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A B S T R A C T

This paper examines two-stage iterative methods, specifically the Geometric Mean (GM) method
and its variants, for solving dense linear systems associated with first-kind Fredholm integral
equations with semi-smooth kernels. These equations, characterised by ill-posedness and sensi-
tivity to input perturbations, are discretised using a composite closed Newton-Cotes quadrature
scheme. The study evaluates the computational performance and accuracy of the standard GM
method, also referred to as the Full-Sweep Geometric Mean (FSGM), in comparison with the Half-
Sweep Geometric Mean (HSGM) and Quarter-Sweep Geometric Mean (QSGM) methods. Nu-
merical experiments demonstrate significant reductions in computational complexity and
execution time while maintaining high solution accuracy. The QSGM method achieves the best
performance among the tested methods, highlighting its effectiveness in addressing computa-
tional challenges associated with first-kind Fredholm integral equations.

1. Introduction

Fredholm integral equations are fundamental in various fields of mathematical physics and applied sciences. This study focuses on
the numerical solution of first-kind linear Fredholm integral equations with semi-smooth kernels, which are characterised by their ill-
posed nature. Such equations exhibit sensitivity to small perturbations in input data, often resulting in dense, ill-conditioned systems
upon discretisation. Addressing these challenges is essential for advancing theoretical frameworks and practical applications [8,16].
The general form of a first-kind linear Fredholm integral equation is expressed as:
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∫β

α

K(x, t)y(t)dt = f(x), x ∈ [α, β] (1)

where K(x, t) represents the kernel, f(x) is the known function, and y(t) is the unknown function to be determined. If operator κ is
denoted by

κ : S→T, κ(y(t)) =
∫β

α

K(x, t)y(t)dt (2)

then the following definitions are satisfied.

Definition 1. [16]. A kernel K(x, t) is called q- semi-smooth if

K(x, t) =
{
K1(x, t) if α ≤ t ≤ x
K2(x, t) if x ≤ t ≤ β (3)

where K1,2(x, t) ∈ Cq
[α,β] × [α,β] for some q > 1.

Definition 2. [8]. Let κ : S→T be an operator from normed space S into a normed space T, the equation κy = f is called well-posed if κ
is onto, one to one and the inverse operator κ− 1 : T→S is continuous. Otherwise, the equation is called ill-posed.Semi-smooth kernels
are prevalent in practical problems and demand specialised numerical techniques for accurate and stable solutions.

A numerical approach for solving integral equations (1) is a crucial area of scientific research. In recent years, several effective
discretization methods for Eq. (1) have been developed, as referenced in [2,3,5,8,10–12,15]. However, these discretization techniques
often result in dense linear systems, which can become computationally prohibitive, particularly when direct methods are used as the
order of the system increases. As a result, iterative methods provide a more efficient alternative for solving these systems.

The concept of half-sweep iteration was introduced by Abdullah [1] via the Explicit Decoupled Group (EDG) method for solving
two-dimensional Poisson equations. This approach was later extended to quarter-sweep iteration concept through the Modified
Explicit Group (MEG) method, resulting in enhanced computational efficiency [14]. Subsequently, numerous studies have explored
the use of half- and quarter-sweep iteration concepts for solving a range of scientific problems, including two-dimensional Poisson
equations [18–20], Fredholm integral equations [9–12], two-dimensional free-space wave propagation [4], and linear complemen-
tarity problems [6].

Among the various iterative methods, the Geometric Mean (GM) method stands out as an efficient numerical method for solving
non-singular linear systems. In addition to the standard GM method, also known as the Full-Sweep Geometric Mean (FSGM) method,
several variants have been proposed, including the Half-Sweep Geometric Mean (HSGM) [17] and Quarter-Sweep Geometric Mean
(QSGM) [21] methods. These variants are derived by integrating the standard GMmethod with the concept of half- and quarter-sweep
iterations, respectively. Previous studies have explored the effectiveness of the GM method and its variants for solving second-kind
linear Fredholm integral equations [13]. However, the numerical approach for solving first-kind Fredholm integral equations dif-
fers significantly due to the inherent ill-posed nature of such equations. First-kind equations are more sensitive to perturbations in the
input data, often resulting in dense, ill-conditioned systems upon discretisation. Consequently, iterative methods like FSGM, HSGM,
and QSGM require careful tuning and may necessitate additional computational strategies, to ensure stability and accuracy. In
contrast, second-kind equations are generally well-posed and yield better-conditioned systems, which are less sensitive to numerical
instability.

This study extends the application of these methods to first-kind linear Fredholm integral equations, demonstrating the ability to
handle the heightened numerical challenges posed by such systems. Specifically, the performance of the QSGMmethod is investigated
in solving dense linear systems derived from the discretisation of first-kind Fredholm integral equations with a semi-smooth kernel,
using a first-order composite closed Newton-Cotes quadrature scheme. The performance of the QSGM method is then compared with
the FSGM and HSGM methods.

The remainder of this paper is organized as follows. In Section 2, the formulation of the full-, half-, and quarter-sweep approxi-
mation equations using the composite closed Newton-Cotes quadrature method is detailed. The following sections focus on the for-
mulations and computational complexities of the FSGM, HSGM, and QSGMmethods. Section 5 presents the numerical results from the
simulations to evaluate the performance of the tested methods, and Section 6 concludes with final remarks.

2. Newton-Cotes quadrature approximation equations

To address the numerical solution of first-kind Fredholm integral equations, the composite closed Newton-Cotes quadrature scheme
is applied for discretisation. Consider the interval [α,β], which is uniformly divided into N subintervals, yielding a discrete set of points
xi = α + ih (i= 0,1, 2,⋯,N − 2,N − 1,N) and tj = α + jh (j = 0,1,2,⋯,N − 2,N − 1,N). The constant step size, h, is defined as:

h =
β − α
N

. (4)
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For simplicity in subsequent derivations, the following notations are introduced:

Ki,j = K
(
xi, tj

)

yj = y
(
tj
)

fi = f(xi)

⎫
⎬

⎭
. (5)

As detailed in [9,10], the application of the composite closed Newton-Cotes quadrature method simplifies Eq. (1) to:

∑N

j=0
wjKi,jy

∧

j = fi, i = 0,1, 2,⋯,N − 2,N − 1,N. (6)

The solution ŷ approximates the exact solution y of (1), where wj represents the weights of the quadrature method. The standard
composite closed Newton-Cotes quadrature approximation equations, as defined in Eq. (6), are commonly referred to as the full-sweep
composite closed Newton-Cotes quadrature approximation equations. As illustrated in Fig. 1, the finite grid networks depict the
distribution of uniform node points used in formulating the half- and quarter-sweep composite closed Newton-Cotes quadrature
approximation equations.

As shown in Fig. 1, the half- and quarter-sweep iterative methods calculate approximate values only at specific types of node points
● until the convergence criterion is met. Once convergence is achieved, the approximate solutions for the remaining node points are
computed directly [1,13,14].

By incorporating the half- and quarter-sweep iteration concepts, the generalized composite closed Newton-Cotes quadrature
approximation equations are formulated for full-, half-, and quarter-sweep approaches, as follows:

∑N

j=0,p,2p
wjKi,j ŷj = fi, i = 0, p,2p,⋯,N − 2p,N − p,N. (7)

The parameter p, corresponding to one, two, and four, signifies the full-sweep, half-sweep, and quarter-sweep composite closed
Newton-Cotes quadrature approximation equations, respectively. Additionally, the approximation equation in Eq. (7) can be refor-
mulated in matrix form as:

Aŷ = f (8)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w0K0,0 wpK0,p w2pK0,2p ⋯ wN− 2pK0,N− 2p wN− pK0,N− p wNK0,N
w0Kp,0 wpKp,p w2pKp,2p ⋯ wN− 2pKp,N− 2p wN− pKp,N− p wNKp,N
w0K2p,0 wpK2p,p w2pK2p,2p ⋯ wN− 2pK2p,N− 2p wN− pK2p,N− p wNK2p,N

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
w0KN− 2p,0 wpKN− 2p,p w2pKN− 2p,2p ⋯ wN− 2pKN− 2p,N− 2p wN− pKN− 2p,N− p wNKN− 2p,N
w0KN− p,0 wpKN− p,p w2pKN− p,2p ⋯ wN− 2pKN− p,N− 2p wN− pKN− p,N− p wNKN− p,N
w0KN,0 wpKN,p w2pKN,2p ⋯ wN− 2pKN,N− 2p wN− pKN,N− p wNKN,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦(

N
p+1

)

×

(
N
p+1

)

Fig. 1. a) and b) show distribution of uniform node points for the half- and quarter-sweep cases respectively.
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ŷ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷ0
ŷp
ŷ2p
⋮

ŷN− 2p
ŷN− p
ŷN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and f =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0
fp
f2p
⋮

fN− 2p
fN− p
fN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From Eq. (8), it is noticeable that the application of half- and quarter-sweep iteration concepts reduces the size of the original matrix

from (N+1) × (N+1) to
(
N
2+1

)

×

(
N
2+1

)

and
(
N
4 + 1

)

×

(
N
4 + 1

)

, respectively. This reduction indirectly decreases the

computational complexity of the iterative methods during the iteration process. For the first-order composite closed Newton-Cotes
quadrature method, the quadrature weights, wj, satisfy the following relation:

wj =

⎧
⎨

⎩

1
2
ph, j = 0,N

ph, otherwise
. (9)

3. Geometric mean iterative methods

The FSGM, HSGM, and QSGM methods are fundamentally two-stage iterative methods. The iteration process involves solving two
independent systems, with ŷ1 and ŷ2 representing intermediate solutions for ŷ. To derive the formulation for all three GMmethods, the
following splitting is considered:

A = D − L − U (10)

where

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w0K0,0
wpKp,p

w2pK2p,2p 0
⋱

0 wN− 2pKN− 2p,N− 2p
wN− pKN− p,N− p

wNKN,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

− L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w0Kp,0
w0K2p,0 wpK2p,p 0

⋮ ⋮ ⋱
w0KN− 2p,0 wpKN− 2p,p ⋯ wN− 3pKN− 2p,N− 3p
w0KN− p,0 wpKN− p,p ⋯ wN− 3pKN− p,N− 3p wN− 2pKN− p,N− 2p
w0KN,0 wpKN,p ⋯ wN− 3pKN,N− 3p wN− 2pKN,N− 2p wN− pKN,N− p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

− U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

wpK0,p w2pK0,2p w3pK0,3p ⋯ wN− pK0,N− p wNK0,N
w2pKp,2p w3pKp,3p ⋯ wN− pKp,N− p wNKp,N

w3pK2p,3p ⋯ wN− pK2p,N− p wNK2p,N
⋱ ⋮ ⋮

0 wN− pKN− 2p,N− p wNKN− 2p,N
wNKN− p,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Therefore, for non-singular (D − ωL) and (D − ωU) matrices, the general formulation for the FSGM, HSGM and QSGM methods is
defined as follows:

(D − ωL)ŷ1 = [(1 − ω)D+ ωU]ŷ(k)
+ ωf

(D − ωU)ŷ2 = [(1 − ω)D+ ωL]ŷ(k)
+ ωf

ŷ(k+1)
=

(
ŷ1 ∘ ŷ2

)1
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(11)

where ω, ∘, ( ⋅ )
1
2 and k denotes the acceleration parameter, Hadamard product, Hadamard power and k-th iteration, respectively.
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The iterative scheme for the FSGM, HSGM, and QSGM methods, applied to solve the linear systems in Eq. (8), take the following
form:

ŷ(k+1)
= TFSGM ŷ

(k)
+ cFSGMf , (12)

ŷ(k+1)
= THSGMŷ

(k)
+ cHSGMf (13)

and

ŷ(k+1)
= TQSGM ŷ

(k)
+ cQSGMf (14)

respectively, where

TFSGM = THSGM = TQSGM =
[(
(D − ωL)− 1((1 − ω)D+ ωU)

)(
(D − ωU)− 1((1 − ω)D+ ωL)

)]1
2

and

cFSGM = cHSGM = cQSGM =
[
ω2(D − ωL)− 1(D − ωU)− 1

]1
2.

It is already noted that the successive approximations (12), (13) and (14) for k = 0,1, 2,⋯ converge for each cFSGM ∈ CN+1, cHSGM ∈

C
N
2+1 and cQSGM ∈ C

N
4+1, respectively and, each ŷ(0) ∈ CN+1, ŷ(0) ∈ C

N
2+1 and ŷ(0) ∈ C

N
4+1, respectively if and only if the spectral radius

of the iterationmatrices i.e. TFSGM, THSGM and TQSGM is less than one, that is, ρ(TFSGM) < 1, ρ(THSGM) < 1 and ρ(TQSGM) < 1 (Theorem 4.1

Algorithm 1
FSGM, HSGM and QSGM schemes.

i. Set ŷ(0) = ŷ1 = ŷ2 , ε, ω, w, K and f.
ii. Iteration cycle

a. Stage 1
 1. Level 1
  for i = 0,p,2p,⋯,N − 2p,N − p,N
  Compute

ŷ1 i←(1 − ω)ŷ(k)i +
ω

wiKi,i

(
fi −

∑i− p
j=0, p, 2p

wjKi,j ŷ1 j −
∑N

j=i+p, i+2p, i+3p
wjKi,j ŷ

(k)
j

)

b. Stage 2
 1. Level 2
  for i = N,N − p,N − 2p,⋯,2p,p,0
  Compute

ŷ2 i←(1 − ω)ŷ(k)i +
ω

wiKi,i

(
fi −

∑i− p
j=0, p, 2p

wjKi,j ŷ
(k)
j −

∑N
j=i+p, i+2p, i+3p

wjKi,j ŷ2 j
)

 2. for i = 0,p,2p,⋯,N − 2p,N − p,N
  Compute

ŷ(k+1)i ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ŷ1 i ŷ2 i

)1
2 if ŷ1 i ≥ 0 ∧ ŷ2 i ≥ 0 (Case1)

−
(
ŷ1 i ŷ2 i

)1
2 if ŷ1 i < 0 ∧ ŷ2 i < 0 (Case2)

ŷ1 i −
( ⃒
⃒ŷ1 i ŷ2 i

⃒
⃒
)1
2 if ŷ1 i > 0 ∧ ŷ2 i < 0 (Case3)

ŷ2 i −
( ⃒
⃒ŷ1 i ŷ2 i

⃒
⃒
)1
2 if ŷ1 i < 0 ∧ ŷ2 i > 0 (Case4)

iii. Check the convergence criterion. If satisfied, proceed to Step (v) for the FSGM method or Step (iv) for the HSGM and QSGM methods. Otherwise, repeat the
iteration cycle (i.e., return to Step (ii)).

iv. Compute the remaining points
a. HSGM method


ŷi =

⎧
⎪⎪⎨

⎪⎪⎩

3
8
ŷi− 1 +

3
4
ŷi+1 −

1
8
ŷi+3 , i = 1,3, 5,⋯,N − 3

3
4
ŷi− 1 +

3
8
ŷi+1 −

1
8
ŷi− 3, i = N − 1

b. QSGM method

ŷi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
8
ŷi− 2 +

3
4
ŷi+2 −

1
8
ŷi+6 , i = 2,6, 10,⋯,N − 6

3
4
ŷi− 2 +

3
8
ŷi+2 −

1
8
ŷi− 6, i = N − 2

3
8
ŷi− 1 +

3
4
ŷi+1 −

1
8
ŷi+3 , i = 1, 3,5,⋯,N − 3

3
4
ŷi− 1 +

3
8
ŷi+1 −

1
8
ŷi− 3, i = N − 1

v. Stop
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in [7]). It is also palpable that the product of both ŷ1 and ŷ2 must be nonnegative values. Furthermore, slight modifications are
required in calculating ŷ(k+1) when ŷ1 or/and ŷ2 are negative value(s). Such modifications are explained in Algorithm 1.

By setting ŷi = ŷj, the algorithms for the FSGM, HSGM and QSGM methods, corresponding to the full-sweep, half-sweep and
quarter-sweep composite closed Newton-Cotes quadrature approximation equations, respectively, are outlined in Algorithm 1 to solve
Eq. (1). The GM algorithms are executed by alternately using all equations at Levels 1 and 2 until the solution satisfies a specified
convergence criterion, i.e. the maximum norm ‖ ŷ(k+1) − ŷ(k)‖≤ ε where ε is the convergence criterion. The GM methods are distin-
guished by well-defined substructures within their overall mathematical framework, allowing these components to be executed
concurrently. This characteristic makes the GM methods particularly suitable for implementation on a multiprocessor system.
Following the iteration process, additional computations are required for the HSGM and QSGM methods to calculate the remaining
points. In this study, the second-order Lagrange interpolation technique [13] is employed to compute these remaining points.

4. Computational complexity analysis

This section presents a computational complexity analysis based on arithmetic operations. To evaluate the arithmetic complexity of
the FSGM, HSGM, and QSGM methods with the associated composite closed Newton-Cotes quadrature approximation equations for
solving Eq. (1), an estimate of the computational work required by the iterative methods has been carried out. This estimate considers
the arithmetic operations performed during each iteration. According to Algorithm 1, four distinct cases for the GM methods can be
identified. In this analysis, the kernel value K, the function f and weights wj are precomputed and stored in advance.

From Algorithm 1, it is observed that the total number of arithmetic operations for Case 1 is 6N
p + 14 for each node point in the

solution domain. For Cases 2, 3, and 4, the required operations are 6N
p + 15. The value of p which corresponds to one, two, and four,

represents the FSGM, HSGM, and QSGM methods, respectively. For the HSGM and QSGM methods, the iteration process is performed

only on
(
N
2+1

)

and
(
N
4+1

)

mesh points, respectively. Consequently, an additional eight arithmetic operations are needed to compute

the remaining points after convergence, using second-order Lagrange interpolation. The total arithmetic operations involved in the
FSGM, HSGM, and QSGM methods are summarized in Table 1.

5. Numerical tests

To evaluate the performance of the FSGM, HSGM, and QSGM iterative methods, several numerical tests were conducted on two
first-kind linear Fredholm integral equations with semi-smooth kernels.

Test Problem 1 [16]
Consider the following linear Fredholm integral equations of the first kind:

∫1

0

K(x, t)y(t)dt =
1
6
(
x3 − x

)
, x ∈ [0, 1] (15)

with the kernel defined as:

K(x, t) =
{
t(x − 1), t < x
x(t − 1), x ≤ t .

The exact solution to this problem is:

y(x) = x.

Table 1
Total computing operations involved for the FSGM, HSGM and QSGM methods.

Case Total Operations

FSGM HSGM QSGM

1
(
6N2 + 20N + 14

)
k

(
3
2
N2 + 10N + 14

)

k+ 4N
(
3
8
N2 + 5N + 14

)

k+ 6N

2
(
6N2 + 21N + 15

)
k

(
3
2
N2 +

21
2
N + 15

)

k+ 4N
(
3
8
N2 +

21
4
N + 15

)

k+ 6N

3
(
6N2 + 21N + 15

)
k

(
3
2
N2 +

21
2
N + 15

)

k+ 4N
(
3
8
N2 +

21
4
N + 15

)

k+ 6N

4
(
6N2 + 21N + 15

)
k

(
3
2
N2 +

21
2
N + 15

)

k+ 4N
(
3
8
N2 +

21
4
N + 15

)

k+ 6N

(k is the number of iterations).
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Test Problem 2 [16]
Consider the following linear Fredholm integral equations of the first kind

∫1

0

K(x, t)y(t)dt = ex + (1 − e)x − 1, x ∈ [0, 1] (16)

with the kernel defined as:

K(x, t) =
{
t(x − 1), t ≤ x
x(t − 1), x < t .

The exact solution to this problem is:

y(x) = ex.

For the numerical tests, three evaluation parameters were measured i.e. the number of iterations, CPU time (in seconds) and ac-
curacy. Accuracy was measured by the maximum absolute error, defined as ‖ eN‖= maxα≤x≤β|y(x) − ŷ(x)|. The convergence test
employed a tolerance error, ε = 10− 10, and simulations were conducted on several different values ofN. Additionally, the experimental
values of ω were determined within a ± 0.01 range by running Algorithm 1 for different values ω and selecting those that minimized
the number of iterations. For comparison, numerical results from the standard Gauss-Seidel (GS) method with the standard composite
closed Newton-Cotes quadrature approximation equations were also included for solving test problems 1 and 2. All methods were
implemented on a computer with an Intel(R) Core(TM) 2 CPU 1.66 GHz processor, and the algorithm was coded in C programming
language. The numerical results for the proposed methods on test problems 1 and 2 are provided in Tables 2 and 3, respectively.
Additionally, Table 4 summarizes the reduction percentages in terms of the number of iterations and CPU time for the FSGM, HSGM,
and QSGM methods in comparison with the GS method.

The numerical results in Tables 2 and 3 demonstrate the performance of the proposed methods (FSGM, HSGM, and QSGM) in terms
of number of iterations, CPU time, and maximum absolute error. These results align with the computational complexity estimates
outlined in Table 1. Specifically, Table 1 highlights the reduced arithmetic operations for HSGM and QSGM methods compared to
FSGM. This reduction directly translates to fewer iterations and hierarchical decrease in CPU time from FSGM to HSGM to QSGM, as
observed in Tables 2 and 3, matches the reduction in computational operations pre iteration as outlined in Table 1. Furthermore,

Table 2
Comparison of number of iterations, CPU time and maximum absolute error for the tested iterative methods (Test Problem 1).

Number of iterations

N Methods

GS FSGM HSGM QSGM

240 303 106 (ω = 1.81) 104 (ω = 1.80) 102 (ω = 1.80)
480 375 110 (ω = 1.81) 106 (ω = 1.81) 104 (ω = 1.80)
960 451 110 (ω = 1.82) 110 (ω = 1.81) 106 (ω = 1.81)
1920 540 114 (ω = 1.83) 110 (ω = 1.82) 110 (ω = 1.81)
3840 637 127 (ω = 1.85) 114 (ω = 1.83) 110 (ω = 1.82)
7680 743 153 (ω = 1.87) 127 (ω = 1.85) 114 (ω = 1.83)

CPU time (in seconds)

N Methods

GS FSGM HSGM QSGM

240 4.29 2.97 1.98 1.04
480 13.39 9.88 3.20 2.23
960 52.31 35.41 11.24 4.12
1920 183.39 117.27 48.16 15.92
3840 595.79 338.40 154.80 60.55
7680 1974.28 1064.13 520.34 188.19

‖ eN‖

N Methods

GS FSGM HSGM QSGM

240 6.847871 × 10–10 4.756342 × 10–10 5.436210 × 10–10 5.197360 × 10–10

480 7.368467 × 10–10 5.863278 × 10–10 4.756342 × 10–10 5.436210 × 10–10

960 9.065918 × 10–10 5.529916 × 10–10 5.863278 × 10–10 4.881404 × 10–10

1920 8.796745 × 10–10 3.302765 × 10–10 5.529916 × 10–10 5.863278 × 10–10

3840 9.369449 × 10–10 2.407165 × 10–10 3.302765 × 10–10 5.529916 × 10–10

7680 9.687818 × 10–10 9.615541 × 10–10 2.407259 × 10–10 3.302799 × 10–10
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Table 4 summarises the reduction percentages in both number of iterations and CPU time relative to the GS method, supporting the
connection between the theoretical complexity in Table 1 and the observed numerical results in Tables 2 and 3.

6. Conclusions

This paper examines the effectiveness of the QSGMmethod for solving dense linear systems resulting from the discretization of first
kind linear Fredholm integral equations using a first-order composite closed Newton-Cotes quadrature scheme. Based on the numerical
results obtained, it clearly shows that

• Application of the GM methods reduce number of iterations and computational time compared to the GS method.
• QSGM method has the least number of iterations and computes with the fastest time for all considered mesh sizes.
• In terms of accuracy, the approximation solution obtained by using the QSGM method is comparable with the solutions generated
via the GS, FSGM and HSGM methods.

Finally, it can be concluded that the QSGM method outperforms both the FSGM and HSGM methods, as well as the GS method, in
terms of iterations and CPU time. This is primarily due to the reduction in computational complexity, as the QSGM method only
considers approximately a quarter of the interior node points in the solution domain during the iteration process.

Table 3
Comparison of number of iterations, CPU time and maximum absolute error for the tested iterative methods (Test Problem 2).

Number of iterations

N Methods

GS FSGM HSGM QSGM

240 315 116 (ω = 1.88) 112 (ω = 1.87) 110 (ω = 1.85)
480 388 117 (ω = 1.88) 116 (ω = 1.88) 112 (ω = 1.87)
960 470 118 (ω = 1.90) 117 (ω = 1.88) 116 (ω = 1.88)
1920 559 118(ω = 1.90) 118 (ω = 1.90) 117 (ω = 1.88)
3840 657 130(ω = 1.94) 118(ω = 1.90) 118 (ω = 1.90)
7680 769 168 (ω = 1.94) 130 (ω = 1.94) 118 (ω = 1.90)

CPU time (in seconds)

N Methods

GS FSGM HSGM QSGM

240 4.44 3.22 2.23 1.14
480 14.83 10.49 3.40 2.51
960 58.32 37.63 12.00 4.75
1920 195.66 119.82 50.66 16.73
3840 633.92 348.22 161.10 68.07
7680 2159.60 1092.15 530.17 198.83

‖ eN‖

N Methods

GS FSGM HSGM QSGM

240 3.916332 × 10–06 3.916175 × 10–06 1.740409 × 10–05 6.846364 × 10–05

480 9.810628 × 10–07 9.808836 × 10–07 4.387394 × 10–06 1.740409 × 10–05

960 2.453851 × 10–07 2.452189 × 10–07 1.101227 × 10–06 4.387394 × 10–06

1920 6.290920 × 10–08 6.117839 × 10–08 2.756174 × 10–07 1.101227 × 10–06

3840 2.602358 × 10–08 1.681454 × 10–08 6.873765 × 10–08 2.756174 × 10–07

7680 4.977974 × 10–08 6.931611 × 10–09 1.809371 × 10–08 6.873765 × 10–08

Table 4
Percentage reduction in the number of iterations and CPU time for the FSGM, HSGM, and QSGM methods compared to the GS method.

Test Problem Methods Number of iterations (%) CPU time (%)

1 FSGM 65.01 – 80.07 26.21 – 46.11
HSGM 65.67 – 82.91 53.84 – 78.52
QSGM 66.33 – 84.66 75.75 – 92.13

2 FSGM 63.17 – 80.22 27.47 – 49.43
HSGM 64.44 – 83.10 49.77 – 79.43
QSGM 65.07 – 84.66 74.32 – 91.86
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