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Abstract: Two classes of magnetohydrodynamic (MHD) motions of the incompressible Oldroyd-
B fluids through an infinite cylinder are analytically investigated. General expressions are firstly
established for shear stress and velocity fields corresponding to the motion induced by longitudinal
shear stress on the boundary. For validation, the expression of the shear stress is determined by two
different methods. Using an important remark regarding the governing equations for shear stress and
fluid velocity corresponding to the two different motions, this expression is then used to provide the
dimensionless velocity field of the MHD motion of the same fluids generated by a cylinder that rotates
around its symmetry axis. Obtained results can generate exact solutions for any motion of this kind of
Oldroyd-B fluids. Consequently, both types of motions are completely solved. For illustration, some
case studies are considered, and adequate velocity fields are provided. The steady-state components
of these velocities are presented in different forms whose equivalence is graphically proved. The
influence of the magnetic field on the fluid behavior is graphically investigated. It was found that the
fluid flows slower, and a steady state is earlier reached in the presence of a magnetic field. The fluid
behavior when shear stress is given on the boundary is also investigated.

Keywords: Oldroyd-B fluids; unsteady MHD motions; circular cylinder; general solutions

MSC: 76A05

1. Introduction

The incompressible Oldroyd-B fluids, which represent an important class of rate-type
fluids, have had much success in describing the behavior of many polymeric liquids. They
can describe the stress relaxation and the normal stress differences that appear in simple
shear flows but do not bring to light shear thinning or shear thickening, which appear
in many polymeric materials. In spite of this, the Oldroyd-B model, whose constitutive
equations are given by the relations [1]

T = −pI + S, S + λ
DS
Dt

= 2µ

(
D + λr

DD
Dt

)
, (1)

is amenable to analysis and can describe the behavior of a large class of polymeric liquids.
In the above relation, T is the stress tensor, S is the extra-stress tensor, D is the rate of defor-
mation tensor, −pI is the indeterminate stress, p denotes the pressure, µ is the fluid viscosity,
λ and λr are relaxation and retardation times, and DS

Dt = dS
dt − LS − SLT , L = grad(v) is

the time upper convected derivative. Here, v is the velocity vector. This model contains
incompressible Maxwell and Newtonian fluids when λ = 0 or λ = λr = 0, respectively.
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The Oldroyd-B fluids store energy like linearized elastic solids, but their dissipation
corresponds to a mixture of two viscous fluids. Some studies have shown that they can
model the behavior of many complex fluids like polymer solutions and melts. They
can also be used in water filtration systems, oil reservoirs and biomedical fields. This
is the reason that exact solutions for different motions of such fluids are important for
researchers. They help us to emphasize the fluid behavior in different motion situations
or can be used to check numerical schemes that are developed to study more complex
motion problems or to establish the accuracy of different approximate solutions. The first
exact solutions for unsteady motions of the incompressible Oldroyd-B fluids in cylindrical
domains seem to be those of Waters and King [2]. Interesting solutions for other types of
motions of same fluids have been established by Rajagopal and Bhatnagar [3], Wood [4],
Fetecau [5], Fetecau et al. [6], McGinty et al. [7], Corina Fetecau et al. [8], Jamil and Khan [9],
Imran et al. [10] and Ullah et al. [11]. The existence results of weak solutions for steady
flows of fluids of Oldroyd type were recently obtained by Baranovskii and Artemov [12].

On the other hand, the MHD motions of fluids have many applications like MHD
generators, manufacturing of polymers, plasma studies, biological fluids, nuclear reactors,
hydrology and many others. The interplay between a magnetic field and an electrically con-
ducting fluid in motion involves effects with physical and chemical applications. Solutions
for MHD motions of electrical conducting incompressible Oldroyd-B fluids (ECIOBFs) in
rectangular domains were obtained by Khan et al. [13], Zahid et al. [14] and Ghosh et al. [15].
At the same time, the flow of fluids through porous media has important applications in
astrophysics, geophysics, composite manufacturing processes, oil reservoir technology,
petroleum industry and agricultural engineering. Exact solutions for MHD motions of
ECIOBFs through porous media in rectangular domains were established by Tan and Ma-
suoka [16], Khan et al. [17], Hayat et al. [18], Sultan et al. [19], Khan and Ijaz [20]. There
are few exact solutions for such motions of ECIOBFs in cylindrical domains. They were
obtained by Hayat et al. [21], Hamza [22], Riaz et al. [23], Fetecau and Vieru [24], and
Fetecau et al. [25].

Our interest here is to establish exact general solutions for two classes of unidirectional
MHD motions of ECIOBFs in an infinite circular cylinder that rotates around its symmetry
axis or applies longitudinal time-dependent shear stresses to the fluid. Firstly, the fluid
motion with shear stress on the boundary is investigated, and general expressions are
provided for the dimensionless non-trivial shear stress and the fluid velocity. On the basis
of a simple observation, one of these expressions is used to give the dimensionless velocity
corresponding to motions in which the fluid velocity is prescribed on the boundary. In
this way, two important classes of MHD motions of ECIOBFs are completely solved using
an infinite circular cylinder. For illustration, some particular cases have been considered,
and the corresponding dimensionless velocity fields were used to bring to light some
characteristics of the fluid behavior. It was found that the fluid flows slower in the presence
of a magnetic field, and the steady state is reached earlier. The correctness of the obtained
results is also investigated.

2. Problem Presentation

Consider an electrical conducting incompressible Oldroyd-B fluid (ECIOBF) at rest
in an infinite horizontal circular cylinder of radius R. At the moment t = 0+ the cylinder
is pulled with time-dependent shear stress S f (t) along its symmetry axis, and a circular
magnetic field of strength B acts perpendicular to this axis. Here, S is a constant shear stress
while the function f (·) is piecewise continuous and f (0) = 0. Owing to the shear, the fluid
is gradually moved, and we are looking for a velocity field of the form

v = v(r, t) = (0, 0, u(r, t)), (2)

in a suitable system of cylindrical coordinates r, θ and z (Figure 1).
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Figure 1. Flow geometry.

Supposing that the extra-stress tensor S, as well as the velocity vector v, is a function
of r and t only and bearing in mind the fact that the fluid has been at rest up to the initial
moment t = 0, it is easy to show that the non-null shear stress η(r, t) = Srz(r, t) must satisfy
the next partial differential equation(

1 + λ
∂

∂t

)
η(r, t) = µ

(
1 + λr

∂

∂t

)
∂u(r, t)

∂r
; 0 < r < R, t > 0. (3)

For such motions, the continuity equation is identically satisfied. We also assume that
the fluid is finitely conducting so that the Joule heat due to the presence of an external mag-
netic field is negligible. In addition, there is no surplus electric charge distribution present
in the fluid, the magnetic permeability of the fluid is constant, and the induced magnetic
field is negligible in comparison with the applied magnetic field. In these conditions, in
the absence of a pressure gradient in the flow direction, the balance of linear momentum
reduces to the next relevant partial differential equation [22–24]

ρ
∂u(r, t)

∂t
=

∂η(r, t)
∂r

+
1
r

η(r, t)− σB2u(r, t) ; 0 < r < R, t > 0, (4)

in which ρ is the fluid density and σ is its electrical conductivity. The corresponding initial
and boundary conditions are

u(r, 0) = η(r, 0) = 0, 0 < r < R; η(R, t) = S f (t), t ≥ 0. (5)

The dimensionless forms of the governing Equations (3) and (4), namely(
1 + α

∂

∂t

)
η(r, t) =

(
1 + β

∂

∂t

)
∂u(r, t)

∂r
; 0 < r < 1, t > 0, (6)

∂u(r, t)
∂t

=
∂η(r, t)

∂r
+

1
r

η(r, t)− Mu(r, t); 0 < r < 1, t > 0, (7)

have been obtained using the next non-dimensional variables and functions

r∗ =
1
R

r, t∗ =
ν

R2 t, u∗ =
µ

RS
u, η∗ =

1
S

η, f ∗(t∗) = f
(

R2

ν
t∗
)

(8)

and renouncing to the star notation.
The corresponding initial and boundary conditions are

u(r, 0) = η(r, 0) = 0, 0 < r < 1; η(1, t) = f (t), t ≥ 0, (9)
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while the magnetic parameter M and the constants α, β are defined by the relations

M =
σB2

ρ

R2

ν
=

R2

µ
σB2, α =

νλ

R2 , β =
νλr

R2 . (10)

Exact solutions for MHD motions of a larger class of rate-type fluids through a porous
medium were recently obtained by Fetecau et al. [26] when a differential expression of
shear stress is prescribed on the boundary.

3. General Solutions

In this section, using the Laplace and finite Hankel transforms, we determine closed-
form expressions for the dimensionless shear stress and velocity fields corresponding to
the abovementioned MHD motion of ECIOBFs. By applying the Laplace transform to the
Equalities (6) and (7) and bearing in mind the corresponding initial conditions, one finds
the transformed governing equations

(α s + 1)η(r, s) = (β s + 1)
∂u(r, s)

∂r
; 0 < r < 1, (11)

su(r, s) =
∂η(r, s)

∂r
+

1
r

η(r, s)− Mu(r, s); 0 < r < 1, (12)

in which η(r, s) and u(r, s) are the Laplace transforms of η(r, t) and u(r, t), respectively.

3.1. Determination of Shear Stress

Eliminating transformed velocity u(r, s) between Equations (11) and (12) and bearing
in mind the boundary condition (9), one finds the following boundary value problem

1
r

∂

∂r

[
r

∂η(r, s)
∂r

]
− 1

r2 η(r, s) = a(s)η(r, s); η(1, s) = f (s), (13)

for the function η(r, s). In the above relation, f (s) is the Laplace transform of f (t) while

a(s) =
(αs + 1)(s + M)

βs + 1
. (14)

By multiplying Equation (13) by rJ1(rrn), where J1(·) is the standard Bessel function
of the first kind and one order and rn are the positive roots of the transcendental equation
J1(r) = 0, integrating the result between zero and one and bearing in mind the next identity

1∫
0

J1(rrn)
∂

∂r

[
r

∂η(r, s)
∂r

]
dr = −r2

nηH(rn, s)− rnη(1, s)J0(rn), (15)

one obtains for the finite Hankel transform ηH(rn, s) of η(r, s) the next expression

ηH(rn, s) = − rn J0(rn)

r2
n + a(s)

f (s). (16)

In the above relations, the finite Hankel transform ηH(rn, s) and its inverse η(r, s) are
defined by the next relations [27]:

ηH(rn, s) =
1∫

0

rη(r, s)J1(rrn)dr, η(r, s) = 2
∞

∑
n=1

J1(rrn)

J2
0 (rn)

ηH(rn, s). (17)
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For a suitable form of the final result, we rewrite ηH(rn, s) in the equivalent form

ηH(rn, s) = − J0(rn)

rn
f (s) + f (s)

J0(rn)

rn

a(s)
r2

n + a(s)
(18)

and apply the inverse finite Hankel transform. This results in the following:

η(r, s) = r f (s) + 2 f (s)
∞

∑
n=1

J1(rrn)

rn J0(rn)
Fn(s); Fn(s) =

a(s)
r2

n + a(s)
. (19)

Now, we rewrite Fn(s) in the convenient form

Fn(s) = 1 − r2
n
α

[
β

s + cn

(s + cn)
2 − d2

n
+

1 − βcn

dn

dn

(s + cn)
2 − d2

n

]
, (20)

where

cn =
βr2

n + αM + 1
2α

, dn =

√
(βr2

n + αM + 1)2 − 4α(r2
n + M)

2α
(21)

and apply the inverse Laplace transform. Using the identities (A1) from Appendix A, one
obtains the inverse Laplace transform Fn(t) of Fn(s) in the form

Fn(t) = δ(t)− r2
n
α

[
β cosh(dnt) +

1 − βcn

dn
sinh(dnt)

]
e−cnt, (22)

where δ(·) is the Dirac delta function.
Finally, applying the inverse Laplace transform to the first equality (19) and bearing in

mind Equation (22), one obtains the dimensionless shear stress η(r, t) corresponding to the
motion in the discussion of ECIOBFs in the form

η(r, t) = r f (t)

+2
∞
∑

n=1

J1(rrn)

rn J0(rn)

{
f (t)− r2

n
α

[
β cosh(dnt) +

1 − βcn

dn
sinh(dnt)

]
e−cnt ∗ f (t)

}
,

(23)

where ∗ denotes the convolution product of the two functions. The shear stress given by
the Equality (23) satisfies both the initial and boundary conditions. In Appendix A, for the
validation of this last result, the same expression for the dimensionless shear stress η(r, t)
has been established using the theorem of residues.

3.2. Determination of the Fluid Velocity

From the Equality (12), it immediately results that

u(r, s) =
1

s + M

(
∂

∂r
+

1
r

)
η(r, s), (24)

in which, as it results from the Equations (16) and (17),

η(r, s) = 2
∞

∑
n=1

J1(rrn)

J2
0 (rn)

ηH(rn, s) = −2 f (s)
∞

∑
n=1

rn J1(rrn)

[r2
n + a(s)]J0(rn)

. (25)

Direct computations show that

∂η(r, s)
∂r

+
1
r

η(r, s) = −2 f (s)
∞

∑
n=1

r2
n J0(rrn)

[r2
n + a(s)]J0(rn)

. (26)
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From the Equalities (24) and (26) it results that

u(r, s) = −2 f (s)
∞

∑
n=1

r2
n J0(rrn)

J0(rn)
Gn(s); Gn(s) =

1
(s + M)[r2

n + a(s)]
. (27)

By writing Gn(s) in the convenient form, namely

Gn(s) =
1
α

[
xn

s + M
+

yn

s − s1n
+

zn

s − s2n

]
, (28)

where s1n = −cn + dn < 0, s2n = −cn − dn < 0 and

xn = − βM−1
(s1n+M)(s2n+M)

, yn = βs1n+1
(s1n−s2n)(s1n+M)

,

zn = − βs2n+1
(s1n−s2n)(s2n+M)

(29)

and applying the inverse Laplace transform to Equation (28), one finds that

Gn(t) =
1
α

[
xne−Mt + yne−(cn−dn)t + zne−(cn+dn)t

]
. (30)

Consequently, applying the inverse Laplace transform to Equation (27) and bearing in
mind the Equality (30), one obtains the dimensionless velocity field u(r, t) in the form

u(r, t) = − 2
α

∞

∑
n=1

r2
n J0(rrn)

J0(rn)
f (t)∗

[
xne−Mt + yne−(cn−dn)t + zne−(cn+dn)t

]
, (31)

or equivalently

u(r, t) = −2 f (t)
α

∞
∑

n=1

r2
n J0(rrn)

J0(rn)

(
xn

M
+

yn

cn − dn
+

zn

cn + dn

)
+

2
α

∞
∑

n=1

r2
n J0(rrn)

J0(rn)
f ′(t) ∗

[
xn

M
e−Mt +

yn

cn − dn
e−(cn−dn)t +

zn

cn + dn
e−(cn+dn)t

]
.

(32)

Finally, it is worth pointing out the fact that similar solutions for the electrical con-
ducting incompressible Maxwell fluids performing the same motion can be immediately
obtained, making β = 0, as in the previous relations.

4. Application

Let us now consider the MHD motion of the same ECIOBFs through a porous medium
generated by the infinite circular cylinder at the moment t = 0+ begins to rotate around
its symmetry axis with the time-dependent velocity Vg(t). Here, V is a constant velocity,
while the piecewise continuous function g(·) has a zero value in t = 0. The corresponding
velocity vector w is given by the relation

w = w(r, t) = (0, w(r, t), 0), (33)

in the same system r, θ and z of cylindrical coordinates. Assuming again that the extra-stress
tensor S is a function of r and t and the fact that the fluid has been at rest up to the initial
moment t = 0, it is not difficult to show that the non-trivial shear stress τ(r, t) = Srθ(r, t)
has to satisfy the next partial differential equation(

1 + λ
∂

∂t

)
τ(r, t) = µ

(
1 + λr

∂

∂t

)[
∂w(r, t)

∂r
− 1

r
w(r, t)

]
; 0 < r < R, t > 0. (34)



Mathematics 2024, 12, 3207 7 of 16

The continuity equation is also satisfied while the balance of momentum, in the same
conditions as in Section 2, reduces to the partial differential equation

ρ
∂w(r, t)

∂t
=

∂τ(r, t)
∂r

+
2
r

τ(r, t)− σB2w(r, t); 0 < r < R, t > 0. (35)

The corresponding initial and boundary conditions are

w(r, 0) = η(r, 0) = 0, 0 < r < R; w(r, t) = Vg(t), t ≥ 0. (36)

By introducing the following non-dimensional variables and functions

r∗ =
1
R

r, t∗ =
ν

R2 t, w∗ =
1
V

w, τ∗ =
R

µV
τ, g∗(t∗) = g

(
R2

ν
t∗
)

, (37)

and eliminating the star notation, one obtains the dimensionless forms(
1 + α

∂

∂t

)
τ(r, t) =

(
1 + β

∂

∂t

)[
∂w(r, t)

∂r
− 1

r
w(r, t)

]
; 0 < r < 1, t > 0, (38)

∂w(r, t)
∂t

=
∂τ(r, t)

∂r
+

2
r

τ(r, t)− Mw(r, t); 0 < r < 1, t > 0, (39)

of the governing equations. The corresponding initial and boundary conditions are

w(r, 0) = τ(r, 0) = 0, 0 < r < 1; w(1, t) = g(t), t ≥ 0. (40)

Eliminating τ(r, t) between Equations (38) and (39), one finds the governing equation(
1 + α ∂

∂t

)
∂w(r,t)

∂t =
(

1 + β ∂
∂t

)[
∂2

∂r2 +
1
r

∂
∂r −

1
r2

]
w(r, t)

−M
(

1 + α ∂
∂t

)
w(r, t); 0 < r < 1, t > 0,

(41)

for the dimensionless velocity field w(r, t) corresponding to the present motion of ECIOBFs.
Now, it is worth observing and using the fact that this partial differential equation is
identical in form to the governing equation(

1 + α ∂
∂t

)
∂η(r,t)

∂t =
(

1 + β ∂
∂t

)[
∂2

∂r2 +
1
r

∂
∂r −

1
r2

]
η(r, t)

−M
(

1 + α ∂
∂t

)
η(r, t); 0 < r < 1, t > 0,

(42)

of the non-dimensional shear stress η(r, t) obtained, eliminating the velocity u(r, t) between
the governing Equations (6) and (7) of Section 2.

Since the initial and boundary conditions corresponding to the two different MHD
motions of ECIOBFs are also identical in form, it results that the velocity field w(r, t)
corresponding to the present motion is given by the relation (see the equality (23))

w(r, t) = rg(t)

+2
∞
∑

n=1

J1(rrn)

rn J0(rn)

{
g(t)− r2

n
α

[
β cosh(dnt) +

1 − βcn

dn
sinh(dnt)

]
e−cnt ∗ g(t)

}
.

(43)

As soon as the dimensionless fluid velocity is known, the corresponding shear stress
can be determined using the Laplace transform or solving the ordinary linear differential
Equation (38) with the corresponding initial condition. Consequently, the MHD motion
problem of ECIOBFs in an infinite circular cylinder that rotates around its symmetry axis is
completely solved. For illustration, as well as to shed light on some characteristics of the
fluid behavior, some study cases are considered.
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4.1. The Study Case When Cylinder Oscillates around Its Symmetry Axis

By substituting the function g(t) by H(t) cos(ωt) or H(t) sin(ωt) in Equation (43), one
finds the dimensionless starting velocities wc(r, t) and ws(r, t) corresponding to the MHD
motion of ECIOBFs induced by the circular cylinder that executes cosine or sine oscillations,
respectively, around its symmetry axis. Here, H(t) is the Heaviside unit step function, and
ω is the non-dimensional frequency of the oscillations. In the following we show that both
motions become steady in time and the dimensionless starting velocity fields wc(r, t) and
ws(r, t) can be written as sum of their steady state and transient components, namely

wc(r, t) = [wcs(r, t) + wct(r, t)]H(t), ws(r, t) = [wss(r, t) + wst(r, t)]H(t). (44)

Therefore, the convolution product from Equation (43) has to be evaluated. Lengthy
but straightforward computations show that

r2
n
α

[
β cosh(dnt) + 1−βcn

dn
sinh(dnt)

]
e−cnt ∗ H(t) cos(ωt)

= xn cos(ωt) + yn sin(ωt)− [xn cosh(dnt) + unsinh(dnt)] e−cnt,
(45)

r2
n
α

[
β cosh(dnt) + 1−βcn

dn
sinh(dnt)

]
e−cnt ∗ H(t) sin(ωt)

= −yn cos(ωt) + xn sin(ωt) + [yn cosh(dnt)− vnsinh(dnt)] e−cnt,
(46)

where the constants xn, yn, un and vn are given by the relations

xn = r2
n

r2
n+M+ω2(β2r2

n+αβM+β−α)

(r2
n+M−αω2)

2
+(2αωcn)

2 ,

yn = ωr2
n

αβω2+(α−β)M+1

(r2
n+M−αω2)

2
+(2αωcn)

2 ,

un = α r2
n

dn

cn(c2
n−d2

n+ω2)−β(c2
n−d2

n)
2−βω2(c2

n+d2
n)

(r2
n+M−αω2)

2
+(2αωcn)

2 ,

vn = αω r2
n

dn

βcn(c2
n−d2

n)−ω2(1−βcn)−(c2
n+d2

n)

(r2
n+M−αω2)

2
+(2αωcn)

2 .

(47)

On the basis of the last relations (43)–(46), it is easy to observe that the dimensionless
steady state and transient components wcs(r, t), wct(r, t) and wss(r, t), wst(r, t) of wc(r, t)
and ws(r, t), respectively, are given by the next relations

wcs(r, t) = r cos(ωt)H(t) + 2 cos(ωt)
∞

∑
n=1

J1(rrn)

rn J0(rn)
[H(t)− xn]− 2 sin(ωt)

∞

∑
n=1

yn J1(rrn)

rn J0(rn)
, (48)

wct(r, t) = 2
∞

∑
n=1

J1(rrn)

rn J0(rn)
[xn cosh(dnt) + unsinh(dnt)] e−cnt, (49)

wss(r, t) = r sin(ωt) + 2 sin(ωt)
∞

∑
n=1

J1(rrn)

rn J0(rn)
[H(t)− xn] + 2 cos(ωt)

∞

∑
n=1

yn J1(rrn)

rn J0(rn)
, (50)

wst(r, t) = 2
∞

∑
n=1

J1(rrn)

rn J0(rn)
[−yn cosh(dnt) + vnsinh(dnt)] e−cnt, (51)

For the results’ validation, it is necessary to use the fact that the steady-state compo-
nents wcs(r, t) and wss(r, t) of the starting velocity fields wc(r, t) and ws(r, t), respectively,
can be presented in the equivalent forms

wcs(r, t) = Re

{
I1(r

√
δ)

I1(
√

δ)
eiωt

}
, wss(r, t) = Im

{
I1(r

√
δ)

I1(
√

δ)
eiωt

}
, (52)
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where δ = (iωα+ 1)(iω + M)/(iωβ+ 1). The simplified forms of the steady state velocities
wcs(r, t) and wss(r, t) from Equation (52) were obtained solving the corresponding steady
boundary value problems. Figure 2 shows the equivalence of the expressions of wcs(r, t)
and wss(r, t) given by Equations (48) and (52) (left) and Equations (50) and (52) (right).
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4.2. The Study Case When the Cylinder Rotates around Its Axis with the Velocity VH(t)

By taking g(t) = VH(t) in Equation (43) and evaluating the convolution product or
making ω = 0 in Equation (44) (left), one finds the dimensionless starting velocity wC(r, t)
corresponding to the MHD motion of ECIOBFs induced by the circular cylinder that rotates
around its symmetry axis with the constant velocity V. It can also be presented as a sum of
its steady and transient components, namely

wC(r, t) = [wCs(r, t) + wCt(r, t)]H(t) , (53)

in which wCs(r) and wCt(r, t) have the following expressions:

wCs(r) = r + 2M
∞

∑
n=1

J1(rrn)

(r2
n + M)rn J0(rn)

, (54)

wCt(r, t) = 2
∞

∑
n=1

rn J1(rrn)

(r2
n + M)J0(rn)

[
cosh(dnt) +

cn − β(c2
n − d2

n)

dn
sinh(dnt)

]
e−cnt. (55)

An equivalent form for the dimensionless steady velocity wCs(r), which is the same
for Newtonian and non-Newtonian fluids, namely

wCs(r) = I1(r
√

M)/I1(
√

M), (56)

has been obtained making ω = 0 in the Equality (52) (left). The equivalence of the
expressions of wCs(r) from Equalities (54) and (56) was also graphically proved.

As we already mentioned in the previous section, similar solutions for electrical
conducting incompressible Maxwell fluids performing the same motions can be obtained
by making β = 0 in the corresponding previous relations. The steady fluid velocity wMCs(r)
corresponding to the last motion of Maxwell fluids is given by the relation (54) or (56),
while the transient velocity wMCt(r, t) is given by the relation
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wMCt(r, t) = 2
∞

∑
n=1

rn J1(rrn)

(r2
n + M)J0(rn)

[
cosh(bnt) +

an

bn
sinh(bnt)

]
e−ant, (57)

where an = (αM + 1)/2 and bn =
√
(αM − 1)2 − 4αr2

n/(2α).
In all cases of the studied motions, in the absence of the magnetic field, the correspond-

ing solutions can be immediately obtained by putting M = 0 in respective relations. By
taking M = 0 in Equation (54) or making M → 0 in Equation (56), one finds the dimen-
sionless steady velocity wCs(r) = r of the incompressible Oldroyd-B fluids induced by the
circular cylinder that rotates around its axis with the constant velocity V.

5. Some Numerical Results and Conclusions

In the present study, two classes of MHD unsteady motions of ECIOBFs in an infinite
circular cylinder that applies time-dependent longitudinal shear stress S f (t) to the fluid or
rotates around its symmetry axis with the velocity Vg(t) were analytically investigated. In
the case of the first motion, general expressions have been established for the dimensionless
non-trivial shear stress and the corresponding fluid velocity. For the results’ validation, the
expression of shear stress η(r, t) was again obtained in Appendix A by using a different
method. By making use of a simple observation regarding the governing equations of the
shear stress in the case of the first motion and the fluid velocity in the second one, we
directly obtained the dimensionless velocity field corresponding to the MHD unsteady
motion of ECIOBFs induced by the circular cylinder that rotates around its symmetry axis
with the velocity Vg(t). In this way, two important classes of MHD unsteady motions of
these fluids through an infinite circular cylinder were completely solved.

Later, for illustration and to bring to light some characteristics of the fluid behavior,
some special cases were considered for the second class of motions of ECIOBFs, and the
corresponding dimensionless starting velocity fields were provided. As the respective
motions become steady in time, these velocity fields were presented as a sum of their
steady and transient components. As a check of their correctness, the steady velocities were
presented in two different forms whose equivalence was graphically proved in Figure 2. In
practice, an important problem for experimental researchers is to know the need for time
to reach a steady state. From a mathematical point of view, this is the time after which
the diagrams of starting velocities overlap with those of their steady components. The
influence of the magnetic field on this time and some characteristics of the fluid motion are
graphically emphasized.

Figures 3–5 prove the convergence of dimensionless starting velocities wc(r, t), ws(r, t)
and wC(r, t) given by Equations (44) (left), (44) (right) and (53), respectively, to their steady
state or steady components wcs(r, t), wss(r, t) and wCs(r, t) for fixed values of the material
constants, two distinct values of the magnetic parameter M and increasing values of the
time t. From these figures, we can see the required time to touch the steady state for each
motion that has been studied. The necessary time to obtain the steady state, as shown
in Figures 3 and 4, is smaller for the motion due to sine oscillations of the cylinder than
that corresponding to the motion induced by cosine oscillations of the cylinder. This is
obvious because, at the moment t = 0, the velocity of the cylinder is zero. In all cases, the
necessary time to obtain the steady state diminishes for increasing values of the parameter
M. Consequently, the steady state in such motions of ECIOBFs is rather obtained in the
presence of a magnetic field. A careful examination of Figure 5 indicates that the fluid
velocity diminishes for increasing values of M. It means the fluid flows slower in the
presence of a magnetic field.
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Figures 6a–c and 7 present the behavior of the fluid in a motion in which the shear stress
η(r, t) = Srz(r, t) is prescribed on the cylinder’s surface and the function
f (t) = (e−t − 1)/25.
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Figure 6. Profiles of shear stress η(r, t) (left), and velocity u(r, t) (right) given by the
relations (23) and (32), respectively, for α = 0.5, β = 0.2, M = 0.8 at different values of the
time t. (a). Shear stress η(r, t), and velocity u(r, t) for t ∈ {0.2, 0.4, 0.6}. (b). Shear stress η(r, t), and
velocity u(r, t) for t ∈ {0.8, 1.0, 1.2}. (c). Shear stress η(r, t), and velocity u(r, t) for t ∈ {1.4, 1.6, 1.8}.
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From these figures, one can see that the fluid layer located near the channel wall has
reverse flow due to the shear stress that drives it in this movement. The central fluid layers
flow in the opposite direction. The maximum velocity is achieved in the fluid layer located
in the vicinity of the cylinder axis. This is achieved because the shear stress has a minimum
value on the axis of the cylinder and increases with the distance from this axis. It should
also be noted that with the increase in the time values, the velocities of the fluid layers
become uniform. This property is due to the fact that the shear stress evens out its values
over time.

The same properties are clearly highlighted in the graphs in Figure 7. In these graphs,
it can be seen that for a certain time interval, the shear stress decreases, after which it tends
to a constant value for each radial position of the channel. The fluid velocity has the same
property. The shear stress property highlighted in Figure 7 can also be analytically justified
if we use the following property of the Laplace transform lim

t→∞
f (t) = lim

s→0
s f (s). Indeed,

using the Equalities (16) and (17), we obtain

lim
t→∞

η(r, t) = lim
s→0

sη(r, s) = −2lim
s→0

s f (s)
∞
∑

n=1

J1(rrn)

J0(rn)

rn

r2
n + a(s)

−2lim
s→0

f (t)
∞
∑

n=1

J1(rrn)

J0(rn)

rn

r2
n + M

.
(58)

Equation (58) highlights that shear stress η(r, t) tends to a constant value for large
values of time t, if lim

t→∞
f (t) < ∞.

For the particular case analyzed in this section, lim
t→∞

f (t) = lim
t→∞

e−t−1
25 = − 1

25 , therefore

lim
t→∞

η(r, t) = lim
s→0

sη(r, s) =
2

25

∞

∑
n=1

J1(r rn)

J0(rn)

rn

r2
n + M

. (59)

The main outcomes that have been obtained by this study are as follows:

- Closed-form expressions were established for dimensionless shear stress and velocity
fields corresponding to MHD motions of ECIOBFs in an infinite circular cylinder that
applies longitudinal shear stress S f (t) to the fluid.

- The dimensionless velocity of the MHD motion of the same fluids generated by the
infinite circular cylinder that moves around its symmetry axis with the velocity Vg(t)
was directly obtained using one of the previous results.

- Consequently, the two types of MHD motions of ECIOBFs through an infinite cir-
cular cylinder were completely solved. For illustration, three particular cases were
considered, and the corresponding velocity fields are provided.
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- Graphical representations for starting and steady velocities of these unsteady motions,
which become steady in time, showed that the steady state is obtained earlier and the
fluid flows slower in the presence of a magnetic field.
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Appendix A

L−1

{
s + a

(s + a)2 − b2

}
= e−at cosh(bt), L−1

{
b

(s + a)2 − b2

}
= e−atsinh(bt) . (A1)

The first relation (13) can be also written as a modified Bessel equation

r2 ∂2η(r, s)
∂r2 + r

∂η(r, s)
∂r

−
[

1 + [r
√

a(s)]
2]

η(r, s) = 0, (A2)

whose solution satisfying the corresponding boundary condition is

η(r, s) = f (s)
I1[r

√
a(s)]

I1[
√

a(s)]
= f (s)

J1[ir
√

a(s)]
J1[i

√
a(s)]

= f (s)H(r, s). (A3)

Applying the inverse Laplace transform to this last equality results in

η(r, t) = f (t) ∗ H(r, t), (A4)

where H(r, t) is the inverse Laplace transform of H(r, s). In order to determine H(r, t) by
means of the residue theorem, the solutions of the transcendental equation J1[i

√
a(s)] = 0

are necessary. For each positive root rn of the transcendental equation J1(r) = 0, it corre-
sponds two roots of the equation i

√
a(s) = rn, namely s1n = −cn + dn and s2n = −cn − dn,

which are defined in the Section 3.2.
It is a well-known fact that

H(r, t) = L−1{H(r, s)
}
=

∞

∑
n=1

{
es1nt Rez[H(r, s)]

∣∣
s=s1n

+ es2nt Rez[H(r, s)]
∣∣
s=s2n

}
, (A5)

in which the residues of H(r, s) in s1n and s2n are given by the relations:

Rez[H(r, s)]
∣∣
s=s1n

=
J1[ir

√
a(s)]

d
ds

{
J1[i

√
a(s)]

}
∣∣∣∣∣∣
s=s1n

= −2
rn J1(rrn)

J0(rn)
X1n, (A6)



Mathematics 2024, 12, 3207 15 of 16

Rez[H(r, s)]
∣∣
s=s2n

=
J1[ir

√
a(s)]

d
ds

{
J1[i

√
a(s)]

}
∣∣∣∣∣∣
s=s2n

= −2
rn J1(rrn)

J0(rn)
X2n. (A7)

In the last two relations, X1n and X2n have the expressions

X1n =
β2s2

1n + 2βs1n + 1
αβs2

1n + 2αs1n + (α − β)M + 1
and X2n =

βs2
2n + 2βs2n + 1

αβs2
2n + 2αs2n + (α − β)M + 1

. (A8)

From Equations (A5)–(A7), it results that

H(r, t) = −2
∞
∑

n=1

rn J1(rrn)

J0(rn)

(
X1nednt + X2ne−dnt

)
e−cnt

= −2
∞
∑

n=1

rn J1(rrn)

J0(rn)
[(X1n + X2n) cosh(dnt) + (X1n − X2n)sinh(dnt)] e−cnt.

(A9)

Lengthy but straightforward computations show that

X1n + X2n =
β

α
, X1n − X2n =

1 − βcn

αdn
. (A10)

Now, by substituting X1n + X2n and X1n − X2n from (A10) in (A9), one finds that

H(r, t) = − 2
α

∞

∑
n=1

rn J1(rrn)

J0(rn)

[
β cosh(dnt) +

1 − βcn

dn
sinh(dnt)

]
e−cnt, (A11)

or equivalently

H(r, t) = rδ(t) + 2
∞

∑
n=1

J1(rrn)

rn J0(rn)

{
δ(t)− r2

n
α

[
β cosh(dnt) +

1 − βcn

dn
sinh(dnt)

]
e−cnt

}
. (A12)

Finally, by substituting the function H(r, t) from Equation (A12) in (A4), one recovers
the same expression (23) for the dimensionless shear stress η(r, t).
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