motor is run

as the needed position.

Verifying;

This project must be verified to ensure either the system is run or not. The

program must be modified if the motor not run properly.

Integration;

This part of the project is explaining the background of the motor control

deriving, PID method simulating in matlab and the integration of the DC servo motor,

PID algorithm and PIC microcontroller.

18

3.1 Modeling DC Servo Motor

The first step of this project is modeling the DC servo motor. Motor modeling is

required in order to obtain the transfer function of the motor which is providing the open

loop system of this project. Then PID controller is adding to changing the system to

closed loop system. Below is the step of the motor modeling.

R= 2.7 Ω

L= 0.004 H

K=0.105 Vs rad-1

K= 0.105 Nm A-1

J= 0.0001 Kg m2

B= 0.0000093 Nms rad-1

ara
a V

LL

K
i

L

R

dt

di 1
  (3.1)

ra
r

J

B
i

J

K

dt

d



 (3.2)

a
r

a

r

a

VL
i

J

B

J

K
L

K

L

R

dt

d
dt

di

































































0

1


 (3.3)

    a
r

a V
i

y 010 











a
r

a

r

a

V
i

dt

d
dt

di

































































0
004.0

1

0001.0

0000093.0

0001.0

105.0
004.0

105.0

004.0

7.2















093.01050

25.26675
A 










0

250
B

19

 10C  0D

  




















093.01050

25.26675

0

0

s

s
AsI (3.4)














093.01050

25.26675

s

s

From  
)(

)(1

AsIdef

AsIadj
AsI




  (3.5)

If 






















ac

bd

bcad
A

dc

ba
A

1
1; (3.6)

ad-bc = (s-675)(s+0.093)-(26.25)(1050)

 = s2 + 0.093s – 675s + 62.775 + 27562.5

 = s2 + 675.093s + 27625.275

   












 

6751050

25.26093.0

27625.275675.093ss

1
2

1

s

s
AsI

27625.275675.093ss

6751050

25.26093.0

2 














s

s

 (3.7)

27625.275675.093ss

262500

)(

)(
)(

2 


sU

sY
sT

 

   

27625.275675.093ss

262500

0
0

250

27625.275675.093ss

6751050

25.26093.0

10

)(

)(
)(

2

2

1




























 

s

s

DBAsIC
sU

sY
sT

20

3.2 Ziegler Tuning Method

Table 3.1 show the typical value of the Proportional, Integral and Derivative

feedback coefficients for PID-type controllers.

Table 3.1 Ziegler Tuning Table

controller Kp Ki Kd

PID Kp € [0.1 0.5]Kpmax Ki € [0.1 10]x

KpmaxTosc

Kp € [0.05 1]x

KpmaxTosc

PD Kp € [0.1 0.5]Kpmax 0 Kp € [0.05 1]x

KpmaxTosc

PI Kp € [0.05 0.5]Kpmax Ki € [0.01 1]x

KpmaxTosc

0

P Kp € [0.05 0.5]Kpmax 0 0

The value of Kpmax and Tosc are such as below:

Kpmax = 1400

Tosc = 0.037s

Table 3.2 show the range value of Proportional, Integral and Derivative gain

after multiply to the Kpmax and Tosc value. The value of Kpmax can be get by setting

the value of Integral gain,Ki and Derivative gain,Kd to zero. Then, tuning the value of

Proportional gain,Kp until get an oscillation. The value of the best oscillation is the

value of Kpmax. The value of Tosc is the different value of time for the two first of the

oscillation.

21

Table 3.2 Range value of controller

controller Kp Ki Kd

PID 140 - 700 5.18 - 518 2.59 – 51.8

PD 140 - 700 0 2.59 – 51.8

PI 70 -700 0.518 – 51.8 0

P 70 - 700 0 0

3.3 Hardware Development

This part is about implementation PID controller to the PIC microcontroller. In

order to develop this part, its need hardware consist of some components. The best

components must be choosing by considering some factors such as quality, reliability

and cost effective. By choosing or using the wrong components will lead to much more

problems to the hardware development and also escalating cost.

3.3.1 DC Servo motor

There are various types of motor such as DC motor, stepper motor and servo

motor. In this project, the speed of DC servo motor is an importance. The speed of a DC

servo motor is directly proportional to the supply voltage. The speed controller works by

varying the average voltage sent to the motor. So, DC servo motor (Clifton Precision

JDH 2250-HF-2C-E) was selected because servo motors have low-inertia armatures that

respond quickly to excitation-voltage changes. Servomotors have three wires; usually

22

red, black and white. The red wire is for +VDC, the black for ground and the white is for

position control.

Figure 3.2 Clifton Precision JDH 2250-HF-2C-E

Table 3.3 Parameters of motor

PARAMETER SYMBOL VALUE

Resistances of armature R 2.7Ω

Inductances of armature L 0.004 H

Inertia J 0.0001 Kg m2

Friction Coefficient B 0.0000093 Nms rad-1

Torque K 0.105 Vs rad-1

23

3.3.2 PIC 16F84

In this project, PIC 16F84 microcontroller was selected to drives the DC servo

motor. The PIC microcontroller was programmed to give instruction to drive the DC

servo motor. DC servo motor can be connected to output port which is PORTB, from

RB1 to RB7. RB1 which is located at pin 6 was selected to connect DC servo motor in

this project such as in Figure 3.3. 4-MHz oscillator is used because the circuit this time

doesn't need high-speed operation.

Figure 3.3 PIC 16F84 microcontroller circuit

24

3.3.3 Power Supply

The purpose of this circuit is to keep power supply voltage to PIC to 5V.

In this case, the voltage which is applied to PIC becomes less than 5V because of the

voltage drop (about 1V) of the regulator. In case of PIC16F84 , the operation is possible

even if the power falls to about 3V because the operating voltage range is from 2V to

5.5V. It is enough in the 100-mA type.

Figure 3.4 Power Supply circuit

3.4 Software Development

This topic is discussed the development of software in order to complete this

project. There are MATLAB 7.0 to develop PID method and Melabs EPICTM

Programmer software to program the PIC microcontroller.

25

3.4.1 PID Method

From the modeling DC servo motor, the transfer function is

27625.275675.093ss

262500

)(

)(
)(

2 


sU

sY
sT (3.8)

The system before using PID controller is looks like in Figure 3.5:

Figure 3.5 System before using PID controller

Then, PID controller is added to the system. Now, the system looks like in Figure 3.6:

Figure 3.6 System with PID controller

27625.275675.093ss

262500
2 R Y

PID controller
27625.275675.093ss

262500
2 R Y

e
u

26

In Figure 3.6, the variable (e) represents the tracking error which is the difference

between the desired input value (R) and the actual output (Y). This error signal (e) will

be sent to the PID controller, and the controller computes both the derivative and the

integral of this error signal. The signal (u) just past the controller is now equal to the

proportional gain (Kp) times the magnitude of the error plus the integral gain (Ki) times

the integral of the error plus the derivative gain (Kd) times the derivative of the error

(equation 3).

The transfer function of the PID controller is:

s

KsKsK
sK

s

K
K ipd

d
i

p




2

 (3.9)

So, the signal (u) that is past the controller is:

 
dt

de
KdedtKeKU ip (3.10)

This signal (u) will be sent to the plant, and the new output (Y) will be obtained.

This new output (Y) will be sent back to the sensor again to find the new error signal (e).

The controller takes this new error signal and computes its derivative and its integral

again. This process goes on and on.

27

In this project, the PID controller that was added into the system is designed

using m-file in matlab software. (Refer Figure 3.7)

Figure 3.7 Designed using m-file

Then the following commands are typing into m-file. (Refer Figure 3.8)

Figure 3.8 Typing program

In Figure 3.8, ‘[num,den] = ss2tf(A,B,C,D’) command creates the numerator

and denominator of the transfer function of DC servo motor. This numerical

28

inconsistency can be eliminated by adding the following ‘num=num(3)’ command after

the ss2tf command to get rid of the numbers that are not supposed to be there.

The transfer function of PID controller is recalled using following commands.

The value of the proportional gain, Kp, integral gain Ki and derivative gain, Kd can be

adjust by changing the value. (Refer Figure 3.9):

Figure 3.9 Changing the value

The closed loop of the system is determined by ‘cloop’ command and the

command ‘step (numac,denac)’is to see how the step response looks as in Figure 3.10.

Figure 3.10 Closed loop system

29

Then, save and run it such in Figure 3.11.

Figure 3.11 Save and run

The result of this system is obtained by changing the value of the proportional

gain, Kp, integral gain Ki and derivative gain, Kd. The best five result for the

proportional (P) controller, proportional-Integral (PI) controller, proportional-derivative

(PD) controller and proportional-integral-derivative (PID) controller that is apply in this

system is obtained.

30

3.4.2 Program the PIC Microcontroller

In order to interface the hardware with the electronic equipment, Melabs EPICTM

Programmer software is required. This programmer is a software program that runs on a

PC to develop applications for Microchip microcontrollers. Before that we need to

change the type of document by compiling it with the MicroCode Studio. Below are the

steps on how to develop the project using this software:

(i) Open the MicroCode Studio program

(ii) Compile the program

Figure 3.12 Programming of the system

Figure 3.12 shows the programming of the system after the compilation is done.

Before we do the compilation, we must save the document and then we compile. The

documentation type will change to the .HEX after the compiling.

31

(iii) Open the Melabs EPICTM Programmer

Figure 3.13 Select for PIC16F84A

Open Melabs EPICTM Programmer then select for PIC16F84A. The melabs

EPIC™ Programmer connects to a PC compatible parallel printer port. The melabs

Serial Programmer connects to a PC compatible serial port. The melabs USB

Programmer and melabs U2 Programmer connect to a PC USB port or powered USB

hub. Each programmer may be controlled by the melabs Programmer software.

(iv) Open melabs configuration

Figure 3.14 Setup for PLL

32

After the selection of the PIC type Figure 3.14 show the step to setup the melabs

configuration for PLL application. Seen the 4 MHz crystal is used and the HS mode

oscillator for frequencies is up to 48 MHz, the configuration must be fill correctly.

(v) Open the compile programming

Figure 3.15 Programming selected

Figure 3.15 show the step for selecting the programming that had been saving in

.HEX type documentation. This were done after the deleting the entire previous program

in the PIC.

33

(vi) Verify the Program

Figure 3.16 Verifying the program

Figure 3.16 shows the complete of verifying program and the

PIC 16F84A is ready to be used.

34

3.5 Circuit Diagram

Figure 3.17 Circuit diagram for the whole system

35

3.6 Final Prototype

Figure 3.18 Main Circuit

Figure 3.19 Motor and encoder

36

Figure 3.20 The whole system

CHAPTER 4

RESULT AND ANALYSIS

This chapter discusses the result of simulation using no controller, Proportional,

Proportional-Integral, Proportional-Derivative, and Proportional-Integral-Derivative

Controller by MATLAB software.

38

4.1 No Controller

The result simulates using no controller is shown below:

Figure 4.1 No controller

Table 4.1 No controller

COMPARISON TIME RISE (s) SETTLING

TIME (s)

OVERSHOOT

(%)

STEADY STATE

NO PID 0.0504 0.091 0 9.5

Table 4.1 show the system using no controller has a large of value time rise,

settling time and steady state but it has no overshoot. The steady state of the system is

calculated using the input substitution. Refer equation 4.1 to 4.3.

39













093.01050

25.26675
A 










0

250
B  10C

BCAE 11)( (4.1)

 

 
5.6563

05.65621

0

250
093.025.261














     BACBCAE
211 11lim)(  (4.2)

   

 

5.4430297

0

250
49.2756219.17721

0

250

49.2756219.17721

65.7088475.428062
101

21
































  BAC

    





  BACtBCAtE

211 11lim)((4.3)

    


 5.44302975.6563lim t

40

4.2 Proportional Controller

The performance of Proportional Controller result simulate by tuning the value

of proportional gain,Kp are shown in Figure 4.2 to Figure 4.6 using the value of 70, 228,

386, 594 and 700.

Figure 4.2 Proportional controller Kp=70

Figure 4.3 Proportional controller Kp=228

41

Figure 4.4 Proportional controller Kp=386

Figure 4.5 Proportional controller Kp=594

42

Figure 4.6 Proportional controller Kp=700

Table 4.2 Comparison of Proportional controller

COMPARISON

Kp

PEAK

AMPLITUDE

TIME(s) OVERSHOOT

(%)

STEADY STATE

70 1.63 0.000593 NaN Inf

228 1.64 0.00119 NaN Inf

386 1.89 0.000296 NaN Inf

594 1.78 0.000296 NaN Inf

700 1.63 0.00119 NaN Inf

 Table 4.2 show increasing the value of Proportional gain, Kp reducing the time

to achieve the peak amplitude but in high value of peak amplitude. The overshoot is

NaN (not a number) and the steady state is infinity.

43

4.3 Proportional-Integral Controller

The performance of Proportional-Integral Controller result simulate by tuning the

value of proportional gain,Kp and Integral gain, Ki are shown in Figure 4.7 to Figure

4.10 using the value of Proportional gain,Kp 70 and 700 and the value of Integral

gain,Ki 0.518 and 51.8.

Figure 4.7 Proportional-integral controller Kp=70 Ki= 0.518

44

Figure 4.8 Proportional-integral controller Kp=700 Ki= 0.518

Figure 4.9 Proportional-integral controller Kp=70 Ki= 51.8

45

Figure 4.10 Proportional-integral controller Kp=700 Ki= 51.8

Table 4.3 Comparison of Proportional-integral controller

COMPARISON

Kp Ki

PEAK

AMPLITUDE

TIME

(s)

OVER

SHOOT (%)

TIME

RISE(s)

SETTLING

TIME (s)

STEADY

STATE

70 0.518 1.78 0.000748 77.6 0.000255 0.0118 1

700 0.518 1.92 0.000236 92.3 0.052 0.0116 1

70 51.8 1.78 0.000748 77.7 0.000255 0.0118 1

700 51.8 1.92 0.000236 92.3 0.052 0.0116 1

Table 4.3 show reducing the value of Proportional gain, Kp and Integral gain, Ki

will reduce the value of time rise, settling time, steady state and also reduce the time to

achieve the peak amplitude.

46

4.4 Proportional-Derivative Controller

The performance of Proportional-Derivative Controller result simulate by tuning

the value of proportional gain,Kp and Derivative gain, Kd are shown in Figure 4.11 to

Figure 4.14 by using the value of Proportional gain,Kp 140 and 700, the value of

Derivative gain,Kd 2.59 and 51.8.

Figure 4.11 Proportional-derivative controller Kp=140 Kd= 2.59

47

Figure 4.12 Proportional-derivative controller Kp=700 Kd= 2.59

Figure 4.13 Proportional-derivative controller Kp=140 Kd= 51.8

48

Figure 4.14 Proportional-derivative controller Kp=700 Kd= 51.8

Table 4.4 Comparison of Proportional-derivative controller

COMPARISON

Kp Kd

PEAK

AMPLITUDE

TIME(s) OVER

SHOOT (%)

STEADY

STATE

140 2.59 0.992 0.00184 NaN Inf

700 2.59 0.995 0.000369 NaN Inf

140 51.8 1 0.037 NaN Inf

700 51.8 1 0.0074 NaN Inf

Table 4.4 show increasing the value of Proportional gain, Kp and reducing the

value of Derivative gain, Kd will reduce time to achieve the peak amplitude. The

percentage overshoot is NaN (not a number) and the steady state is infinity.

49

4.5 Proportional-Integral-Derivative Controller

The performance of Proportional-Integral-Derivative (PID) Controller result

simulate by tuning the value of proportional gain,Kp, Integral gain, Ki and Derivative

gain, Kd are shown in Figure 4.15 to Figure 4.22 using the value of Proportional gain,Kp

70 and 700 and the value of Integral gain,Ki 5.18 and 518, and the value of Derivative

gain,Kd 2.59 and 51.8.

Figure 4.15 PID controller Kp=140 Ki=5.18 Kd=2.59

50

Figure 4.16 PID controller Kp=700 Ki=5.18 Kd=2.59

Figure 4.17 PID controller Kp=140 Ki=518 Kd=51.8

51

Figure 4.18 PID controller Kp=700 Ki=518 Kd=51.8

Figure 4.19 PID controller Kp=140 Ki=5.18 Kd=51.8

52

Figure 4.20 PID controller Kp=700 Ki=5.18 Kd=51.8

Figure 4.21 PID controller Kp=140 Ki=518 Kd=2.59

53

Figure 4.22 PID controller Kp=700 Ki=518 Kd=2.59

Table 4.5 Comparison of PID controller

COMPARISON

Kp Ki Kd

TIME RISE(s) SETTLING

TIME (s)

STEADY

STATE

140 5.18 2.59 0.00803 0.0144 1

700 5.18 2.59 0.00803 0.0144 1

140 518 51.8 0.00148 0.00262 1

700 518 51.8 0.00148 0.00262 1

140 5.18 51.8 0.00148 0.00262 1

700 5.18 51.8 0.00148 0.00262 1

140 518 2.59 0.00803 0.0144 1

700 518 2.59 0.00803 0.0144 1

Table 4.5 show increasing the value of Integral gain, Ki and Derivative gain, Kd

will reduce the value of time rise, settling time, and steady state.

54

According to the graphs and tables in this chapter, it can prove that using

Proportional-Integral-Derivative (PID) Controller is best controller compared to using

no controller, Proportional Controller, Proportional-Integral (PI) Controller and

Proportional-Derivative (PD) Controller

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The controlling speed of DC servo motor using Proportional-Integral-Derivative

(PID) algorithm had been presented using m-file simulation in MATLAB and PIC

microcontroller is an implementation to prove it. This project’s objective is not

successfully achieved. The simulation of controlling the speed of DC servo motor using

PID algorithm is successfully simulate in MATLAB but had some problem to

implement PID algorithm in PIC microcontroller. It is because of difficulty to develop

the program of the PIC microcontroller. Besides that, it also had problem to interface

DC servo motor to the circuit hardware.

56

5.2 Recommendation

There are some suggestions for the future work

i. Make simulation of controlling the speed of DC motor using other software

such as LABVIEW.

ii. Combining PID controller with the other controller such as fuzzy logic in

order to get a high performance system.

5.3 Commercialization

Making analysis for the project is the first step before make real project. The

analysis is doing based on the simulation of the project. The successfully of the project

is depend on the analysis of the simulation that be done before.

In industry, the engineers always make analysis of the performance on the

machine to improve quality and production and also to overcome their problems. By

making the simulation on that machine using various tools is the important step for some

mostly project.

This project presented the simulation by using MATLAB/Simulink as a tool in

making analysis. So, this project can be used as reference for the engineering student or

any engineer that work with simulation and doing analysis.

57

5.4 List and Cost of the Component

Table 5.1 List and cost of components

Components Specifications Quantity Cost

PIC16F84 1 25.00

18 pin 1 0.20
IC base

16 pin 1 0.18

10pF 2 0.16

4.7nF 1 0.08

100nF 2 0.20

10uF 4 0.48

1uF 2 0.24

Capacitor

100uF 1 0.20

Resistor 16KΩ 1 0.04

Header 10 8.00

Heat Sink 1 0.70

Regulator 7805 1 2.00

Reset switch 1 0.60

Crystal 4MHz 1 1.90

Wire Wrap 1 40.00

Wrap Tool 1 -

RS232 1 0.60

MAX232 1 4.00

Ribbon Wire 1 3.30

Strip Board 1 5.00

 TOTAL 92.88

The total estimation for this project is approximately RM92.88. This cost of this

project does not involve the cost of DC servo motor. The amount is affordable.

58

REFERENCES

[1] 1 August 2008, Citing Internet Sources URL

http://www.hansen-motor.com/servo-motors.htm

[2] 15 February 2008, Citing Internet Sources URL

http://www.geocities.com/nozomsite/pic6.htm

[3] 14 February 2008, Citing Internet Sources URL

http://en.wikipedia.org/wiki/PID_controller

[4] 20 July 2008, Citing Internet Sources URL

http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

[5] 14 February 2008, Citing Internet Sources URL

http://www.jashaw.com/pid/tutorial/pid6.html

[6] Sergey E. Lyshevski. Electromechanical Systems, Electric Machines, and Applied

Mechatronics. Boca Raton, Florida. CRC Press LLC. 2000

[7] D.W. Smith. PIC in Practice, A Project-Based Approach. 2nd Ed. Jordan Hill.

Elsevier

59

[8] 25 Mac 2008, Citing Internet Sources URL

http://www.seattlerobotics.org/encoder/200001/simplemotor.htm

[9] 1 April 2008, Citing Internet Sources URL

http://www.mstarlabs.com/control/znrule.html

[10] 29 June 2008, Citing Internet Sources URL

http://www.sciencedirect.com/science

[11] Dogan Ibrahim. PIC BASIC Projects, 30 Projects Using PIC BASIC and PIC

BASIC PRO. Jordan Hill. Elsevier

60

APPENDIX A

Project Programming

61

PIC 16F84 Project Programming

motor var portb.0

trisb = 0

trisa = 1

 backward: PULSOUT 0,130

 PULSOUT 1,170

 PAUSE 20

 goto backward

motor var portb.0

J var word

trisb = 0

loop: PULSOUT 0,130

 PAUSE 20

 goto loop

loop2: PULSOUT 1,170

 PAUSE 20

 goto loop2

end

62

MATLAB Project Programming

J=0.01;

b=0.1;

K=0.01;

R=1;

L=0.5;

A=[-b/J K/J

 -K/L -R/L];

B=[0

 1/L];

C=[1 0];

D=0;

[num,den]=ss2tf(A, B, C, D);

num=num(3);

Kp=100;

Ki=1;

Kd=1;

numc=[Kd, Kp, Ki];

denc=[1 0];

numa=conv(num,numc);

dena=conv(den,denc);

[numac,denac]=cloop(numa,dena);

step(numac,denac)

63

APPENDIX B

Whole Circuit Diagram

64

65

APPENDIX C

PIC 16F84A Datasheet

66

67

68

69

70

71

72

73

74

75

APPENDIX D

Regulator 7805 Datasheet

76

77

APPENDIX E

Servo Motor

Clifton Precision JDH 2250-HF-2C-E

78

79

80

81

82

83

84

85

86

87

APPENDIX F

CD Content

	1.pengesahan_status_tesis.doc
	2.acknowledgment_by_supervisor.doc
	3.title.doc
	4.declaration.doc
	5.Dedicated to my beloved parent.doc
	6.ACKNOWLEDGEMENT.doc
	7.ABSTRACT.doc
	8.ABSTRAK.doc
	9.TABLE OF CONTENTS.doc
	10.LIST OF TABLES.doc
	11.LIST OF FIGURES.doc
	12.LIST OF APPENDICES.doc
	CHAPTER 1-intro.doc
	CHAPTER 2-literature.doc
	CHAPTER 3.doc
	CHAPTER 3-methodology.doc
	CHAPTER 4-baru.doc
	CHAPTER 5-conclu.doc
	REFERENCES.doc
	APPENDIX A.doc

