Contents lists available at ScienceDirect

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

Surfactant effects in functionalized multiwall carbon nanotube-filled phase change materials

M. Arif Fikri^a, A.K. Pandey^{b,c,*}, Reji Kumar Rajamony^{d,e}, Kamal Sharma^f, Kalidasan B.^b, M. Samykano^a, D. Buddhi^g, V.V. Tyagi^h

^a Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600, Pekan, Pahang, Malaysia

^b Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering & Technology, Sunway University, No. 5, Jalan Universiti, Bandar

Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia

^c Centre for Global Health, Saveetha Institute of Medical and Technical Sciences, Chennai, India

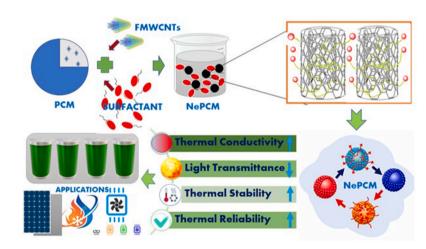
^d Institute of Sustainable Energy, Universiti Tenaga Nasional (National Energy University), Jalan Ikram-Uniten, Kajang, 43000, Selangor, Malaysia

^e Faculty of Engineering and Technology, Parul University, Waghodiya Road, Vadodara, 391760, Gujarat, India

^f Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura, 281406, India

^g CoE for Energy and Eco-sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, 248007, India

^h School of Energy Management, Shri Mata Vaishno Devi University, Katra, (Jammu and Kashmir), 182320, India


HIGHLIGHTS

GRAPHICAL ABSTRACT

- Influence of surfactant on FMWCNT enhanced PCM properties studied.
- Formulated nanocomposites exhibit thermally and chemically stable up to 405 °C.
- · Enhancement in thermal conductivity with bv 150.7 % A70F-1 nanocomposite.
- Light transmission reduced 84.56 % with A70-0.7FS composite compared to pure PCM.
- Thermal and chemical reliability of NePCM was analyzed up to 500 thermal cycles.

ARTICLE INFO

Keywords: Thermal energy storage Phase change materials Thermal conductivity

ABSTRACT

Energy storage using phase change materials (PCM) is an efficient way to harness thermal energy from solar energy due to its higher storage density, particularly for medium-temperature applications. However, the PCMs have lower thermal conductivity; owing to this, the thermal performance and heat transfer rate are inadequate. To address this challenge, the current work explores the integration of carbon-based nanoparticles into the PCM

* Corresponding author. Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering & Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.

E-mail address: adarsh.889@gmail.com (A.K. Pandey).

https://doi.org/10.1016/j.matchemphys.2024.129931

Received 13 May 2024; Received in revised form 1 September 2024; Accepted 4 September 2024 Available online 7 September 2024

^{0254-0584/© 2024} Published by Elsevier B.V.