Contents lists available at ScienceDirect

International Journal of Hydrogen Energy

journal homepage: www.elsevier.com/locate/he

Sustainable hydrogen production and CO₂ mitigation from acetic acid dry reforming over Ni/Al₂O₃ catalyst

Anh-Tam Nguyen^a, Kim Hoong Ng^{b,**}, Ponnusamy Senthil Kumar^c, Thuy-Phuong T. Pham^{d,e}, H.D. Setiabudi^{f,g}, Mohammad Yusuf^h, Le Kim Hoang Pham^a, Pau Loke Show^{i,***}, Ijaz Hussain^j, Dai-Viet N. Vo^{a,}

^a Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam

^b Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan

^c Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India

^d Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nan

e Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam ^f Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Kuantan, Pahang, 26300. Malavsia

^g Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Kuantan, Pahang, 26300, Malaysia

h Faculty of Engineering and Applied Science, Clean Energy Technologies Research Institute (CETRI), University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada

ⁱ Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates

^j Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia

ARTICLE INFO

Handling Editor: Suleyman I. Allakhverdiev Keywords:

Acetic acid dry reforming Hydrogen Syngas Ni-based catalysts Reforming

ABSTRACT

Dry reforming of acetic acid (DRA) was first-time investigated on 10%Ni/Al₂O₃ at varied temperatures within 923–973 K employing several CO₂:CH₃COOH ratios of 1.5:2; 1:1; and 2:1. Depending on NiO particle size and location on support surface or inside the porous support structure, the H₂ reduction of NiO phase to active metallic Ni⁰ form was evidenced at different reduction temperatures within 550–950 K and the estimated degree of reduction was about 73.68%. Weak, medium, and strong basic centres were evidenced on 10%Ni/Al₂O₃ via CO2 desorption measurement. Increasing DRA temperature improved both CH3COOH and CO2 conversions with the corresponding apparent activation energy of 100.71 and 58.50 kJ mol⁻¹. As CO₂ partial pressure was increased from 0 to 40 kPa, the initial CH₃COOH conversion was noticeably enhanced from 30.5% to 97.8% whilst H₂/CO ratio always remained less than unity (0.73–0.77). Notably, DRA was a two-step process and barely negligible CH₄ intermediate product was evidenced since it was promptly reformed by CO₂ into syngas. The Ni⁰ active form was not susceptible to oxidation during DRA and carbon deposited on spent catalyst surface was heterogeneous in nature with the evident co-existence of amorphous and graphitic carbons.

1. Introduction

Hydrogen has been broadly recognized as an efficient alternative and green energy for the promising substitution of draining fossil fuels, inducing substantially rising crude oil price worldwide since H₂ reportedly has great energy capacity of 120.7 kJ g^{-1} [1] and water is a

sole by-product from H₂ combustion [2]. Apart from being efficiently used in fuel cells and hydrogen vehicles for environmentally friendly transportation, H₂ is also an important feedstock for petrochemical and gas processing industry for synthetic fuels and essential chemicals production [3]. At present, the majority of H₂ fuel is produced through natural gas steam reforming, coal gasification, and liquid fossil fuel

* Corresponding author.

https://doi.org/10.1016/j.ijhydene.2024.02.179

Received 31 December 2023; Received in revised form 8 February 2024; Accepted 13 February 2024 Available online 23 February 2024

0360-3199/© 2024 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

^{**} Corresponding author.

^{***} Corresponding author.

E-mail addresses: kimhoong.ng@mail.mcut.edu.tw (K.H. Ng), pauloke.show@ku.ac.ae (P.L. Show), vndviet@ntt.edu.vn, vo.nguyen.dai.viet@gmail.com (D.-V.N. Vo).