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Abstract 

This study is conducted to forecast the future tourism demand in 

Malaysia by applying Box-Jenkins modelling. The time series data           

of tourist arrivals volume in Malaysia before MCO retrieved from 

MOTAC Malaysia database is implemented in this study. The    

forecast evaluation methods used to validate the best Box-Jenkins 

model before proceeding to forecasting stage are MAPE and RMSE, 

and the analysis was performed by using Python. The findings show 

that SARIMA ( ) ( )121,1,01,1,2  was considered as highly accurate 

forecasting model based on its least error produced. 

1. Introduction 

In early 2020, due to the COVID-19 pandemic, the tourism industry has 

been greatly affected causing enormous losses in all aspects. In 2020, there 

was a decrease of 83.4% of the tourist arrivals volume compared to the 

previous year, and its contribution towards the total Gross Domestic Product 

(GDP) fell to just 14.1% [1]. In response to this situation, the government is 

dedicated to redeveloping this industry after post-pandemic. 

Based on Frechtling [2], a good forecasting model greatly contributes       

to the process of decision-making. According to Peng et al. [3], in time         

series forecasting, the common quantitative methods used are time-series, 

econometric and artificial intelligence (AI). According to Hamzah et al. [4], 

SARIMA ( ) ( )124,1,11,1,1  is able to provide accurate prediction on the 

number of international tourist arrivals to Malaysia since it gives the lowest 

value of error of MSE, MAD and MAPE. In 2019, Thushara et al. [5] 

implemented SARIMA model to forecast total number of international 

tourist arrivals in Sri Lanka. They claimed that SARIMA method was 

appointed as the best method due to the forecasting accuracy examined. 

Abdul Halim and Nora [6] made a comparison between Box-Jenkins 

models, which are ARIMA and SARIMA with singular spectrum analysis 

(SSA) to identify the best model to forecast the international tourist demand 

to Malaysia. Blanco and Ronald [7] demonstrated SARIMA model to predict 
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the international tourist demand in Puno-Peru. From the empirical results, 

they found that SARIMA ( ) ( )121,0,14,2,1,6  model outperforms the other 

models, attaining the highest forecasting accuracy. Based on the literature 

search stated above, the traditional Box-Jenkins time series model (ARIMA 

and SARIMA) still can be the most accurate forecasting model, especially in 

tourism demand forecasting. Therefore, in this study, Box-Jenkins model 

will be implemented using the data of tourist arrivals volume in Malaysia to 

support the above statement. 

2. Methodology 

2.1. Data collection 

The time series data used in this study is the tourist arrivals volume in 

Malaysia, consisting of 242 data (January 2000 until February 2020) before 

the movement control order commencement. By considering ratio 80:20, 

there are 192 training data and 50 testing data. The training data will be used 

to develop the forecasting model. Meanwhile, the testing data evaluate the 

model’s accuracy level. 

2.2. Box-Jenkins modelling 

Box-Jenkins modelling implements the iterative procedure to generate 

the best performance in forecasting which consists of four stages: 

Stage 1. Model identification 

There are two parts in the model identification, known as data screening 

and identification of the model. The first step in data screening is data 

plotting and the second step is data stationarity. Box-Cox transformation is 

used to check the stationary invariance of the data since it can convert non-

normal data to more normal distribution like data, stabilizing variance          

and reducing homoscedasticity (constant and finite variance process) [8]. 

Stationarity in-mean verification will apply the Dickey and Fuller unit        

root test (ADF test) [9]. The autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plots can also measure data stationarity in-
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mean. After obtaining a stationary series, Portmanteau test will determine 

serial correlation. Box-Jenkins requires serially connected data. 

In this study, ARIMA model is implemented. ARIMA model is denoted 

by ( ),,, qdpARIMA  where p represents the order of autoregressive (AR) 

part, d indicates the number of differencing and q denotes the order of 

moving average (MA) part. Differencing is required to transform non- 

stationarity in-mean data to stationary in-mean data. When a plot of the data 

shows that the series varies about a fixed level, the sample autocorrelations 

slowed down noticeably, and the differencing can stop. The general equation 

of ARIMA model is denoted as in equation (1): 

ptpttt yyyy −−− ′φ++′φ+′φ+φ=′ ⋯22110  

.2211 qtqttt −−− εθ−−εθ−εθ−ε+ ⋯  (1) 

The other non-stationary Box-Jenkins model is seasonal ARIMA 

(SARIMA) model. SARIMA model is an improved version of ARIMA 

model by including additional seasonal terms in the existing ARIMA model. 

The general form of SARIMA model is ( ) ( ) ,,,,, mQDPqdpSARIMA  

where ( )qdp ,,  represents a non-seasonal part, ( )mQDP ,,  represents a 

seasonal part and m represents the number of observations per year. The 

general equation of SARIMA model is given as follows: 

( ) ( ) ( ) ( ) ( ) ( ) .11 tq
S

Qt
DSd

p
S

P aBByBBBB θΘ=−−φΦ  (2) 

Stage 2. Parameter estimation 

The parameter estimation used is maximum likelihood method (MLE). 

In this study, the Box-Jenkins model with smallest Akaike information 

criteria (AIC) value will be chosen for the next stage. 

Stage 3. Diagnostic checking 

The adequacy of selected forecasting model must undergo three 

diagnostic checking before proceeding to the next stage. These are outcome 

from the analysis of residual, also known Portmanteau test or general 
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goodness-to-fit statistic, homoscedasticity test and normality test. In analysis 

of residual, the Ljung-Box Q test (LBQ test) is performed on residuals. LBQ 

test is applied on a squared residual series to test the ARCH effects in the 

residuals under homoscedasticity test. To identify whether the residuals 

follow normal distribution or not, the normality test is carried out using 

Jarque-Bera test (JB test). 

Stage 4. Forecasting 

In this study, one-step ahead is considered. Two metrics, mean absolute 

percentage error (MAPE) and root mean square error are used to measure the 

performance of forecasting model. 

3. Results and Discussion 

Stage 1. Model identification 

The data is divided into two subsets where 80% of the data was allocated 

for training, while the remaining 20% for testing data. The training data              

is used to develop the model, whereas the testing data is implemented to 

measure the model performance. The volume of tourist arrivals in Malaysia 

for training data can be seen in Figure 1. Since the time series plot shows 

upward and downward trends, it is obvious that the data is not stationary in 

terms of its mean, but the data may be stationary in terms of its variance.         

To identify whether our assumptions are correct, we conduct Box-Cox 

transformation and Augmented Dickey-Fuller (ADF) test. From the Box-Cox 

transformation, it is discovered that the value of λ  is close to 1.0. Hence, 

there is no transformation of data required, and it is confirmed that the data 

used is stationary in terms of its variance. Then, the stationarity in-mean 

checking process was conducted using ADF test. The result shows that the 

data is not stationary in terms of its mean since the 8517.0value- =p  is 

greater than the level of significance, .05.0=α  The non-stationarity in-

mean also can be seen in ACF and PACF plots as given in Figure 2(a) and 

Figure 2(b), respectively. Based on Figure 2(a), the autocorrelation 

coefficient value is large and the value of ACF decreases slowly. Therefore, 

we can conclude that the data is not stationary in-mean. 
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Since our data series exhibits seasonal trends, therefore the model will 

comprise of non-seasonal and seasonal parts. To stabilize the mean, first 

differencing must be carried out for both, non-seasonal and seasonal parts. 

After the first differencing for non-seasonal part, the ADF test is conducted 

once again. It is found that the p-value is 0.000 and it can be verified that the 

data is now stationary in-mean. The ACF and PACF plots after first 

differencing for non-seasonal part in Figure 3(a) and Figure 3(b) also show 

that data is stationary in-mean. According to these two correlograms, the 

PACF shows a “cut off” after lag 2, indicating that the non-seasonal AR(0), 

AR(1) or AR(2) is appropriate to fit the data. Similarly, the ACF lag “cuts 

off” after lag 2, suggesting that non-seasonal MA(0), MA(1) or MA(2) is 

appropriate to fit the data. First seasonal differencing for seasonal part was 

performed to eliminate the seasonality of the data series. After the 

differencing process, ADF test was carried out and found that the p-value is 

smaller than the significance value, .05.0=α  Therefore, the seasonal part is 

already stationary in terms of its mean. The plots of ACF and PACF for 

seasonal part after differencing are illustrated in Figure 4(a) and Figure 4(b), 

respectively. According to these two correlograms, the PACF lag “cuts off” 

after lag 1, suggesting that the seasonal AR(0) or AR(1) is appropriate to fit 

the data. Similarly, the ACF lag “cuts off” after lag 3, suggesting that 

seasonal MA(0), MA(1), MA(2) or MA(3) is appropriate to fit the data. 

Then, a hypothesis testing is carried out. The null hypothesis is the time 

series not serial correlated and the alternative hypothesis is the time series 

which is serial correlated. By using Ljung-Box Q test (LBQ test), it is found 

that the p-value is 0.000, which is smaller than significance level, .05.0=α  

Therefore, the null hypothesis is rejected, and we can say that there exists 

serial correlation between time series data. According to Figure 4(a) and 

Figure 4(b), the seasonal part of AR and MA models can be seen clearly in 

lags of ACF and PACF, where there is significant spike at lag 12. Therefore, 

there is no doubt in confirming that SARIMA model is appropriate for this 

study. 
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Figure 1. The training data of the number of tourist arrivals in Malaysia. 

 

   (a)                                                         (b) 

Figure 2. The (a) ACF plot, and (b) PACF plot for non-stationarity in-mean. 

 

    (a)                                                     (b) 

Figure 3. The plot of (a) ACF and (b) PACF for non-seasonal part after first 

differencing. 
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    (a)                                                          (b) 

Figure 4. The plot of (a) ACF and (b) PACF for seasonal part after first 

differencing. 

Stage 2. Parameter estimation 

Based on the output from auto.arima, the selected model for the data was 

( ) ( )121,1,01,1,2SARIMA  based on its lowest AIC value. Besides that, since 

all the p-values are smaller than significance level, ,05.0=α  it shows that 

all the parameter values are significant. The equation for the best model is 

denoted as follows: 

( ) ( ) ( ) ( ) ( ) ,11 1
12

1
1121

2 tt aBByBBB θΘ=−−ϕ  

( ) ( ) ( ) ( ) ( ) ,11111 1
12

1
122

21 tt aBByBBBB θ−Θ−=−−ϕ−ϕ−  

( )( )( ) ( )( ) .4908.016057.01113217.06618.01 12122
tt aBByBBBB −+=−−++

 

Stage 3. Diagnostic checking 

Based on the hypothesis testing, the outcome shows that the residuals  

are not serial correlated since the 3507.0value- =p  is greater than the 

significance level, .05.0=α  In addition, the 7.0value- =p  obtained from 

the homoscedasticity test concluded that there are no ARCH effects in the 

residuals. While, for normality test, we found that the residuals do not follow 

the normal distribution. But, according to histogram plot (see Figure 5),             

the residuals follow the histogram closely. We can conclude that this 
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phenomenon occurs due to the existing of outliers in the data. Therefore, this 

result for normality test is neglected. 

Stage 4. Forecasting 

In the forecasting stage, the selected model ( ) ( )121,1,01,1,2SARIMA  is 

implemented in forecasting the testing data. The comparison between actual 

testing data and forecasted testing data were presented in Figure 6. Based on 

Figure 6, the predicted testing data follows the pattern of actual testing data 

accurately. Since there are no zero values in this time series data, MAPE is 

suitable to be used as forecast evaluation method. The analysis of these 

forecast evaluation methods is tabulated in Table 1. Based on the results 

obtained, the MAPE for testing data is 5.3120%.  

 

Figure 5. The residual distribution of training data. 

 

Figure 6. The comparison between actual testing data and predicted testing 

data. 
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Table 1 

MAPE and RMSE analyses for ( ) ( )121,1,01,1,2SARIMA  model 

Forecast evaluation MAPE RMSE 

( ) ( )121,1,01,1,2SARIMA  5.3120 152539.7805 

4. Conclusions 

Overall, the traditional Box-Jenkins model is one of the appropriate 

models for time series demand forecasting. The findings show that 

( ) ( )121,1,01,1,2SARIMA  is highly accurate forecasting model based on its 

least error produced. 
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