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 Rice, a staple food source globally, is in high demand and production across 

the world. Its consumption varies in different countries, with each nation 

having its unique way of incorporating rice into its diet. Recognizing the 

global nature of rice, its production is a crucial aspect of ensuring its 

availability, agriculture forecasting, economic stability, and food security. 

By predicting its production, we can develop a global plan for its production 

and stock, thereby preventing issues like famine. This paper proposes 

machine learning (ML) and deep learning (DL) models like linear 

regression, ridge regression, random forest (RF), adaptive boosting 

(AdaBoost), categorical boosting (CatBoost), extreme gradient boosting 

(XGBoost), gradient boosting, decision tree, and long short-term memory 

(LSTM) to predict international rice production. A total of nine ML and one 

DL models are trained and tested on the international dataset, which contains 

the rice production details of 192 countries over the last 62 years. Notably, 

linear regression and the LSTM algorithm predict rice production with the 

highest percentage of R-squared (R2), 98.40% and 98.19%, respectively. 

These predictions and the developed models can play a vital role in resolving 

crop-related international problems, uniting the global agricultural 

community in a common cause. 
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1. INTRODUCTION 

In late 2023, a notable price surge and a global rice shortage surprised many. However, economic 

analysts had predicted this situation to occur as early as July 2023, when all non-Basmati rice in India would 

be subjected to export restrictions. Given that India produces nearly 40% of the world’s rice, combined with 

the prolonged effects of climate change, Thailand’s second-largest rice exporter also struggled to address this 

shortage. Before the full implementation of the export ban in July 2023, the market had already displayed 

signs of a rice shortage, evident through multiple price increases. 

It is not easy to understand rice production since many factors influence it, such as climate change, 

political instability, pest attacks, crop diseases, changes in farming practices, and technology. According to 

the research by [1], temperature and rainfall fluctuations can significantly impact crop yields in Southeast 

Asia. Politically unstable situations often hinder rice cultivation, in addition to inconsistency in rules 

applicable or wars or trade embargoes under such situations, which can lead to significant interruption of 

agricultural activities. Another example is the ongoing conflict in Myanmar that has caused major disruptions 
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to rice production and exports, resulting in global supply fluctuations and market price changes, affirming the 

industry’s susceptibility to geopolitical factors. 

Accurate policy-making matters to the agriculture industry, for farmers, stakeholders, and 

policymakers. Hence, having an accurate prediction model will help correct food supply choices, resource 

allocation, and market strategies. Ensuring global food security and achieving sustainable development goal 

(SDG) 2: zero hunger, heavily relies on accurate rice production forecasts because rice is a staple to the 

majority of people across the globe. The importance of precise predictions on global food safety cannot be 

overemphasized. However, traditional crop yield prediction methods based on statistical models and 

historical data may not consider some of the complexities inherent in complex agricultural systems affected 

by climate change, soil conditions, pest invasion, and technological advancement. 

Agricultural prediction has recently been highly improved by machine learning (ML) and deep 

learning (DL) techniques that have increased the accuracy of the prediction through training with large 

datasets on complex patterns. Some of these advanced methods include long short-term memory (LSTM), a 

recurrent neural network (RNN) type. These have successfully predicted time-series data because they can 

capture dependence over time and long-range correlation among the variables. Predicting crop yield is an 

example of how LSTM models have proved very effective because they are so good at capturing sequential 

patterns and temporal dependencies inherent in agricultural data. 

In the last few years, a number of studies have shown the great potential of ML and DL models in 

agriculture yield prediction. A study done by [2] where incorporated convolutional LSTM, convolutional 

neural network (CNN), and hybridization of CNN and LSTM (CNN-LSTN) for predicting the annual rice 

yield at the county scale in Hubei Province, China. This research combined multiple sources of information 

such as gross primary productivity (GPP), ERA5 temperature (AT), soil-adapted vegetation index (SAVI), 

and MODIS remote sensing, which includes enhanced vegetation index (EVI), dummy spatial heterogeneity 

variable. These models have improved their prediction accuracy as soon as this dummy variable is 

introduced. It was found that incorporating spatial heterogeneity into models significantly improved 

prediction accuracy compared to remote sensing data alone. In addition, the ConvLSTM and CNN models 

outperformed the CNN-LSTM model. 

Advanced models, such as CNN-LSTM-Attention models, have combined DL architectures and 

have been satisfactory in handling the nonlinear relationships within agricultural data, according to [3]. These 

models can handle massive, complex datasets, capturing the most important spatial and temporal variability 

and giving accurate predictions. Their results showed that advanced DL models considerably outperform 

traditional models, like random forest (RF) and extreme gradient boosting (XGBoost), which implies 

integrating these methods of effective multi-source data into crop yield prediction in the future. The result of 

this study can benefit policymakers and professionals working in the agriculture sector by making 

scientifically based policies to guide agricultural production for a safe and sustainable food supply. 

This paper explores the work on rice production at an international level using LSTM and other 

machine-learning models. Therefore, the principal focus of this research will be to establish the effectiveness 

of these models in making predictions that are accurate and reliable for use in strategic planning and risk 

management in agriculture. Indeed, these advanced ML and DL models that leverage heterogeneous datasets 

will lead to high accuracy, outperforming traditional methods to provide new insights and tools for enhanced 

global food security. The contents of this paper are outlined as follows. Section 2 reviews related literature on 

cotton crop yield prediction using ML and DL techniques. Section 3 describes the methodology which 

involves data collection, determination of variables, data prepossessing, model design, model validation, and 

verification. Section 4 presents the findings and results of the experiment output, giving out some analysis 

with regard to checking the models. Finally, section 5 will discuss the findings and suggestions for further 

research. 

 

 

2. LITERATURE REVIEW 

Rice, the most widely consumed cereal grain globally, serves as a staple food for billions, 

particularly in Asia [4]. Its production is crucial for global food security and the livelihood of many farmers. 

Accurate prediction of rice production is not just vital, but a practical necessity for effective planning and 

decision-making in the agricultural sector [5]. The potential of ML and DL in predicting crop yield, including 

rice, is a promising area of research that has shown significant results in recent years [6]. 

A study conducted by [7] has significantly contributed to the field by using CNNs to predict rice 

yield. They utilized unmanned aerial vehicle (UAV) multispectral images and incorporated weather data at 

the heading stage. This innovative approach considers weather data in its analysis and adds valuable 

knowledge to the agricultural technology and remote sensing domain. The study's results demonstrate that a 

simple CNN feature extractor for UAV-based multispectral image input data can accurately predict crop 

yields. The models trained with weekly weather data performed the best. However, although the prediction 
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accuracy was nearly the same, the spatial patterns of the predicted yield maps varied across different models. 

The study suggests that the robustness of within-field predictions should be evaluated alongside prediction 

accuracy. 

Another study introduced a hybrid model, RaNN, which combines feature sampling and majority 

voting techniques from RF and multilayer Feedforward neural networks to predict crop yield [8]. The study 

was conducted in Punjab, India, the largest rice producer in the country. The dataset used in this study is 

robust, incorporating agriculture and weather datasets obtained from the Indian Meteorological Department 

Pune and Punjab Environment Information System (ENVIS) Center, Government of India. Results from this 

study revealed that RaNN produced an accurate model with minimal error, surpassing RF, multiple linear 

regression, support vector machine regression, decision tree, artificial neural network, boosting regression, 

and ensemble learner. 

Several studies in agricultural research focus not only on methodology but also on the variables 

influencing model prediction accuracy [9]-[12]. For instance, [10] highlighted the significance of weather 

data and vegetation cover information in evaluating in-season rice yield estimation. They utilized the mobile 

app Canopeo and the conventional GreenSeeker handheld device to measure the normalized difference 

vegetation index (NDVI) during on-farm field experiments in rice-growing regions in 2018 and 2019. 

Additionally, they developed a generalized additive model (GAM) using log-transformed data for grain yield, 

including canopy cover and weather data during specific growth stages. However, the study’s results were 

not as promising as anticipated, prompting the authors to emphasize the need for more field experiments to 

enhance the model’s accuracy and robustness. In a different study, [9] collected real-time meteorological data 

and analysed the day-to-day impact of weather parameters on paddy cultivation. They proposed a robust 

optimized artificial neural network (ROANN) algorithm with genetic algorithm (GA) and multi-objective 

particle swarm optimization algorithm (MOPSO) to predict factors that could improve paddy yield. By 

optimizing input variables using GA and fine-tuning the neural network parameters, the proposed algorithm 

achieved maximum accuracy and minimum error rate. 

Islam et al. [11] tackled the challenges of data quality, processing, and selecting suitable ML models 

with limited time-series data in a novel way. Their application of data processing techniques and a 

customized ML model significantly improved crop yield estimation accuracy at the district level in Nepal. 

Their finding that using remote sensing-derived NDVI alone was insufficient for accurate crop yield 

estimation, and that stacking multiple tree-based regression models together yielded better results, represents 

a significant advancement in the field. Finally, Bowden et al. [12] identified a relationship between monsoon 

variability and rice production in India, demonstrating the potential of RF modelling to reveal complex non-

linearities and interactions between climate and rice production variability. 

While most previous studies have used advanced techniques to predict rice production, our study 

takes a different approach. We focus on more straightforward ML and DL techniques, not only to prevent 

overfitting but also to make it easier for decision-makers to incorporate these models into their systems. Our 

global perspective, as opposed to a focus on a particular country, is a deliberate choice. We aim to provide 

new insights and tools that can be applied on a global scale, with the potential to significantly enhance food 

security worldwide. 

The contributions of this work include: a) Global dataset: data utilized to forecast the rice 

production is related to a specific country India, Nepal. Proposed model has the details of 192 countries. 

Thus, its results have the international relevance. b) UAV and multispectral images:  to predict the rice yield 

previous studies combining the weather data with multispectral images captured through UAV. Some papers are 

based on spatial patterns and yield maps. c) Dataset duration: dataset used for predictions contains the details of 

65 years old rice production. This makes innovative use of historical dataset. d) Algorithms: background 

Studies are using the CNN, hybrid model, GA, swarm optimization algorithm and RaNN models to predict 

the rice production. Proposed models are the being an original contribution using time series model ARIMA 

and LSTM with the higher accurate results. e) International applicability: proposed study ensures availability 

of rice at the international level.  

 

 

3. RESEARCH METHOD 

This section delves into the rice production dataset and the methods used for predicting rice 

production. Python, a versatile and powerful programming tool, is the cornerstone of our model development. 

The following procedures are adopted to predict international rice production: i) data collection, ii) 

Identification of variables, iii) data pre-processing, iv) feature selection, v) data partitioning, vi) model 

training, and vii) model performance evaluation. Variable identification, such as weather conditions, soil 

quality, and previous year’s production, data collection, and pre-processing are some of the most essential 

steps in training ML models. The model’s effectiveness depends on the data’s quality, consistency, and 
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correctness. Figure 1 depicts the general flow of the process. The process began with data collection and so 

forth. The subsequent sub-sections will provide a detailed explanation of the process. 

 

3.1.  Data collection 

This study used the international data set, which contains the details of rice production in 192 

countries. This dataset is available on the open-access data repository ourworldindata.org [13]. It contains 

10,128 rows and 4 columns. 

 

3.2.  Identification of variables 

Our research has meticulously identified the variables crucial for predicting rice production. The 

entity under discussion, a significant contributing factor affecting rice production, has been carefully 

considered. We have also identified the regions that play a key role in this analysis. Our approach, which 

includes considering global entities, instils confidence in the accuracy of our predictions. 

 

3.3.  Data pre-processing 

Data pre-processing involves preparing the data for the ML model. This includes taking necessary 

actions to improve its usability and ensure its proper format and structure, such as handling missing values, 

data inconsistencies, and conflicts. The rice production dataset initially contains a total of 10,128 rows and 4 

columns. After removing the countries with discontinuous values from 1961 to 2022, the dataset contains 

9,300 rows and 4 columns. The top five rows of the rice production dataset are displayed in Table 1. 
 

3.4.  Feature selection 

Feature selection, the next crucial step in the pipeline, involves identifying and reducing the dataset 

to the most significant features. This process also involves removing features that do not affect the output 

variable. In our case, the ‘code’ feature is the selected feature. 

 

3.5.  Data partitioning 

In this phase, the dataset was divided into two parts: training and testing for the ML and DL models. 

This study selected a commonly used ratio for balancing training and testing, 80:20. 
 

3.6.  Model training 

Training data is provided as input to all of the ML and DL models. This paper applied the following 

models: linear regression (LR), RF regressor (RFR), XGBoost regressor, decision tree regressor (DTR), 

AdaBoost regressor (ABR), gradient boosting regressor (GBR), CatBoost regressor, ridge regressor (RR), 

and LSTM. The above-mentioned ML and DL models were selected because these models provide the best 

R-squared (R2) values based on previous studies. We have utilized various regression models for making 

predictions since our dataset did not exhibit any time series properties. 

 

3.6.1. Linear regression 

LR, a type of supervised ML regressor algorithm, is characterized by its interpretability. It comes in 

two types: simple linear regression with just one independent variable and multiple linear regression with 

more than one independent variable [14]. The equation for simple linear regression is as (1):  

 

𝑦 = 𝛽0 + 𝛽1𝑥 (1) 

 

where y is dependent variable, x is independent variable, 𝛽0 is intercept, and 𝛽1 is slope. Meanwhile, the 

equation for multiple regression: 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . +𝛽𝑛𝑥𝑛 + 𝜖 (2) 

 

where, for i = n observations: yi is dependent variable, x1, x2,.., xn are the independent variables, 𝛽0 is  

y-intercept/constant, and 𝛽𝑛 is slope coefficients for each independent variable [15]. 

 

3.6.2. Random forest regressor 

RFR is a type of ensemble learning that improves accuracy by combining multiple decision trees as 

shown in Figure 2. It is used for classification and regression problems. It uses the ensemble’s bagging, 

boosting, and stacking methods for random feature selection [16], [17]. Different parameters were used to 

tune this algorithm. Some of the most widely used are: 

max_depth: it indicates the maximum depth of each decision tree used in this model. 

n_estimators: this parameter indicates the number of decision trees this model will use. 
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Table 1. Sample of international rice production dataset 
Index Entity Code Year Rice | 00000027 || production | 005510 || tonnes 

0 Afghanistan AFG 1961 319000.0 
1 Afghanistan AFG 1962 319000.0 

2 Afghanistan AFG 1963 319000.0 

3 Afghanistan AFG 1964 380000.0 
4 Afghanistan AFG 1965 380000.0 

 

 

 
 

Figure 1. Flow of the proposed methodology 
 

 

 
 

Figure 2. Random forest 
 

 

3.6.3. XGBoost regressor 

This regressor is the extension of the GBR. It is used to improve the performance of ML models 

with the help of objective functions. The objective function adopted by the XGB regressor is a mean squared 

error (MSE), but it can also be other functions like mean absolute error (MAE) or Huber loss. This regressor 

utilizes regularization techniques, such as L1 (lasso regularization) and L2 (ridge regularization), to prevent 

overfitting [18], [19]. 

 

3.6.4. AdaBoost regressor 

AdaBoost is an ensemble method that utilizes the boosting technique and a decision tree as a base 

model. It is known as adaptive boosting because weights are reassigned to each instance, and higher weights 

are reassigned to incorrectly classified instances [20]. This model uses the learning rate and number of base 

models as parameters. AdaBoost has less of a possibility of overfitting than the other models, and it can be 

used to integrate other models to improve performance [21]. 
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3.6.5. Long short-term memory 

The LSTM is a well-known algorithm for estimating time-series and sequential datasets. LSTM can 

handle long-term dependencies to predicate the target variable. Other variants of LSTM include classic 

LSTM, stacked LSTM, and bidirectional LSTM. LSTM uses a memory cell to store information for long 

periods. It has three gates: input, forget, and output. The input gate determines what information is added in 

the cell state, the forget gate tells us which type of information is removed, and the output gate determines 

the output from the memory cell [22]. 

 

3.7.  Model performance evaluation 

All ML models and LSTM performance were evaluated based on the following metrics. The metrics 

are given below: 

 

3.7.1. Mean squared error 

MSE is the average of squared differences between actual and predicted values. It measures the 

average squared magnitude of errors [23]. The formula for MSE is given as: 

 

MSE = ∑
(𝑦𝑘−𝑥𝑘)2

𝑛

𝑛
𝑘=1  (3) 

 

3.7.2. Mean absolute error 

MAE is the average of differences between actual and predicted values. It measures the average 

magnitude of errors [24]. The formula for MAE is given as: 

 

MAE = ∑
|𝑦𝑘−𝑥𝑘|

𝑛

𝑛
𝑘=1  (4) 

 

3.7.3. Root mean squared error 

Root mean squared error (RMSE) is the square root of MSE. It measures the standard deviation of 

residuals [25]. The formula for RMSE is given as: 

 

RMSE = √∑
(𝑦𝑘−𝑥𝑘)2

𝑛

𝑛
𝑘=1   (5) 

 

3.7.4. R-squared 

R2, also known as a coefficient of determination, is a statistical technique that measures the 

goodness of fit of a regression model. The value lies between 0 and 1 [26]. 

 

R − squared = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2

𝑖

∑ (𝑦𝑖−𝑦̅𝑖)2
𝑖

  (6) 

 

 

4. RESULTS AND DISCUSSION 

Before pre-processing data, it is best to analyse its statistical properties to gain insights. This 

includes examining statistical properties of the rice production dataset as tabulated in Table 2. The mean and 

standard deviation of the rice production dataset are 22800648.61642688 and 81591808.49779616, 

respectively. The mean of the dataset, which represents the average rice production, is a key statistical 

property to consider. 

One DL and eight ML models were developed to predict the rice production of 192 countries. Of 

these, 42 countries have discontinuous and zero rice production. So, we have removed these countries and 

did not consider them for analysis. This dataset has following features as tabulated in Table 3. ‘Entity’, 

‘Code’, ‘Year’, ‘rice | 00000027 || production | 005510 || tonnes’. 
 

 

Table 2. Statistical properties of rice dataset 
Index Year Rice | 00000027 || production | 005510 || tonnes 

Count 9300.0 9300.0 
Mean 1991.5 22800648.61642688 

Std 17.89649237104884 81591808.49779616 

Min 1961.0 0.0 
25% 1976.0 37970.25 

50% 1991.5 403196.0 

75% 2007.0 4168674.0 
Max 2022.0 789045300.0 
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Table 3. Sample of international rice production dataset after pre-processing 
Index Entity Code Year Rice | 00000027 || Production | 005510 || tonnes 

9295 Zimbabwe ZWE 2018 1363.32 
9296 Zimbabwe ZWE 2019 1134.0 

9297 Zimbabwe ZWE 2020 750.0 

9298 Zimbabwe ZWE 2021 2908.0 
9299 Zimbabwe ZWE 2022 1923.32 

 

 

Figure 3 displays a bubble plot of the top ten entities’ average production (measured in 1000 tonnes) 

from 2017 to 2022. The chart includes the world, Asia, lower-middle-income countries, upper-middle-

income countries, Southern Asia (FAO), Eastern Asia (FAO), China (FAO), India (FAO), and Southeastern 

Asia (FAO). Each entity is represented by a bubble, with the size correlating to the magnitude of rice 

production. Larger bubbles indicate higher production levels. From the plot, it can be seen that China and 

India have the largest bubbles, indicating they are the top producers. Asia as a region also shows significant 

production, reflecting the combined output of its countries. In contrast, lower-middle-income countries have 

notable production levels, highlighting their contribution to global rice production. This plot compares rice 

production effectively across different regions and income groups, providing insights into agricultural trends, 

and economic factors related to rice cultivation. 

Table 4 displays the build and test time taken by the algorithms. The RF algorithm has the longest 

build time compared to the other models. On the other hand, LSTM’s testing time is longer than that of the 

other algorithms. Reuß et al. [27] indicated that while LSTM has superior performance, it necessitates higher 

computational effort, requiring GPUs or longer computation time. Table 5 demonstrates error measurements 

and R2values of different ML and DL techniques. The linear regression algorithm has the slightly highest R2, 

with 98.40%, among ML and DL models. This highest R2 shows that the model data is perfectly fit for 

regression. Table 6 shows the predicted value of the top five rice production entities and five randomly 

selected countries in tonnes using linear regression. Various models were developed to predict rice 

production, but only the linear regression model and LSTM were used to predict the rice production of five 

entities based on their performance. 
 

 

 
 

Figure 3. Average rice production from 2017 to 2022 
 

 

Table 4. Build and test time for all models 
No Algorithms Build time (seconds) Test time (seconds) 

1. Random forest 9.724 0.060 

2. AdaBoost 0.281 0.003 
3. CatBoost 4.439 0.013 

4. XGBoost 0.250 0.005 

5. Gradient boosting 3.600 0.002 
6. Decision tree 0.151 0.001 

7. Linear regression 0.012 0.001 

8. Ridge regression 0.005 0.001 

9. LSTM 2.584 0.274 
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Table 5. Performance of ML and DL models 
Algorithms MAE MSE RMSE R-squared 

Random forest 0.0021 0.0002 0.0166 0.9710 
AdaBoost 0.0083 0.0005 0.0236 0.9417 

CatBoost 0.0024 0.0004 0.0205 0.9561 

XGBoost 0.0026 0.0005 0.0225 0.9472 
Gradient boosting 0.0021 0.0001 0.0135 0.9831 

Decision tree 0.0021 0.0002 0.0154 0.9752 

Linear regression 0.0022 0.0004 0.0216 0.9840 

Ridge regression 0.0025 0.0004 0.0219 0.9502 

LSTM 0.0057 0.0001 0.0140 0.9819 

 

 

Table 6. Predicted rice production of top five countries of ML and DL models 
Predicted rice production linear regression 

Entity 2025 2026 2027 2028 2029 2030 

World 831491200 841000200 850509200 860018200 869527200 879036200 

Asia 750087100 758561900 767036800 775511700 783986500 792461400 
Asia (FAO) 750087100 758561900 767036800 775511700 783986500 792461400 

Upper-middle-income countries 376173600 380057700 383941700 387825800 391709900 395593900 

Lower-middle-income countries 406570900 411991900 417412900 422833900 428254900 433675900 
Predicted rice production using LSTM 

World 825374400 836444800 847910976 859832448 871877632 885726080 
Asia 751069440 762517248 775157504 788389184 802099712 818525760 

Asia (FAO) 760280512 774286400 790011264 806535296 824263616 844865536 

Upper-middle-income countries 343263776 344810208 346892000 348744768 350653376 353694400 
Lower-middle-income countries 433157824 442021184 450856128 460013440 469265152 479333792 

Predicted rice production using linear regression of random five countries 

France 99096.89 99426.41 99755.94 100085.5 100415 100744.5 
India 186767100 189072200 191377300 193682500 195987600 198292700 

China 237836300 240090900 242345400 244599900 246854500 249109000 

Iran 2730726 2757446 2784166 2810887 2837607 2864327 
Australia 831291.6 837944.7 844597.8 851250.9 857904 864557.1 

 

 

In 2025, Asia will produce 750,087,100 tonnes of rice. As different models have different predicted 

values, the average rice production for the year 2025 is 676,959,750 of the top five entities. The authors of 

this paper propose all these assumptions. Similarly, all predicted values of the top five entities are depicted in 

Table 6. Figure 4 demonstrates the difference in rice production from 1961 to 2022. All five countries had the 

maximum difference in rice production from the starting year (1961) to the ending year (2022). Japan 

showed the most significant change. 

The two countries ( i.e., 69,210.00), in Western Europe and France, have the lowest maximum 

change in rice production. The percentage change from the predicted value in 2023 to the predicted value in 

2030 for the upper-middle-income country is 0.14%. Similarly, we can calculate the percentage difference 

for any other country. 

 

 

 
 

Figure 4. Rice production max changes countries 
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5. CONCLUSION 

This paper predicts the international rice production of 150 countries with the help of ML and DL 

models, showcasing the potential of these innovative technologies in the field of agriculture. Nine models 

were developed, eight of which are ML, and only one is DL. The study concludes that the international 

average rice production will be 34,527,755.27 tonnes in 2025. In the Asia continent, the production of rice 

will be 750,087,100 in 2025. Trained ML and DL models can also predict the values for Asia (FAO), upper-

middle-income, and lower-middle-income countries. Compared to the current rice production predicted value 

of upper-middle-income countries in the future, 0.14 % will increase internationally from 2023 to 2030. 

Thus, using these ML and DL models, we can predict the future value of rice production in 150 countries. 

The accuracy level of ML and DL models was measured using R2. The linear regression model provides the 

best-predicted value of rice production compared to the other models. The R2 value of this model is slightly 

the highest, showing goodness of fit. Thus, this paper can contribute to developing international agriculture 

strategies based on the outcome of this study. Nonetheless, a few limitations could be addressed in future 

research. The first limitation is the methodology, where this study employs nine models, but only one DL 

model is employed. A broader comparison involving diverse DL architectures could offer a more 

comprehensive performance evaluation. Another limitation is the assumption made during the development 

of the models. The study assumes that current socio-economic and policy conditions will remain constant, 

which may not be realistic in the real world. Changes in agricultural policies, trade agreements, or economic 

shocks could significantly impact production trends. Future studies should consider these variables to 

develop models better suited to real-world changes. 
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