CATION EXCHANGER MIXED MATRIX MEMBRANE (MMM) FOR LEAD (II) REMOVAL FROM WASTEWATER

NURUL FARHANA BINTI MOHAMED BASRI

DEGREE OF CHEMICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS ⁺ JUDUL : <u>CATION EXCHANGER MIXED MATRIX MEMBRANE FOR LE REMOVAL FROM WASTEWATER Saya NURUL FARHANA BINTI MOHAMED BASRI</u>	versiti		
REMOVAL FROM WASTEWATER SESI PENGAJIAN :2011/2012	versiti		
Saya NUKUL FAKHANA DINII MUHAMED BASKI			
(HURUF BESAR) mengaku membenarkan tesis (PSM/ Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Uni Malaysia Pahang dengan syarat-syarat kegunaan seperti berikut :	gaijan		
 Tesis adalah hakmilik Universiti Malaysia Pahang Perpustakaan Universiti Malaysia Pahang dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√) SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) TIDAK TERHAD Disahkan oleh 			
(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)			
AlamatTetap LOT 1366 KG PULAU HILIR SYED MOHD SAUFI BIN TUAN CHIR	X		
KUBANG KERIAN, Nama Penyelia			
16150 KOTA BHARU, KELANTAN			
Tarikh : MAC 2012 Tarikh: MAC 2012			
 CATATAN: * Potong yang tidak berkenaan. Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/ organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULI TERHAD. Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, ata 			

Laporan Projek Sarjana Muda (PSM)

CATION EXCHANGER MIXED MATRIX MEMBRANE (MMM) FOR LEAD (II) REMOVAL FROM WASTEWATER

NURUL FARHANA BINTI MOHAMED BASRI

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical and Natural Resources Engineering Universiti Malaysia Pahang

MAC 2012

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering

Signature Name of Supervisor Position Date

Dr Syed Mohd Saufi Bin Tuan Chik Senior Lecturer 30 March 2012

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. This thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	
Name	Nurul Farhana Binti Mohamed Basri
ID Number	KA 08084
Date	30 March 2012

DEDICATION

In The name of Allah, most gracious, Most Merciful

Love special dedicate to...

Special inspiring and special encouraging of my lovely parent: Mohamed Basri Bin Husain and Ramlah Binti Zakaria;

My siblings, my friends, my fellow course mates and all faculty members.

Those who has influenced my life on the right course

Thank you so much

ACKNOWLEDGEMENT

Alhamdulillah, praise be to Allah, the most gracious and the merciful. With His strength, guide and only by this assistance, this study has reached its end. My gratitude specially dedicated to my supervisors, Dr Syed Mohd Saufi Bin Tuan Chik upon her sincere, consistent encouragement, advice and guidance throughout ensuring the success of this study.

I also want to take this opportunity to thank all technical staff of Faculty of Chemical and Natural Resources Engineering laboratory especially Mr Zulhibri, Mr Anuar, Mr. Zainal and Mr Zaki upon your kindly helping hand and technical assistance since starting this project, your effort is greatly appreciated in completion the research.

Not to be left, my almost thought for my beloved mum and dad, Mohamed Basri bin Husain and Ramlah Binti Zakaria, my family members who have been firing up my spirit, thanks to my brothers and sisters; Fatin, Farahin, Fazeera, Fitri, Fazreen, Farhan and Farid.

Last but not least my appreciation to all my friends who always be my side and always give suggestion to improve my performance in studying. May all success is ours in future. Also to all who are involved directly or indirectly in ensuring the smoothness of this research either through your ideas, advices, support, energy or time consuming. Nice to have cooperation and working with all of you.

Alhamdulillah and May Allah bless all of us.

ABSTRACT

Many toxic heavy metals have been discharged into the environment as industrial wastes everyday. In all over the world, industry is forced by the regulation body to diminish down the heavy metal content to the acceptable level in their wastewaters effluents. In the current research, cation exchanger mixed matrix membrane (MMM) was developed for the lead (Pb) removal from wastewater. A list of commercial cation resin was screened for highest Pb removal. These resins include Dowex M-31, Dowex MAC-3, Amberlite IR-120, Lewatit SP 112, Amberlite IRC-86, Lewatit TP-214, Amberlite IRN-150 and Dowex Marathon MSC. Dowex M-31 cation resin was incorporated into ethylene vinyl alcohol based polymer at different resin loading range from 10 - 30 weight % to prepare cation MMM. In a batch experiment, several parameters were optimized including Pb (II) concentration between 100 to 2000 mg/L, pH between 1 to 8, contact time between 3 to 12 hours and the amount of absorbent from 0.1 to 1 g. Adsorption isotherm for the cation MMM and ground resin were follow to Langmuir isotherm. The increase in resin loading will increase the binding capacity of cation MMM up to a limitation of 50 wt% resin loading. The concept of MMM was successfully expanded to the application of heavy metal removal.

ABSTRAK

Setiap hari banyak toksik logam berat telah dilepaskan ke alam sekitar sebagai bahan buangan industri. Di seluruh dunia, badan pengawal seliaan menghadkan pengeluaran kandungan logam berat ke tahap yang diterima dalam sisa buangan mereka. Di dalam penyelidikan ini, mixed matrix membrane (MMM) penukar cas positif telah di bangunkan untuk menyingkirkan plumbum (Pb) dari sisa air kumbahan. Beberapa jenis resin penukar cas positif komersial telah di uji untuk penyingkiran plumbum tertinggi seperti Dowex M-31, Dowex MAC-3, Amberlite IR-120, Lewatit SP 112, Amberlite IRC-86, Lewatit TP-214, Amberlite IRN-150 dan Dowex Marathon MSC. Dowex M-31 telah dicampurkan ke dalam polimer etilena vinilalkohol (EVAL) berdasarkan muatan resin yang berbeza-beza dari peratusan 10-30% berat cecair polimer untuk menyediakan MMM) penukar cas positif. Beberapa parameter telah dilakukan ujikaji seperti kepekatan Pb (II) antara 100 hingga 2000 ppm, masa penjerapan di antara 3-12 jam dan jumlah bahan penjerap antara 0.1-1 g. Ukuran penyerapan MMM penukar cas positif dan resin mengikut hubungan Langmuir. Peningkatan jumlah resin di dalam membran meningkatkan keupayaan muatan resin untuk penyikiran sehingga muatan maksimum 50% resin. Konsep MMM telah berjaya di luaskan dalam aplikasi penyingkiran logam berat.

TABLE OF CONTENT

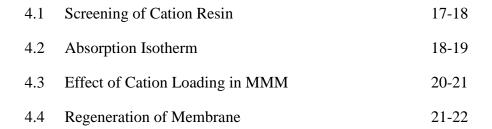
CHAPTER		TITLE	PAGE
	SUP	PERVISOR'S DECLARATION	ii
	STU	DENT'S DECLARATION	iii
	DEI	DICATION	iv
	ACF	KNOWLEDGEMENT	v
	ABS	STRACT	vi
	ABS	STRAK	vii
	TAE	BLE OF CONTENTS	viii-x
	LIST	Г OF TABLES	xi
	LIST	Г OF FIGURES	xii-xiii
	LIST	Γ OF EQUATIONS	xiv
	LIS	Γ OF ABBREVIATIONS	XV
1	INT	RODUCTION	1
	1.1	Background	1-2
	1.2	Problem Statement	3
	1.3	Objective	3
	1.4	Scopes of Study	4

2

LITERATURE REVIEW

2.1	Ion Exchanger	5
2.2	Resin Types	6-7
2.3	Comparison Technologies for Heavy Metal Removal	7-9
2.4	Membrane Process Use for Heavy Metal Removal	10

3


METHODOLOGY

3.1 Materials
3.2 Resin Screening
3.3 Preparation of Mixed Matrix Membrane
3.4 Batch Absorption Experiment
3.5 Determination of Adsorption Isotherm
15-16

3.6 Regeneration of Membrane16

3.7Preparation of Standard Curve16

4 RESULT AND DISCUSSION 17

5

11

5 CONCLUSION

APPENDICES		28-45
REFERENCES		25-27
5.2	Recommandations	24
5.1	Conclusion	23

23

LIST OF TABLES

Table No.	Title	Page
2.1	Selectivity of Ion Exchange Resins	7
2.2	Comparison of technologies to heavy metal removal from wastewater	8
3.1	List of Commercial resin	12
3.2	Properties of resin Dowex M-31	13
4.1	Cation resin properties and price	18
4.2	Binding capacity of ground resin, mixed matrix membrane (MMM) 30% loading and ethyl vinyl alcohol (EVAL) membrane	19
4.3	Binding properties of mixed matrix membrane with different cation loading	20

LIST OF FIGURES

Figure No.	Title	Page
3.1	Preparation of Mixed Matrix Membrane	14
4.1	Capacity of ground cation resin for binding 35 ml of 1000 ppm lead (II)	17
4.2	Binding capacity versus equilibrium concentration for different format of Dowex M-31 based adsorbent	19
4.3	Binding capacity of mixed matrix membrane with different cation loading	21
4.4	Graph Recovery of Ground Resin and MMM	22
A.1	ResinScreening Analysis Part I	28
A.2	Resin Screening Analysis Part II	29
A.3	ResinScreening Analysis Part III	30
A.4	ResinScreening Analysis Part IV	31
A.5	ResinScreening Analysis Part V	32
A.6	ResinScreening Analysis Part VI	33
A.7	ResinScreening Analysis Part VII	34
A.8	ResinScreening Analysis Part VIII	35
A.9	Absorption Isotherm Analysis Part I	36
A.10	Absorption Isotherm Analysis Part II	37
A.11	Absorption Isotherm Analysis Part III	38
A.12	Absorption Isotherm Analysis Part IV	39

A.13	Absorption Isotherm Analysis Part V	40
A.14	Absorption Isotherm Analysis Part VI	41
A.15	Absorption Isotherm Analysis Part VII	42
A.16	Resin Loading Analysis Part I	43
A.17	Resin Loading Analysis Part II	44
A.18	Recovery Analysis	45

LIST OF EQUATIONS

Equation No.	Title	Page
3.1	Resin Loading	13
3.2	Absorption Lead Amount	15
3.3	Langmuir Adsorption Isotherm	15
3.4	Recovery	16

LIST OF ABBREVIATIONS

-	Atomic Absorption Spectroscopy
-	Dimethyl sulfoxide
-	Ethylene vinyl alcohol
-	Mixed Matrix Membrane
	-

CHAPTER 1

INTRODUCTION

1.1 Background

Heavy metals are ordinary in industrial applications such as in the manufacture of pesticides, battery, alloys, electroplated metal parts, textiles dyes, and steel (Abo Farha et al., 2008). Many toxic heavy metals have been discharge into the environment as industrial wastes. Industry has been forced by the regulation authority to reduce the contents of heavy metal in their industrial wastewaters to the acceptance level. Excessive content of heavy metal in water or wastewater might give an adverse effect to the environment as well as human life such as kidney failure, nervous system damage and bone damage, and other serious illness (Sgarlata et al., 2008). Heavy metal toxicity can also result in break or reduced mental and central nervous function, lower energy levels, and damage to blood composition, lungs, kidneys, liver and other vital organs. However, in small quantities, certain heavy metals are nutritionally important for a healthy life. These metals are commonly found naturally in foodstuffs.

Several methods has been developed for removal heavy metals from wastewaters such as precipitation, coagulation, complexing, solvent extraction, ion-exchange, electrochemical reduction and membrane processes such as reverse osmosis, nanofiltration and electrodialysis (Smara et al., 2005). Most of these processes however required continuous input of chemicals, high cost and even incomplete metal removal (Ismael et al., 2011).

Adsorption is a very efficient process for a variety of applications, and now it is considered an economical and effective method for metal ions removal from wastewaters. In general, adsorption is the process of collecting soluble substances that are in a solution, on a suitable interface. The interface can be betweeen the liquid and a gas, a solid, or another liquid. Studies on the treatment of effluent bearing heavy metal have revealed adsorption to be a highly effective technique for the removal of heavy metal from waste stream and activated carbon has been widely used as an adsorbent. Despite its extensive use in the water and wastewater treatment industries, activated carbon remains an expensive material. In recent years, the need for safe and economical methods for the elimination of heavy metals from contaminated waters has necessitated research interest towards the production of low cost alternatives to commercially available activated carbon.

The potential absorption method by using of mixed matrix membrane is affordable and economical for effluents containing metal ions. Mixed matrix membrane requires absorption agents to enhance its performance, thus increasing treatment cost. Therefore, the need of alternative low-cost adsorbents has prompted the search for new and cheap sorption processes for wastewater treatment, as these materials could reduce significantly the wastewater-treatment cost.

Cation exchange resin is gained a significant interest among scientist mainly due to their unique properties on ion exchange capability. Large deposits of cation exchange resin in many countries provide local industries some promising benefits, such as cost efficiency, since they are able to treat wastewater contaminated with heavy metal at low cost. This cation exchange can be an absorbent for mixed matrix membrane performance to remove heavy metal and also for repeated used by regenerate the cation exchange resin.

1.2 Problem Statement

Even though their large static adsorption capacity, conventional method involved in heavy metal chromatographic separations are generally not able to operate at high linear velocities of the mobile phase. The pressure drop over the column is high even for low flow rates, and increases during the process time due to bed consolidation and plugging. The pressure drop in conventional chromatographic columns with particles diameter of 2 μ m is usually high, up to 25MPa (Borneman et al., 2006).

In the recent years, membrane chromatography has gained considerable interest in adsorption-based process. In membrane chromatography, a short and wide chromatographic column is used in which the adsorptive membrane is stacked or packed in the module. In separation, the diffusion of the molecule into the adsorbent determines the adsorption limits of macromolecules from a liquid phase by adsorption into the porous media. Unlikely to packed bed chromatography that depend on diffusional transport of solute molecule, membranes chromatography strongly controlled by convective transport of solute molecules. This results a shorter process times and could minimizes the denaturation of the products. An ideal membrane support for application in chromatographic separation processes should be microporous to provide free interactions of molecules with the support. The membrane should be chemically and physically stable to resist to the conditions of adsorption, regeneration and should posses functional groups which provide interactions like ion exchange and affinity between the support and the solute molecules.

1.3 Objective

The main objective for this research is to produce cation exchanger mixed matrix membranes that are capable for lead removal from wastewater.

1.4 Scope of Study

The main scopes of this research are:

- (i) To screen the potential cation resin that can give high binding capacity to lead (II) removal from eight commercial cation resins.
- (ii) To produce an ethylene vinyl alcohol (EVAL) based MMM with different cation resin loading range from 10% - 30%.
- (iii) To determine adsorption isotherm for various type of absorbent including ground resin and MMM.
- (iv) To study different type of regeneration solution such as HCl, H₂SO₄, NaCl for the regeneration of MMM after the binding process.

CHAPTER 2

LITERATURE REVIEW

2.1 Ion Exchanger

Ion exchange is a reversible chemical reaction where an ions, atom or molecule that has lost or gained an electron and thus attained an electrical charge from solution is exchanged for a similarly charged ion attached to a stationary solid particle. This attraction may take place by direct contact with free metal anions, but that mechanism may be also absorbed in the sorption of metal, as a result of the interaction of metal cations with ligands in the solution. Actually, the formation of complexes, with ligands and/or OH⁻ influences the speciation of metals ions and thus the sorption efficiency and taking mechanism (Eric Guibal, 2004). These solid ion exchange particles are either naturally happen inorganic zeolites or synthetically generates organic resins. The synthetic organic resins are the major types used today because their characteristics can be fitted to specific applications.

Based on all the chromatographic methods, the most common used techniques in downstream processing are ion exchange. It is occupied for recovery and purification of proteins, polypeptides, nucleic acids, polynucleotides and other biomolecules. Ion exchange is advantageous in terms of wide applicability, high declaration and large adsorption capacity in large-scale protein purification processes. Another advantage of this technique is that the regeneration takes place under mild conditions (Saiful et.al., 2006).

2.2 Resin Types

There are variety of commercial ion exchange resins are available and have been applied in protein capturing, purifying and polishing steps (Saiful et al., 2006). Resins currently available exhibit a range of selectivity's and thus have wide application. Ion exchange resins are classified as cation exchanger, which has positively charged mobile ion available for exchange, and anions exchanger, whose exchangeable ion are negatively charged.

Resin can be classified as strong or weak acid cation exchanger or strong or weak base anion exchanger. Some example, cation exchange resin particles, Amberlite IR-12 styrene-divinyl benzene type of resin has an ion-exchange capacity of 4.4 meq/g dry resin (Kiyono etal., 2003). Mono-Plus SP112, a strong acidic, macroporous, cation-exchange resin with an average diameter of 10 micron. (Zhang et al., 2005). The chelating ion exchanger with iminodiacetate functional groups, Lewatit TP-207 is suggested by the Bayer company for selective removal of metal ions, mostly Pb (II) ions (Dabrowski et al., 2004). Selectivity is a guideline to the new types of ion exchangers with specific affinity to definite metal ions or groups of metals. Higher selectivity can gives a great exchangeability as well as reversibility of the sorption-elution process towards Pb (II). Frequently, cation-exchange is jointed with precipitation for Pb (II) removal from wastes (Lee and Hong, 1995). It should be emphasized that in most cases ion exchange enables replacing the undesirable ion by another one which is neutral within environment.

Strong acid cation exchanger	Strong base anion exchanger
Barium	Iodide
Lead	Nitrate
Calcium	Bisulfite
Nickel	Chloride
Cadmium	Cyanide
Copper	Bicarbonate
Zinc	Hydroxide
Magnesium	Fluoride
Potassium	Sulfate
Ammonia Sodium	
Hydrogen	

Table 2.1: Selectivity of Ion Exchange Resins

2.3 Comparison Technologies for Heavy Metal Removal

Many of studies have been made to avoid increases of heavy metal ions to human body and damages to environment. Several methods have been used to remove heavy metal ions, for examples, chemical precipitation, ion-exchange, adsorption, membrane filtration, and electro-chemical treatment technology. Adsorption using ion exchange is an effective and economic method for heavy metal removal from wastewater.

Activated carbon is the common used adsorbent although it is quite expensive. Many researchers have tried to find easily available adsorbents and low-cost in terms of economics to remove heavy metal ions, for examples, agricultural wastes, plant wastes, zeolites, and clays. Biosorption of heavy metals from aqueous solutions is a rather new process that has been established as a very talented process in the removal of heavy metal contaminants. The benefits of biosorption are its elevated efficient in reducing the heavy metal ions and the reasonably priced of biosorbents. Although biosorbents are characteristic in wide sources, the researchers are still in the theoretical and experimental phase (Kyong-Soo Hong et al., 2010). Table 2.2 shown summarize of technologies to remove heavy metal from wastewater.

Method	Advantages	Disadvantages
Chemical	• Simple	Large amount of sludge produced
precipitation	• Inexpensive	Disposal problem
Chemical	Sludge settling	• High cost
coagulant	• Dewatering	• Large consumption of chemicals
Ion-exchange	• High regeneration of	• High cost
	materials	• Less number of metal ions removed
	• Metal selective	
Electrochemical	Metal selective	High capital cost
methods	• No consumption of	• High running cost
	chemicals	• Initial solution pH and current
	• Pure metals can be achieved	density
Adsorption	• Most of metals can be	Cost of activated carbon
Using activated	removed	No regeneration
carbon	• High efficiency (99%)	• Performance depends upon absorbent
		• Low efficiency
Adsorption	• Most metals can be removed	Low efficiency
Using natural	Relatively less costly	
zeolite	materials	
Membrane process	Less solid waste produced	High initial and running cost
and ultrafilteration	• Less chemical consumption	• Low flow rates
	• High efficiency (>95% for	• Removal (%) decreases with the
	single metal)	presence of other metals

Table 2.2: Comparison of technologies to heavy metal removal from wastewater

Source: Farouq et al (2010)

Solvent extraction, or liquid ion exchange removes the metal by contacting the solution with an organic reagent that will react with the metal ion and result in its exchange to a dissolved form in the solvent. For optimum operation, this method needs high initial metal concentrations and the environmental standards for acceptable metal levels in discharged water cannot be met with this method alone. It is more to operate it

with other treatment systems such as membranes. Solvent extraction of metals is commonly working for selective recovery (Mack et al., 2004).

Conventional ion exchange resins have been used with solvent extraction in the recovery of metals. The simple phase separation and high concentration efficiency of ion exchange pretence the disadvantages of solvent extraction, mainly the difficulty in phase separation. However, these ion exchangers are insufficient selective to remove certain metals from large volumes of additional metals and thus metal-selective resins are being constructed. Disadvantages of these methods are relatively expensive, requiring complicated equipment with high operation costs, such as the regeneration and / or disposal of the regeneration liquid and the spent resin, and large energy requirements. Resin usage causes a large environmental burden in terms of disposal (Lee et al., 1998).

Chemical precipitation is still the simplest and cheapest means of removing metals from solution. The increase in pH caused by the precipitant results in the immobilization of the metal ions in insoluble forms, either as a metal hydroxide or a metal sulphide (Eccles, 1999). Sodium hydroxide introduces the least amount of inert material to the sludge, but this becomes expensive in the long-term, as large volumes of effluent and metal-laden sludge are produced and must be treated daily (Van Hille et al., 1999).

Membrane processes involving the removal of heavy metals from solution are mainly limited to those that require a membrane as a pretreatment filtration device linked to a second removal mechanism. An example of this is a combination of membrane technology and solvent extraction suggested by Kentish and Stevens (2001) in which metal is removed from industrial wastewater. In this example, the membrane is placed between the waste stream and the solvent stream and mass transfer of the selected chemical species occurs across the membrane into the solvent (Mack et al., 2004).

2.4 Membrane Process Use for Heavy Metal Removal

Membrane separation have been earlier used in order to retain metallic cations and the filtration was performed using chelating reagents as additives in the feed by increasing the size of the solute to be retained. In ultrafiltration, the more often used chelating polymer are poly-acrylic acid and polyethylenimine and their derivatives but natural chelating ligand as alginate and chitosan were also used. The filtration assisted by complex formation is extended to nanofiltration. In such type of filtration, the chelating ligand had to be regenerated in the final step of the process, before recycling, in order to minimise waste amounts. Consequently, to overcome this step, the recent studies involve membranes bearing the chelating groups (Anne Bougen et al., 2001).

Reverse osmosis membranes used have an opaque barrier layer in the polymer matrix where most separation occurs. Mostly, the membrane is designed for water to pass through this dense layer while preventing the passage of solutes (such as salt ions). This process needs a high pressure to be applied on the high concentration side of the membrane (Bakalár et al., 2009).

CHAPTER 3

METHODOLOGY

3.1 Materials

EVAL (a random copolymer of ethylene and vinyl alcohol) with an average ethylene content of 44 mol% was purchased from Aldrich and was used as membrane material without further modification. Dimethylsulfoxide (DMSO, Merck) was employed as solvent and 1-octanol (Fluka) as non solvent additive in the casting solution. Water was used as non-solvent in the coagulation bath. Commercial cation resin which are Dowex M-31, Dowex Marathon MSC, Dowex Mac-3 (Sigma-Aldrich), Amberlite IR 120, Amberlite IRN 150, Amberlite IRC 86, Lewatit MonoPlus TP 214 and Lewatit MonoPlus SP 112 (Fluka) were used as a potential adsorbent particle in screening experiment. Resins were freeze-dried to remove moisture and then were grinded and fractionated down to a fraction with an average size of 45 μ m. Hydrochloric acid (HCl), sulfuric acid (H₂SO₄) was purchased by Fisher Chemical and sodium chloride (NaCl, Merck) are used for the regeneration of MMM adsorbers. Lead (II) solution was prepared by dissolving lead (II) nitrate (PbNO₃) powder in water.

Buffer solutions were freshly prepared in ultra pure water. Ultra purewater was prepared using a Millipore purification unit Milli-Q plus. The buffers used for washing were phosphate buffer at pH 7.

3.2 Resin Screening

The list of resin used in screening experiment is showed in Table 3.1. The resin was freeze dried and then grinded using ultra centrifugal grinder to obtain a particle fraction small than $0.45\mu m$.

Approximately 0.05g dried ground resin was used in the screening experiment with triplicate run. The resin was equilibrate with phosphate buffer solution (pH 7) for about 3 hours in centrifuge test tube. The buffer was removed by centrifugation at 12000 rpm about 20 minutes to settle down the resin. Lead (II) nitrate solution (1000 ppm) was added to the tube and bind on rotator for about 12 hours. The remaining lead concentration was checked by atomic absorption spectrometer (AAS). The binding capacity for each resin is expressed by the amount of lead bound per gran of resin used.

Commercial resin	Functional Group	Matrix
LewatitMonoPlus TP214	Thiourea	Styrene divinylbenzene, macroporous
LewatitMonoPlus SP112	Sulfonic acid	Crosslinked polystyrene
Amberlite IRN 150	Sulfonic acid	Styrene divinylbenzene copolymer
Amberlite IR 120	Sulfonic acid	Styrene divinylbenzene copolymer
Amberlite IRC 86	Carboxylic acid	Gel polyacrylic copolymer
Dowex Mac-3	Carboxylic acid	Polyacrylic, macroporous
Dowex M-31	Sulfonic acid	Styrene divinylbenzene, macroporous
Dowex Marathon MSC	Sulfonic acid	Styrene divinylbenzene, macroporous

3.3 Preparation of Mixed Matrix Membrane.

Dowex M-31, properties shown in Table 3.2, was selected from the resin screening experiment as absorbent in MMM. The composition of base membrane polymer solution is 15 wt% EVAL and 15% 1-octanol in DMSO. The cation resin loading in the EVAL solution was calculated using Equation 3.1.

$$\operatorname{Resin} \operatorname{loading}(\%) = \frac{W_{\operatorname{resin}}}{W_{\operatorname{resin}} + W_{\operatorname{polymer}}} x100 \quad (\text{Equation 3.1})$$

Where W_{resin} is the mass of resin (g), $W_{polymer}$ the mass of polymer contain 15% EVAL (g)

Recommended Operating Conditions for DOWEX Strong Acid Cation Resins					
Maximum operating temperature:	120-150°C (250°F) gel Type I 50°C (300°F) macroporous type				
pH range	0-14				
Swelling Na -> H	5-8%				
Bed depth, min.	800 mm (2.6 ft)				
Flow Rates:					
Service / Fast Rinse	5-60 m/h (2-24 gpm/ft ²)				
Service / condensate polishing	75-150 m/h (30-60 gpm/ft ²)				
Backwash	10-25 m/h (4-10 gpm/ft ²)				
Co-current regeneration / displacement rinse	1-10 m/h (0.4-4 gpm/ft ²)				
Counter-current regeneration / displacement rinse	5-20 m/h (2-8 gpm/ft ²)				
Total rinse requirement	2-6 Bed Volumes				
Regenerant:	1-8% H ₂ SO ₄ 4-8% HCl 8-12% NaCl				

 Table 3.2: Properties of resin Dowex M-31 (DOWEX Resins Design Guidelines)

The preparation step involved in casting MMM is showed in Figure 3.1. The EVAL polymer solution and cation resin mixtures were stirred over night at 50 °C and 200 rpm to form a homogenous slurry solution for membrane casting. The bubble in the casting solution was removed by ultrasonic bath at 50°C until all the bubbles was completely disappeared. The casting solution was spread on glass plate by using a casting block, which has 0.45µm gap between the block and the glass plate. The gel formed on glass plate was immersed into a water coagulation bath at room temperature to form a solidified membrane. The membranes were washed with tap water at room temperature to remove residual solvent and then dried using freeze-dryer.

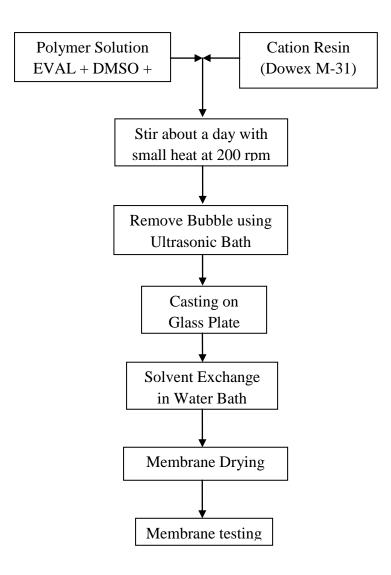


Figure 3.1: Preparation of mixed matrix membrane

3.4 Batch Adsorption Experiment

The adsorption capacities of cation exchange membrane was determined by batch experiments. Lead concentrations of 100-2000 ppm are employed in the adsorption experiments. A known weight of membrane is immersed overnight in ultrapure water to ensure a steady inner structure during the experiments and afterwards transferred in the lead solution. The lead solutions are prepared using phosphate buffer solutions with pH 7. The samples containing a known concentration of lead are incubated with an exact amount of membranes in a 15 ml or 50 ml centrifuge tube under continuous rotating at 25 °C. The lead adsorbs on the membrane adsorbers thereby reducing the lead concentration in the bulk solution until equilibrium is reached. The equilibrium lead concentration was determined by atomic absorption spectrometer analysis after 24 h. The adsorbed lead amount, q_{eq} (mg lead/g membrane), at equilibrium is calculated by Equation 3.2:

$$q_{eq} = \frac{(C_0 - C_{eq})V}{W_{membrane}}$$
(Equation 3.2)

where C_0 is the initial lead concentration (ppm), C_{eq} the lead concentration at equilibrium (ppm), V the volume of the solution (ml) and $W_{membrane}$ is the weight of the dry membrane (g).

3.5 Determination of Adsorption Isotherm

The adsorption isotherm was determined similar with batch experiment by binding the membrane with 8 different initial lead concentrations from 100ppm to1500ppm. The final concentration and the binding capacity of the membrane were calculated. The data was fitted with Langmuir adsorption isotherm as shown in Equation 3.3:

$$\frac{1}{q} = \frac{1}{q_m} + \frac{K_d}{q_m} \times \frac{1}{c}$$
 (Equation 3.3)

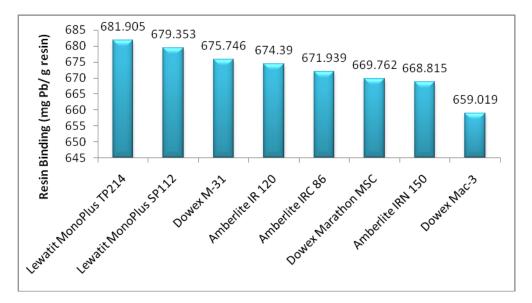
Since the parameters q (the heavy metal concentration into the adsorber membrane) and c (the heavy metal concentration in the bulk solution) at equilibrium are experimental data, a plot of 1/q versus 1/c allows to determine the dissociation constant K_d and the maximum adsorption capacity q_m using a linear curve fitting.

3.6 Regeneration of Membrane

Three regeneration solutions were tested for recovery of bound lead from the membrane. These solutions are hydrochloric acid (HCl), sulfuric acid (H₂SO₄) and sodium chloride (NaCl) which have a concentration of 8% each. The ground resin and membrane was incubated with 500ppm lead overnight. The equilibrium concentration was checked by AAS and the amount of lead bound was calculated. The adsorbent was then incubated with regeneration solution for 30 minutes and the lead released into the solution was checked by AAS. The lead recovery was calculated Equation 3.4:

$$recovery = \frac{mass \ of \ Pb \ (II) released \ in \ regeneration \ solution}{mass \ of \ Pb \ (II) \ bound \ onto \ the \ adsorbent}$$
(Equation 3.4)

3.7 Preparation of Standard Curve


Polarized Zeeman Atomic Absorption Spectrophotometer (Model Z-5000 Series) was used to measure the concentration of lead in solution. AAS standard curve for lead (II) was prepared by serial dilution of Pb NO_3 solution into a range of 0 ppm, 3.75 ppm, 7.5 ppm, 15 ppm, 30 ppm and 60 ppm. This solution was added a small volume of nitric acid to make the solution acidic to preserve the solution.

CHAPTER 4

RESULT AND DISCUSSION

4.1 Screening of Cation Resin

Eight cation resins were screened as potential absorbent in MMM. Figure 4.1 showed the binding of these resin to lead (II). Apart from binding capacity, other factor such as pricing also critical in selecting the resin to be used in MMM. Four resin was shortlist based on highest binding capacity which are Lewatit MonoPlus TP 214, Lewatit MonoPlus Sp 112, Dowex M-31 and Amberlite IR 120 as shown in Table 4.1. Based on price, Dowex M-31 was selected for further study in making cation exchange mixed matrix membrane for lead (II) removal.

Figure 4.1: Capacity of ground cation resin for binding 35 ml of 1000 ppm lead (II) solution for 24 hour.

Resin	Average mg Pb	Туре	Ionic	Funtional	Matrix	Particle	pН	Regenerant	price /kg
	bound/g resin		form	group		density (g/ml)	range		(USD/MYR)
Lewatit monoplus TP 214	681.905	strong acid cation	NA	thiorea	crosslinked polystyrene	1.1	0-10	NA	2609.9/kg
Lewatit Monoplus SP 112	679.353	strong acid cation	Na+	sulfonic acid	crosslinked polystyrene	1.24	0-14	HCl , H ₂ SO ₄ NaCl	541.96/kg
Dowex M-31	675.746	strong acid cation	H+	sulfonic acid	styrene divinylbenzene, macroporous	0.76	0-14	1-8% H ₂ SO ₄ 4-8% HCl 8-12% NaCl	203.49/kg
Amberlite IR 120	674.39	strong acid cation	H+	sulfonic acid	styrene divinylbenzene copolymer	>1 (vs air)	0-14	5-8% HCl 0.7-6% H ₂ SO ₄	295.98/kg

 Table 4.1: Cation resin properties and price

4.2 Adsorption Isotherm

Pb (II) was strongly adsorbed to Dowex M-31 cation resin for all forms of the resins. More than 98% of the Pb (II) was removed from the test solution with an initial concentration ranging from 100 to 1500 ppm in a 24-h incubation time as shown in Table 4.2.

The adsorption isotherm of the ground resin and MMM were found to be Langmuir type isotherm as shown in Figure 4.2. Typical lead (II) binding capacity was in the range of 1 000-30 000 mg Pb bound/ g resin. The ground resin has the highest binding capacity because it is mainly a pure cation resin. The MMM 30% showed a capability to adsorb lead (II) due to the presence of Dowex M-31 resin. EVAL itself has a relatively low binding capacity toward lead in the solution.

GROUND RESIN		MMM 30%		EVAL		
Average Final	mg Pb	Final	mg Pb	Average Final	mg Pb	
Conc,ppm	bound/ g	Conc,	bound/g	Conc,ppm	bound/ g	
	resin	ppm	resin		resin	
161.41	28886.25	141.70	17744.56	156.48	17841.62	
156.43	24990.89	128.97	15834.63	155.69	15701.80	
108.40	19195.32	111.64	13910.86	153.67	14012.66	
74.45	17235.57	84.75	11786.00	146.75	11913.15	
3.86	13476.30	61.74	9804.99	125.47	9908.19	
0.00	9622.09	31.89	5931.12	94.41	5919.52	
0.00	5769.78	18.56	1986.49	10.30	1944.52	

Table 4.2: Binding capacity of ground resin, mixed matrix membrane (MMM) 30%loading and ethyl vinyl alcohol (EVAL) membrane

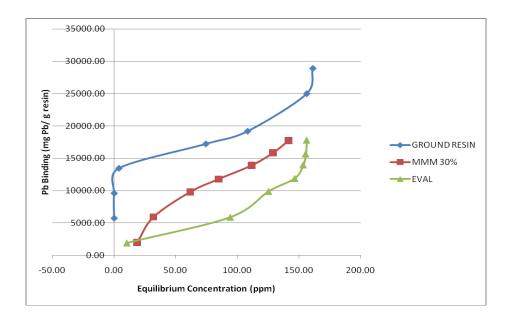


Figure 4.2: Binding capacity versus equilibrium concentration for different format of Dowex M-31 based adsorbent

4.3 Effect of Cation Loading in MMM

Based on results showed in Table 4.5 and Figure 4.3, the binding capacity increase with increasing the resin loading. MMM with 30% resin loading showed the highest binding capacity compare to 20% and 10%. However, further increase of resin loading to 45% was not feasible because the casting solution become too viscous and difficult to form a membrane.

MMM 30%		MMM 20%		MMM 10%		
Final Conc, ppm	mg Pb bound/g resin	Final Conc, ppm	mg Pb bound/g resin	Final Conc, ppm	mgPb bound/ g resin	
141.70	17744.56	156.73	17566.52	161.31	17809.13	
128.97	15834.63	156.29	15795.16	159.13	15952.26	
111.64	13910.86	146.17	13956.15	151.78	13789.00	
84.75	11786.00	124.93	11820.67	149.18	11743.86	
61.74	9804.99	112.30	9770.89	131.91	9920.74	
31.89	5931.12	61.88	5957.61	82.56	5939.59	
18.56	1986.49	27.41	1956.56	37.33	1988.80	

Table 4.5: Binding properties of mixed matrix membrane with different cation loading

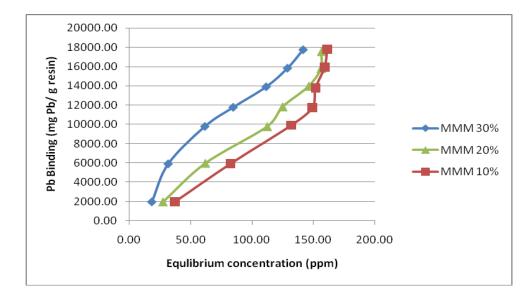


Figure 4.3: Binding capacity of mixed matrix membrane with different cation loading

4.4 Regeneration of Membrane

Three different regeneration solutions was tested for recovery of bound lead which are HCl, H₂SO₄ and NaCl. Each solution prepared at 8% concentration and incubated with the MMM bound with lead for about 30 minutes. All solution gave a recovery about 98-99 % lead (II) as shown in Figure 4.4. Based on environmental factor, NaCl can be more suitable for used as regeneration agent for lead recovery.

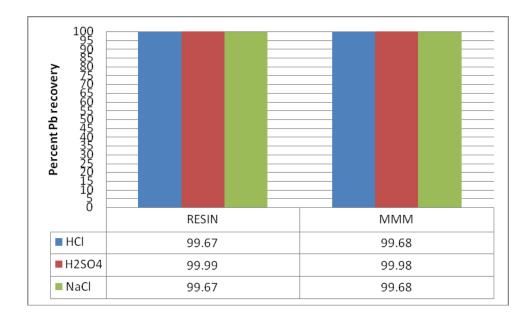


Figure 4.4: Graph Recovery of Ground Resin and MMM

CHAPTER 5

CONCLUSION AND RECOMMANDATIONS

5.1 Conclusion

Mixed matrix membrane (MMM) was successfully applied for wastewater application for removing lead (II). The effects of various parameters like resin selection, resin loading and regeneration of membrane were studied. Among the resins screened Dowex M-31 was selected based on high binding capacity around 675 mg Pb/g resin and low cost of adsorbent. The adsorption isotherm of the ground resin and MMM were found to be Langmuir type isotherm. Typical lead (II) binding capacity was in the range of 1 000-30 000 mg Pb bound/ g resin.

The binding capacity increase with increasing the resin loading. MMM with 30% resin loading showed the highest binding capacity compare to 20% and 10% loading. However, further increase of resin loading to 45% was not feasible because the casting solution become too viscous and difficult to form a membrane. Three different regeneration solutions was tested for recovery of bound lead which are HCl, H₂SO₄ and NaCl. Based on environmental factor and recovery percentage, NaCl can be more suitable for used as regeneration agent for lead recovery. The concept of MMM that been used extensively in preparing membrane for gas separation and protein separation, can be expand to produce cation exchanger membrane for heavy metal removal. The MMM provide a very good platform for application of heavy metal removal.

5.2 Recommandations

There were several recommendations that can be taken for further study in order to improve the efficiency of MMM in heavy metals removal.

- i. Prepared and characterize MMM using another type of polymer such as polysulfone, polyethylene mine, polyvinyl alcohol.
- ii. Produce MMM with different composition of EVAL based membrane casting solution and study the performance for lead removal
- iii. Optimizing the pH in order to get the ideal pH for operation of heavy metals removal.
- iv. Mixed more than one cation resin into membrane to extend the adsorption for other metals.
- v. Ion-exchange resin must be grind to very small pieces to get more surface area and improve adhesion in the membrane matrix.
- vi. Used a proper casting machine to get more efficient membrane structure.

REFERENCES

- Smara, A., Delimi, R., Poinsignon, C., and Sandeaux, J. (2005). Electroextraction of heavy metals from diluted solutions by a process combining ion-exchange resins and membranes. Separation and Purification Technology 44 (2005) 271–277.
- Dujardin, M.C., Caze, C., and Vroman, I. (1998). Ion-exchange resins bearing thiol groups to remove mercury.Part 1: synthesis and use of polymers prepared from thioester supported resin. *Reactive & Functional Polymers 43* (2000) 123–132.
- Babel, S., and Kurniawan, T.A. (2002). Low-cost adsorbents for heavy metals uptake from contaminated water: a review, *Journal of Hazardous Materials B97 (2003) 219– 243*.
- Sgarlata, C., Arena, G., Longo, E., Zhang, D., Yang, Y., and Bartsch, R.A. (2008) Heavy metal separation with polymer inclusion membranes, *Journal of Membrane Science 323* (2008) 444–451.
- Charlie, S., Ratto, M., and Rovatti, M., (1999).mercury removal from water by ion exchange resin absorption, *Wat. Res. Vol. 34, No. 11, pp. 2971±2978, 2000.*
- Dabrowski, A., Hubicki, Z., Podkoscielny, P., and Robens, E. (2004). Selective removal of the heavy metal ions from water & industrial wastewater by ion-exchange method, *Chemosphere 56 (2004) 91–106*
- Bessbousse, H., Rhlalou, T., Verchère, J.-F., and Lebruna, L.(2010). Mercury removal from wastewater using a poly(vinylalcohol)/poly(vinylimidazole) complexing membrane, *Chemical Engineering Journal 164 (2010) 37–48*
- Khedr, M. G.(2008). Membrane methods in tailoring simpler, more efficient, and cost effective wastewater treatment alternatives, *Desalination 222 (2008) 135–145*
- Abo-Farha, S.A., Abdel-Aal, A.Y., Ashour, I.A., and Garamon, S.E.(2009). Removal of some heavy metal cations by synthetic resin purolite C100, *Journal of Hazardous Materials* 169 (2009) 190–194.
- Zhang, Y., Borneman, Z., Koop,G-H., and Wessling, M. (2006). Adsorption behavior of cation-exchange resin-mixed polyethersulfone-based fibrous adsorbents with bovine serum albumin, *Desalination 192 (2006) 224–233*
- Kiyono, R., Koops, G.H., Wessling, M., and Strathmann, H. (2003). Mixed matrix microporous hollow fibers with ion-exchange functionality, Journal of Membrane *Science 231 (2004) 109–115.*
- Erdem, E., Karapinar, N., and Donat, R. (2004). The removal of heavy metal cations by natural zeolites, *Journal of Colloid and Interface Science* 280 (2004) 309–314.

- Igwe, J. C. and Abia, A.A. (2006). *A* bioseparation process for removing heavy metals from waste water using biosorbents, *African Journal of Biotechnology Vol. 5 (12), pp.* 1167-1179, 16 June 2006
- Saiful, Z., Borneman., andWessling, M. (2006). Enzyme capturing and concentration with mixed matrix membrane adsorbers. *Journal of Membrane Science 280 (2006)* 406–417.
- Yang, H., Bitzer, M., and Etzel, M.R. (1999). Analysis of Protein Purification Using Ion-Exchange Membranes, *Ind. Eng. Chem. Res. 1999, 38, 4044-4050.*
- Guibal, E. (2004). Interactions of metal ions with chitosan-based sorbents: a review, Separation and Purification Technology 38 (2004) 43–74
- Avramescu, M-E., Gironès, M., Borneman, Z., Wessling, M. (2003). Preparation of mixed matrix adsorber membranes for protein recovery, *Journal of Membrane Science* 218 (2003) 219–233
- Hong, K.S., Lee, H.M., Bae, J.S, Ha, M.G., Jin, J.S., Hong, T.E., Kim, J.P., and Jeong, E.D. (2010). Removal of Heavy Metal Ions by using Calcium Carbonate Extracted from Starfish Treated by Protease and Amylase, *Journal of Analytical Science & Technology September*;2(2010) :75-82.
- Bougen, A., Rabiller-Baudry, M., Chaufer, B., and Michel, F. (2001). Retention of heavy metal ions with nanofiltration inorganic membranes by grafting chelating groups, *Separation and Purification Technology 25 (2001) 219–227*
- Bakalá, T., Búgel, M., and Gajdošová, L.(2009). Heavy metal removal using reverse osmosis, *Ročník 14 (2009), číslo 3, 250-253*
- Mack, C., Burgess, J.E., and Duncan, J.R. (2004). Membrane bioreactors for metal recovery from wastewater: A review, *Water SA Vol. 30 No. 4 October 2004*.
- Elshazly, A.H., and Konsowa, A.H. (2003). Removal of Nickel ions from wastewater using a cation-exchange resin in a batch-stirred tank reactor, *Desalination 158 (2003)* 189-193.
- Earl, O., Skogley., and Dobermann, A. (1996). Synthetic Ion-Exchange : Soil and Environmental Studies.
- Khan,N.A., Ibrahim,S., and Subramaniam,P.(2004). Elimination of Heavy Metals from Wastewater Using Agricultural Wastes as Adsorbents, *Malaysian Journal of Science 23 : 43 - 51 (2004)*.
- Ramesh, A., Lee, D.J., and Wong, J.W.C. (2005). Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents, *Journal of Colloid and Interface Science 291 (2005) 588–592.*

- Geankoplis, C.J., (1993). *Transport Processes and Unit Operations* (3rd Edition). Prentice-Hall, pp. 697-704.
- S.M. Saufi, and C.J. Fee, (2009). Fractionation of b-Lactoglobulin From Whey by Mixed Matrix Membrane Ion Exchange Chromatography. Article of Bioetechnology and Bioengineering.
- Winterton, J.D., Darmawan, F., and Doyle, F.M., (2005). Investigation of ion exchange resins for use in treatment of semiconductor processing waste streams. Proceedings of the EPD Conference 2005. The Mineral, Metal & Materials Society, Warrendale, USA, pp. 885–894.
- Solenberger, J.C. and Withers, M. S., (1982). *Cation permeable Membrane Containing a Reinforcing Fabric*. FR Patent 2,498,116.
- Pehlivan, E., and Altun, T., (2006). *The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex* 50 W synthetic resin. Journal of Hazardous Materials B134, 149–156.

Operation Manual: Flame, (2001)

APPENDIX A

AAS ANALYSIS RESULT

A.1 Resin Screening Analysis

Table of I	Each Element	11/1	5/2011 11:	17 AM		
Analysis Mode Analysis Name Comment	: Flame/Manual : Screening resin ans : Cu & Pb	lysis				
Meas. Date Element : Pb	: 11/15/2011 11:17 Al STD Unit :	ppm	UNK Uni	-	: ppm	
STD1 STD2 STD3 STD4 STD5 STD6 Coefficient	mple Name K3= K2= K1=7.590906E-003 K0=1.224286E-002 0.9930	Conc. 0.000 3.750 7.500 15.000 30.000 60.000 ABS 0.40 0.20	RSD(%) -313.59 11.28 43.51 19.94 3.92 4.19	ABS -0.0184 0.0470 0.0717 0.1394 0.2651 0.4511	REF 0.0096 0.0037 0.0034 0.0110 0.0199 0.0417	
UNK-002 dow	iberlite irc 86 wax m-31 vatit monoplus tp 214	0.00 0.000 18.907 0.732 15.719		5i (ppm) 0.1558 0.0178 0.1316	0.000 0.0050 -0.0133 -0.0018	,
UNK-004 lew	vatit monoplus tp 214 vatit monoplus mp 112 wex mac-3	0.389	42.42 6.97	0.0152 0.0967		1

Figure A.1: Resin Screening Analysis Part I

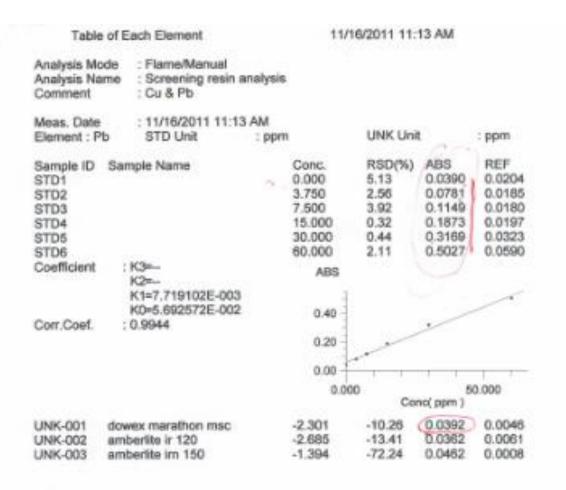


Figure A.2: Resin Screening Analysis Part II

Table	of Each Element	11/2	2/2011 2:11	9 PM	
Analysis Mo Analysis Nar Comment		r Cu and Pb			
Meas. Date Element : Pt	: 11/22/2011 2:19 F STD Unit	PM : ppm	UNK Unit	ť.	: ppm
Sample ID STD1 STD2 STD3 STD4 STD5 STD6	Sample Name	Conc, 0.000 3.750 7.500 15.000 30.000 60.000	RSD(%) 6.42 1.45 2.07 3.00 2.15 1.56	ABS 0.1215 0.1640 0.2076 0.2767 0.4002 0.5967	REF 0.0059 0.0003 -0.0019 0.0042 0.0155 0.0293
Coefficient	: K3= K2= K1=7.825770E-003 K0=1.428257E-001	ABS 0.50			_
Corr.Coef.	: 0.9949		~		
		0.00			1.1
		0.00		nc(ppm)	0.000
UNK-001 UNK-002 UNK-003 UNK-004 UNK-005 UNK-006 UNK-007 UNK-008	Lowatit TP 214 (1) Lewatit TP 214 (2) Lewatit SP 112 (1) Lewatit Sp 112 (2) Dowex M-31 (1) Dowex M-31 (2) Dowex Mac-3 (1) Dowex Mac-3 (2)	12.059 16.711 -2.073 -1.831 -1.503 -1.771 61.226 32.641	8.70 1.23 -29.23 -30.91 -17.50 -20.95 2.40 3.28	0.2372 0.2736 0.1266 0.1285 0.1311 0.1290 0.6220 0.3963	-0.0105 -0.0219 -0.0219 -0.0215 -0.0305 -0.0312 0.0226 -0.0070

Figure A.3: Resin Screening Analysis Part III

Table o	of Each Element	11/23	/2011 3:30	PM	
Analysis Mod Analysis Nam Comment		r Pb			
Meas, Date Element : Pb	: 11/23/2011 3:39 Pf STD Unit	M : ppm	UNK Unit		: ppm
Sample ID STD1 STD2 STD3 STD4 STD5 STD6	Sample Name	Conc. 0.000 3.750 7.500 15.000 30.000 60.000	RSD(%) 0.61 2.08 2.74 1.50 0.91 2.98	ABS 0.1156 0.1538 0.1896 0.2530 0.3641 0.4167	REF -0.0270 -0.0453 -0.0526 -0.0563 -0.0532 -0.0316
Coefficient	: K3= K2= K1=5.031816E-003 K0=1.513086E-001	ABS 0.40 -			<u></u>
Corr.Cost.	: 0.9471	0.20	+ · · ·		
		0.000		5(ppm)	000.000
UNK-002 UNK-003 UNK-004 UNK-005 UNK-006 UNK-006 UNK-007 //	ewatit TP 214 (3) ewatit Sp 112 (3) Dowex M-31 (3) Dowex Mac-3 (3) Dowex Marathon MSC (1) Amberite IRC 86 (1) Amberite IRN 150 (1) Amberite IR 120 (1)	-19.918 -8.209 -8.726 37.235 -8.170 62.057 -8.607 -10.011	2.48 -1.25 -5.26 9.28 -8.42 3.85 -7.56 -8.25	0.2515 0.1100 0.1074 0.3387 0.1102 0.4636 0.1080 0.1009	-0.0752 -0.0934 -0.0926 -0.0783 -0.1010 -0.0379 -0.1085 -0.1085 -0.1067

Figure A.4: Resin Screening Analysis Part IV

1	Table of Each Element			11/3	24/2011 12:	54 PM	
	is Mode is Name ent	: Flame/Manual : Sample Analysis : Screening Resin a	and Bind	Sing EVAL	for Cu & Pb	62	
Meas. (Elemen		: 11/24/2011 12:54 STD Unit	PM : ppm		UNK Unit	t l	: ppm
Sample STD1 STD2 STD3 STD4 STD5 STD6 Coeffici		nple Name K3=		Conc. 0.000 3.750 7.500 15.000 30.000 60.000 ABS	RSD(%) 1.30 8.06 3.33 1.51 2.00 1.22	ABS 0.1001 0.1054 0.1834 0.2179 0.3403 0.4988	REF -0.0072 -0.0116 -0.0122 -0.0058 -0.0035 0.0103
Corr.Co	oef. :	K2= K1=5.748780E-003 K0=1.102257E-001 0.9890		0.40			~
				0.00		5(no(ppm)	0.000
UNK-00 UNK-00 UNK-00 UNK-00 UNK-00 UNK-00 UNK-00 UNK-00 UNK-00	02 Do 03 Am 05 Am 06 Am 06 Am 07 Am 08 Am 09 EV 10 EV	wex Marathon MSc (2 wex Marathon MSC (3 beritte IRC 86 (2) beritte IRC 86 (3) beritte IRN 150 (2) beritte IRN 150 (3) beritte IRN 150 (3) beritte IR 120 (2) beritte IR 120 (3) AL (1) AL (2) AL (3)	5)	3.597 3.360 58.026 61.489 4.515 -0.122 -1.841 -1.377 38.195 30.575 15.451	17.63 18.24 7.72 0.77 22.77 -282.79 -31.07 -98.91 7.96 10.16 1.11	0.1345 0.1329 0.5018 0.5252 0.1407 0.1094 0.0078 0.1009 0.3680 0.3166 0.2145	-0.0266 -0.0270 0.0139 0.0125 -0.0249 -0.0348 -0.0386 -0.0352 0.0005 0.0032 -0.0043

Figure A.5: Resin Screening Analysis Part V

Table o	f Each Element	12/	13/2011 4:3	3 PM	
Analysis Mode Analysis Nam Comment		or Pb			
Meas. Date Element : Pb	: 12/13/2011 4:33 F STD Unit	*M : ppm	UNK Uni	t i	: ppm
Sample ID S STD1 STD2 STD3 STD4 STD5 STD6 Coefficient	iample Name : K3# K2#	Conc. 0.000 3.750 7.500 15.000 30.000 60.000 ABS	RSD(%) -50.00 3.24 0.60 1.11 0.21 0.36	ABS -0.0002 0.0247 0.0500 0.0969 0.1873 0.3328	REF -0.0185 -0.0376 -0.0529 -0.0600 -0.0597 -0.0499
Corr.Coef.	K1=5.545315E-003 K0=8.142857E-003 : 0.9976	0.20			0.000
UNK-002 A UNK-003 D UNK-004 A UNK-005 L UNK-005 L UNK-007 D UNK-008 A UNK-008 A	Nowex MSC (1) Imberite IR 120 (1) Nowex Mac-3 (1) Imberite IRN 150 (1) Imberite IRN 150 (1) Imberite IRN 150 (1) Nowex M-31 (1) Imberite IRC 86 (1) Imberite IRC 86 (1)	136.07 139.68 158.41 153.63 136.29 159.76 133.28 139.57 0.446	Cor 0.06 0.13 0.05 0.10 0.03 0.11 0.09 0.14 187.02	o(ppm) 0.7627 0.7827 0.8866 0.8601 0.7639 0.8941 0.7472 0.7821 0.7821	0.0553 0.0630 0.1652 0.1232 0.0409 0.2189 0.0226 0.0407 0.1327
	owatit SP 142 (b) mberite IR 120 (a)	-0.014	00.00	0.0001	0.1370
UNK-012 Li UNK-013 Li	ewatit TP 214 (a) ewatit TP 214 (b) ewatit TP 214 (c)	128.91 137.25 96.554	90.00 1.08 0.25 1.94	0.7119 0.7692 0.5436	-0.0114 0.0161 -0.0762

Figure A.6: Resin Screening Analysis Part VI

Table o	f Each Element	12/1	4/2011 1:3	3 PM	
Analysis Mod Analysis Nam Comment		or Pb (SET 2)			
Meas. Date Element : Pb	: 12/14/2011 1:33 Pl STD Unit	M : ppm	UNK Unit	t i	: ppm
STD1 STD2 STD3 STD4 STD5 STD6	Sample Name	Conc. 0.000 3.750 7.500 15.000 30.000 60.000	RSD(%) -50.00 0.38 0.38 0.29 0.26 0.14	ABS -0.0002 0.0262 0.0520 0.1035 0.1952 0.3453	REF -0.0163 -0.0356 -0.0502 -0.0580 -0.0592 -0.0500
Coefficient	: K3= K2= K1=5.751545E-003 K0=8.897145E-003	ABS			
Corr.Coef.	: 0.9974	0.20		/	
		0.00	~		
		0.00	the second se	50 hc(ppm)	0.000
UNK-002 // UNK-003 E UNK-005 E UNK-005 E UNK-005 L	XOWEX MSC (2) WBERLITE IR 120 (2) XOWEX MAC-3 (2) WBERLITE IRN 150 (2) XOWEX M-31 (2) LEWATIT SP 112 (2) LEWATIT TP 214 (2) AMBERLITE IRC 86 (2)	146.73 139.79 150.14 135.83 150.75 143.16 153.00 145.78	0.25 0.24 0.09 0.14 0.06 0.20 0.10 0.13	0.8528 0.8129 0.8724 0.7901 0.8759 0.8323 0.8889 0.8474	0.1130 0.0784 0.1307 0.0560 0.1333 0.0824 0.2717 0.0924

Figure A.7: Resin Screening Analysis Part VII

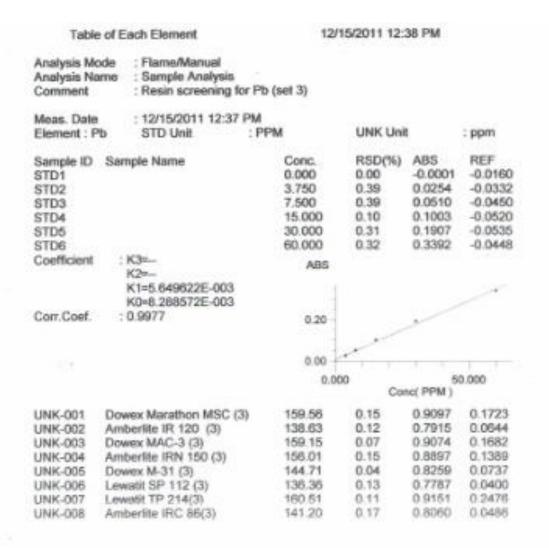


Figure A.8 : Resin Screening Analysis Part VIII

A.2 Absorption Isotherm Analysis

Table	of Each Element	12/2	0/2011 11:	48 AM		
Analysis Mo Analysis Na Comment	me : Sample Analysi	is [Dowex M-31] y in different conc (Pb	9			
Meas, Date Element ; Pt	: 12/20/2011 11: STD Unit	47 AM : ppm	UNK Uni	t	: ppm	
Sample ID STD1 STD2 STD3 STD4 STD5 STD6	Sample Name	Conc. 0.000 3.750 7.500 15.000 30.000 60.000	RSD(%) -100.00 1.57 1.96 0.30 0.73 0.61	ABS -0.0001 0.0254 0.0509 0.1013 0.1917 0.3420	REF -0.0260 -0.0405 -0.0522 -0.0590 -0.0592 -0.0501	
Coefficient	: K3= K2= K1=5.697278E-00 K0=8.148570E-00 : 0.9978	0			_	
our oue.		0.20				
		0.000		5 nc(ppm)	0.000	
UNK-001 UNK-002 UNK-003 UNK-004 UNK-005 UNK-006 UNK-007	2000ppm 1500ppm 800ppm 500ppm 300ppm	147.81 159.44 121.68 4.052 0.097 -0.371 -0.845	0.21 0.11 0.12 3.18 262.89 -80.05 -14.68	0.8503 0.9165 0.7014 0.0312 0.0067 0.0060 0.0033	0.4423 0.1990 0.0126 -0.1082 -0.1157 -0.1203 -0.1244	

Figure A.9: Absorption Isotherm Analysis Part I

Table o	f Each Element	12/2	23/2011 10:	23 AM	
Analysis Mode Analysis Nam Comment	e : Sample Analysi	s erm for Membrane &	Resin (Pb)	6	
Meas. Date Element : Pb	: 12/23/2011 10:3 STD Unit	22 AM : ppm	UNK Uni	i.	: ppm
STD1 STD2 STD3 STD4 STD5	ample Name	Conc. 0.000 3.750 7.500 15.000 30.000	RSD(%) -100.00 0.40 0.40 0.20 0.16	ABS -0.0001 0.0249 0.0504 0.0992 0.1890	REF -0.0229 -0.0414 -0.0553 -0.0629 -0.0646
STD6 Coefficient	: K3=- K2=-	60.000 ABS	0.18	0.3355	-0.0557
Corr.Coef.	K1=5.591177E-00 K0=8.154286E-00 : 0.9976	5		~	/
		0.00			
		0.00		sc(ppm)	000.0
UNK-002 F UNK-003 F UNK-005 F UNK-005 F UNK-006 F UNK-007 F UNK-008 M UNK-009 M UNK-010 M UNK-011 M	1-1500ppm 1-1300ppm 1-1000ppm 1-700ppm 1-300ppm 1-300ppm 4-1500ppm 4-1300ppm 4-1300ppm 4-900ppm 4-900ppm	163.65 160.56 116.93 78.984 8.844 -0.493 -0.331 152.56 161.14 158.93 154.52 126.21	0.04 0.09 0.17 0.80 7.09 -89.98 -184.29 0.21 0.04 0.03 0.32 0.67	0.9232 0.9059 0.6619 0.4498 0.0576 0.0054 0.0063 0.8611 0.9091 0.8968 0.8721 0.7138	0.2956 0.1637 -0.0051 -0.0902 -0.1105 -0.1192 -0.1226 0.3680 0.2415 0.1401 0.0975 -0.0169
	4-500ppm 4-300ppm	78.263 31.135	3.92 30.68	0.4457 0.1822	-0.0937 -0.1291

Figure A.10: Absorption Isotherm Analysis Part II

Table of Each Element			12/29/2011 10:40 AM				
Analysis Mo Analysis Na Comment		: Flame/Manual : Sample Analys : Absorption Iso		iround Res	sin & MMM		
Meas. Date		: 12/29/2011 10					112.121
Element : P	ъ	STD Unit	: ppm		UNK Uni	¢	: ppm
Sample ID	Sar	nole Name		Conc.	RSD(%)	ABS	REF
STD1		and a second		0.000	-100.00	-0.0001	-0.0221
STD2				3.750	0.40	0.0250	-0.0379
STD3				7,500	0.20	0.0490	-0.0511
STD4				15.000	0.30	0.0995	-0.0596
STD5				30.000	0.11	0.1894	-0.0618
STD6				60.000	0.32	0.3392	-0.0543
Coefficient	1	K3=		ABS			
1000 (100) (1000 (100) (1000 (1000 (100) (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (K2=		14040			
		K1=5.657364E-0	03				1
		K0=7.388573E-0	03				
Corr Coef.		0.9980		0.20		~	
				10000			
					-		
				0.00		1.1	11.11
				0.0			0.000
					ço	nc(ppm)	
UNK-001	150	Oppm (M2)		131.90	0.19	0.7536	0.5933
UNK-002	130	Oppm (M2)		143.86	0.17	0.8213	0.4948
UNK-003	100	Oppm (M2)		156.19	0.12	0.8910	0.3766
UNK-004	900	ppm (M2)		160.01	0.13	0.9126	0.3199
UNK-005	700	ppm (M2)		162.86	0.06	0.9288	0.2041
UNK-006	500	ppm (M2)		149.53	0.05	0.8533	0.0766
UNK-007		ppm (M2)		98.587	0.18	0.5651	-0.0558
UNK-008		Oppm (M3)		153.72	0.10	0.8771	0.3573
UNK-009		Oppm (M3)		160.00	0.03	0.9125	0.2719
UNK-010		Oppm (M3)		160.31	0.02	0.9143	0.1536
UNK-011		ppm (M3)		153.28	0.16	0.8745	0.0830
UNK-012		ppm (M3)		132.96	0.05	0.7598	-0.0055
UNK-013		ppm (M3)		96.054	1.40	0.5508	-0.0815
UNK-014		ppm (M3)		5.923	11.06	0.0409	-0.1539
UNK-015		Oppm (R2)		160.53	0.08	0.9156	0.2064
UNK-016		Oppm (R2)		152.46	0.04	0.8699	0.0650
UNK-017		Oppm (R2)		100.65	0.18	0.5768	-0.0877
UNK-018		ppm (R2)		65.097	0.09	0.3757	-0.1295
UNK-019		ppm (R2)		0.856	7.24	0.0122	-0.1718
UNK-020		ppm (R2)		-0.269	-179.55	0.0059	-0.1745
UNK-021		ppm (R2)		-0.799	-21.15	0.0029	-0.1770
UNK-022		Oppm (R3)		160.04	0.10	0.9128	0.1641
UNK-023		Oppm (R3)		156.26	0.13	0.8914	0.0817
UNK-024		Oppm (R3)		107.61	0.02	0.6162	-0.0938
UNK-025		ppm (R3)		79.279	0.31	0.4559	-0.1335
1 INIK_026	700	PARTY AND			1 1 1 1	A 1 1 1 1 1 1 1 1 1 1	100 100 100

Figure A.11: Absorption Isotherm Analysis Part III

1.887

-0.548

-0.558

7.79

-80.39

UNK-026

UNK-027

UNK-028

700ppm (R3) 500ppm (R3)

300ppm (R3)

-0.1877

-0.1907

-0.1928

0.0181

0.0043

0.0042

Table of Each Element		1/3/2	2012 3:18	PM		
Analysis Mo Analysis Nar Comment		otherm				
Meas. Date Element : Pt	: 1/3/2012 3:17 PM STD Unit	: ppm	UNK Un	it .	: ppm	
Sample ID STD1 STD2 STD3 STD4 STD5 STD6 Coefficient	Sample Name	Conc. 0.000 3.750 7.500 15.000 30.000 60.000 ABS	RSD(%) -100.00 0.79 0.38 0.00 0.35 0.23	ABS -0.0001 0.0252 0.0532 0.1039 0.1978 0.3508	REF -0.0364 -0.0492 -0.0580 -0.0619 -0.0608 -0.0496	
Corr.Coef.	K2= K1=5.849364E-003 K0=8.468570E-003 : 0.9976	0.20	~	~	/	
		0.00		50 (ppm)	0.000	
UNK-001 UNK-003 UNK-005 UNK-005 UNK-005 UNK-005 UNK-005 UNK-005 UNK-010 UNK-010 UNK-011 UNK-011 UNK-015 UNK-015 UNK-015 UNK-016 UNK-018 UNK-019 UNK-020 UNK-021	1500ppm (E1) 1300ppm (E1) 1000ppm (E1) 900ppm (E1) 700ppm (E1) 500ppm (E1) 1500ppm (E2) 1300ppm (E2) 1300ppm (E2) 1000ppm (E2) 900ppm (E2) 500ppm (E2) 500ppm (E2) 1000ppm (E3) 1000ppm (E3) 1000ppm (E3) 900ppm (E3)	119.92 131.62 147.16 151.48 156.46 153.58 134.71 116.69 128.99 144.68 149.37 154.60 151.71 133.14 115.78 127.62 143.53 148.04 153.55 151.00 132.56	0.15 0.17 0.06 0.14 0.10 0.03 0.32 0.10 0.12 0.04 0.11 0.13 0.17 0.25 0.19 0.20 0.08 0.24 0.03 0.20 0.20 0.38	0.7099 0.7783 0.8693 0.9236 0.9068 0.7964 0.6910 0.7624 0.8547 0.8547 0.8547 0.8547 0.8547 0.8557 0.7550 0.8128 0.7873 0.6057 0.7550 0.8480 0.85480 0.85444 0.8057 0.85480 0.8744 0.8057 0.85480 0.8744	0.6427 0.5490 0.4119 0.3587 0.2599 0.1549 0.0447 0.0083 0.5141 0.3795 0.3282 0.2280 0.1243 0.0165 0.5754 0.4881 0.3099 0.2078 0.3009 0.2078 0.3009 0.2078	

Figure A.12 : Absorption Isotherm Analysis Part IV

Table of Each Element		1/5/20	012 10:21	AM		
Analysis Mode Analysis Name Comment	: Flame/Manual : Sample Analysis : Abs Isotherm EVAL	8 MMM				
Meas. Date Element : Pb	: 1/5/2012 10:21 AM STD Unit	ppm	UNK Unit		: ppm	
Sample ID Sam STD1 STD2 STD3 STD4 STD5 STD8 Coefficient : 1	ple Name	Conc. 0.000 3.750 7.500 15.000 30.000 60.000 ABS	RSD(%) -100.00 0.39 0.37 0.19 0.26 0.42	ABS -0.0001 0.0258 0.0535 0.1027 0.1918 0.3108	REF -0.0306 -0.0457 -0.0539 -0.0574 -0.0546 -0.0461	
	(2= (1=5.182255E-003 (0=1.367715E-002).9922	0.20			1	
		0.00		5 vo(ppm)	0.000	
UNK-002 1300 UNK-003 1000 UNK-004 900 UNK-005 700 UNK-005 500 UNK-008 1500 UNK-009 1300 UNK-010 1000 UNK-011 900 UNK-012 700 UNK-013 500	0 (E1) 0 (E1) 0 (E1) (E1) (E1) 0 (M1) 0 (M1) 0 (M1) (M1) (M1) (M1)	164.30 177.75 160.72 164.81 144.38 126.50 92.287 120.34 113.84 39.016 166.94 48.625 23.315 19.738	0.38 0.05 1.21 0.19 0.39 0.34 1.57 14.40 32.52 4.14 4.22 15.86 25.95 17.41	0.8651 0.9348 0.8932 0.8678 0.7619 0.6692 0.4919 0.6373 0.6036 0.2159 0.8788 0.2657 0.1345 0.1160	0.4534 0.2617 0.1646 0.1231 0.0501 0.0081 -0.0420 0.0065 0.0470 -0.0915 0.2424 -0.0902 -0.1076 -0.1128	

Figure A.13 : Absorption Isotherm Analysis Part V

	Table of	Each Element	1/9/2012 11:49 AM					
Analysis Mode Analysis Name Comment		: Flame/Manual : Sample Analysi : Isotherm and re						
	Meas. Date Element : Pb	: 1/9/2012 11:48 STD Unit	AM : ppm	UNK Uni	t	: ppm		
	Sample ID Se STD1 STD2 STD3 STD4 STD5 STD6	ample Name	Conc. 0.000 3.750 7.500 15.000 30.000 60.000	0.20	ABS -0.0001 0.0257 0.0543 0.1049 0.1986 0.3521	REF -0.0283 -0.0400 -0.0459 -0.0479 -0.0436 -0.0299		
	Coefficient	: K3=- K2=- K1=5.863546E-00 K0=8.977140E-00		s		/		
	Corr.Coef.	: 0.9975	0.25	1	-			
			0.00	0.000	nc(ppm)	000		
	UNK-002 E8 UNK-003 E7 UNK-005 E9 UNK-006 E3 UNK-007 E1 UNK-008 M UNK-009 M UNK-010 M UNK-010 M UNK-011 M UNK-013 M UNK-013 M UNK-015 E9 UNK-016 E9 UNK-018 M UNK-019 83	900 900 900 900 900 900 900 900	156,48 185,69 153,67 146,75 125,47 94,412 10,299 29,111 22,027 12,732 14,159 23,221 10,350 24,034 140,73 149,31 27,638 65,328 -0,354 0,754	0.01 0.12 0.08 0.24 1.96 14.90 9.18 0.32 4.16 16.63 35.57 18.70 22.08 0.23 0.02 0.63	0.9265 0.9219 0.9100 0.8095 0.7447 0.5626 0.0694 0.1797 0.1381 0.0636 0.0920 0.1451 0.0697 0.1451 0.0697 0.1450 0.8342 0.8845 0.1710 0.3920 0.0699 0.0134	0.2750 0.2448 0.2061 0.0519 -0.0127 -0.0670 -0.0795 -0.0876 -0.0980 -0.0980 -0.0928 -0.1054 -0.0994 0.0823 0.1361 -0.1079 -0.0825 -0.1282 -0.1304		

Figure A.14 : Absorption Isotherm Analysis Part VI

Table of Each Element			1/12/2012 10:27 AM				
Analysis Mo Analysis Nar Comment		56					
Meas. Date Element : Pt	: 1/12/2012 10:27 / STD Unit	AM : ppm		UNK Unit		: ppm	
Sample ID STD1 STD2 STD3 STD4 STD5 STD6	Sample Name		Conc. 0.000 3.750 7.500 15.000 30.000 60.000	RSD(%) 0.00 0.40 0.39 0.39 0.42 0.06	ABS -0.0002 0.0250 0.0513 0.1013 0.1013 0.1907 0.3387	REF -0.0205 -0.0385 -0.0513 -0.0581 -0.0587 -0.0489	
Coefficient	: K3= K2= K1=5.641733E-003 K0=8.491429E-003		ABS			1	
Corr.Coef.	: 0.9975		0.20	~			
			0.00 +	4			
			0.00		6(ppm)	0.000	
UNK-001 UNK-002 UNK-003 UNK-004 UNK-005 UNK-006 UNK-007	M 900 M 800 M 700 M 600 M 500 M 300 M 100		161.31 159.13 151.78 149.18 131.91 82.559 37.325	0.05 0.09 0.57 0.38 1.48 0.93	0.9188 0.9062 0.8648 0.8501 0.7527 0.4743 0.2191	0.2588 0.1882 0.1208 0.1063 0.0343 -0.0560 -0.0955	

Figure A.15 : Absorption Isotherm Analysis Part VII

A.3 Resin Loading Analysis

Table	of Ea	ch Element		1/14/2012 11:41 AM				
Analysis Mode : Flame/Manual Analysis Name : Sample Analysis Committel : MMM 30% & MM			ysis	4 10%				
Mens. Date Element : Pl		: 1/14/2012 11: STD Unit	40 AM : ppm		UNK Uni	t	: ppm	
Sample ID STD1 STD2 STD3 STD4 STD5 STD6 Coefficient		ple Name		Conc. 0.000 3.750 7.500 15.000 30.000 60.000	R5D(%) -100.00 1.54 0.37 1.78 1.43 1.43 1.49	ABS -0.0001 0.0250 0.0544 0.1057 0.2030 0.3558	REF -0.0369 -0.0521 -0.0619 -0.0675 -0.0664 -0.0553	
Corr.Coel.	K K	2= (1=5.935631E-0 (0=9.297143E-0 (9971		ABS 0.20			~	
				0.00		5i no(ppm)	000	
UNK-001 UNK-002 UNK-003 UNK-004 UNK-005 UNK-005 UNK-007 UNK-008 UNK-009 UNK-010 UNK-011 UNK-012 UNK-013	M 80 M 70 M 60 M 50 M 300 M 90 M 90 M 90 M 60 M 50	0 10% 0 10% 0 10% 0 10% 0 10% 0 10% 0 10% 0 30% 0 30% 0 30% 0 30% 0 30% 0 30%		157.79 156.25 152.40 146.43 132.53 85.024 8.357 141.70 128.97 111.64 84.754 61.741 31.887	0.13 0.25 0.99 1.07 1.40 4.76 34.37 0.84 1.02 1.92 5.31 13.32 23.22	0.9459 0.9387 0.9139 0.8785 0.7959 0.5140 0.0589 0.8504 0.7748 0.6720 0.5124 0.5124 0.3758 0.1988	0.2893 0.2079 0.1615 0.1190 0.0478 -0.0547 -0.1179 0.0787 0.0239 -0.0250 -0.0250 -0.0727 -0.0966 -0.1246	

Figure A.16 : Resin Loading Analysis Part I

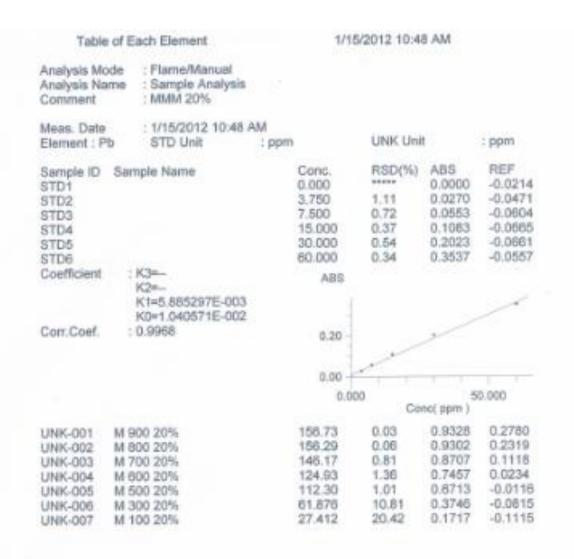


Figure A.17 : Resin Loading Analysis Part II

A.4 Recovery Analysis

Table of	of Each Element	1/11/2012 4:29 PM					
Analysis Mod Analysis Nam Comment	ie : Sample Analysi						
Meas. Date Element : Pb	: 1/11/2012 4:28 STD Unit	PM : ppm	UNK Unit	e	: ppm		
Sample ID STD1 STD2 STD3 STD4 STD5 STD6	Sample Name	Conc. 0.000 3.750 7.500 15.000 30.000 60.000	RSD(%) 100.00 0.41 0.40 0.41 0.11 0.21	ABS 0.0002 0.0243 0.0498 0.0985 0.1882 0.3365	REF -0.0179 -0.0324 -0.0436 -0.0499 -0.0513 -0.0430		
Coefficient	: K3= K2= K1=5.609216E-00 K0=7.571430E-00				1		
Corr.Coef.	: 0.9979	0.20		~			
		0.00		no(ppm)	0.000		
UNK-002 UNK-003 UNK-004 UNK-005 UNK-005 UNK-007 UNK-008 UNK-009	RESIN HCI RESIN H2SO4 RESIN NaCI MMM HCI MMM H2SO4 MMM NaCI RESIN 2 RESIN3 MMM 2 3 MMM 2 2	165.90 7.303 163.75 161.63 8.568 160.33 20.864 7.540 85.198 91.503	0.04 2.27 0.08 0.17 2.32 0.16 9.55 3.29 0.89 0.58	0.9381 0.9485 0.9261 0.9142 0.0556 0.9059 0.1246 0.0499 0.4855 0.5208	0.2571 -0.0797 0.2188 0.1762 -0.0937 0.1731 -0.0999 -0.1114 -0.0617 -0.0579		

Figure A.18 : Recovery Analysis